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EXISTENCE OF A POSITIVE SOLUTION FOR THE

SYSTEM OF THE NONLINEAR BIHARMONIC

EQUATIONS

Q-heung Choi∗† and Tacksun Jung

Abstract. We prove the existence of a positive solution for the sys-
tem of the following nonlinear biharmonic equations with Dirichlet
boundary condition{

∆2u + c∆u + av+ = s1φ1 + ε1h1(x) in Ω,
∆2v + c∆v + bu+ = s2φ1 + ε2h2(x) in Ω,

where u+ = max{u, 0}, c ∈ R, s ∈ R, ∆2 denotes the biharmonic
operator and φ1 is the positive eigenfunction of the eigenvalue prob-
lem −∆ with Dirichlet boundary condition. Here ε1, ε2 are small
numbers and h1(x), h2(x) are bounded.

1. Introduction and statement of main result

In this paper we investigate the existence of a positive solution of the
system of the nonlinear biharmonic equations with Dirichlet boundary
conditions

∆2u + c∆u + av+ = s1φ1 + ε1h1(x) in Ω,
∆2v + c∆v + bu+ = s2φ1 + ε2h2(x) in Ω, (1.1)
u = 0, ∆u = 0 on ∂Ω,
v = 0, ∆v = 0 on ∂Ω,

where u+ = max{u, 0}, c ∈ R, s ∈ R, ∆2 denotes the biharmonic
operator and φ1is the positive eigenfunction of the eigenvalue problem
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∆u + λu = 0 in Ω, u = 0 on ∂Ω. Here ε1, ε2 are small numbers
and h1(x), h2(x) are bounded and ‖h1‖ = ‖h2‖ = 1.

System (1.1) of the nonlinear biharmonic equations with Dirichlet
boundary condition is considered as a model of the cross of the two
nonlinear oscillations in differential equation.

For the case of the single biharmonic equation Tarantello([12]), Lazer
and McKenna([7]), Choi and Jung ([4]) etc., investigate the multiplicity
of the solutions via the degree theory or the critical point theory or the
variational reduction method. In this paper we improve the multiplicity
results of the single biharmonic equation to the case of the system of the
nonlinear biharmonic equations. The system (1.1) can be rewritten by{

∆2U + c∆U + AU+ =
(

s1φ1

s2φ1

)
+

(
ε1h1

ε2h2

)
in Ω, (1.2)

U =
(
0
0

)
, ∆U =

(
0
0

)
on ∂Ω,

where U =
(

u
v

)
, U+ =

(
u+

v+

)
, ∆2U + c∆U =

(
∆2u+c∆u
∆2v+c∆v

)
, A =

(
0 a
b 0

)
∈

M2×2(R).
Let Ω be a bounded set in Rn with smooth boundary ∂Ω. Let λk, k =

1, 2, . . ., denote the eigenvalues and φk, k = 1, 2, . . ., the corresponding
eigenfunctions, suitably normalized with respect to L2(Ω) inner product,
of the eigenvalue problem

∆u + λu = 0 in Ω,

u = 0 on ∂Ω,

where each eigenvalue λk is repeated as often as its multiplicity. We
recall that 0 < λ1 < λ2 ≤ λ3 ≤ . . . → +∞, and that φ1(x) > 0 for
x ∈ Ω. The eigenvalue problem

∆2u + c∆u = νu in Ω,

u = 0, ∆u = 0 on ∂Ω

has infinitely many eigenvalues

νk = λk(λk − c), k = 1, 2, . . . ,

and corresponding eigenfunctions φk(x). The set of functions {φk} is an
orthonormal base for L2(Ω). Let us denote an element u, in L2(Ω), as

u =
∑

hkφk,
∑

h2
k < ∞.
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We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|νk|h2
k < ∞}.

Then this is a complete normed space with a norm

‖u‖ = [
∑

|νk|h2
k]

1
2 .

Since λk → +∞ and c is fixed, we have
(1) ∆2u + c∆u ∈ H implies u ∈ H.
(2) ‖u‖ ≥ C‖u‖L2(Ω) for some C > 0.
(3) ‖u‖L2(Ω) = 0 if and only if |‖u|‖ = 0.

The space H is a Banach space with norm

‖u‖2 = [
∑

|νj|h2
j ]

1
2 .

Let us set E = H ×H. We endow the Hilbert E with the norm

‖(u, v)‖2
E = ‖u‖2 + ‖v‖2 ∀(u, v) ∈ E.

We are looking for the weak solutions of (1.1) in E, that is, (u, v) satis-
fying the equation∫

Ω

(∆2u+c∆u)z+

∫
Ω

(∆2v+c∆v)w+

∫
Ω

(AU+, (z, w))−
∫

Ω

(s1φ1 +ε1h1)z

−
∫

Ω

(s2φ1 + ε2h1)w = 0, ∀(z, w) ∈ E,

where u =
∑

cjφj, v =
∑

djφj with ∆2u + c∆u =
∑

νjcjφj ∈ H,
∆2v + c∆v =

∑
νjdjφj ∈ H i.e., with

∑
c2
j |νj| < ∞,

∑
d2

j |νj| < ∞,
which implies u, v ∈ H. Now we state the main result :

Theorem 1.1. (Existence of a positive solution) Let c < λ1 and
s1, s2 > 0 . Assume that

ν2
j − ab 6= 0, for all j, (1.3)

a < 0, b < 0 and ν2
1 − ab > 0. (1.4)

Then, for each h1(x), h2(x) ∈ H with ‖h1(x)‖ = 1, ‖h2(x)‖ = 1, there
exist small numbers ε∗1 and ε∗2 such that if ε1 < ε∗1 and ε2 < ε∗2 then
system (1.1) has a positive solution.
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2. Proof of Theorem 1.1

We have some properties. Since |νj| > 0 for all j, we have the following
lemma.

Lemma 2.1. Let Lu = ∆2u + c∆u. Then we have the followings.
(i) ‖u‖ ≥ ‖u‖L2(Q), where ‖u‖L2(Q) denotes the L2 norm of u.
(ii) ‖u‖ = 0 if and only if ‖u‖L2(Q) = 0.
(iii) Lu ∈ H implies u ∈ H.
(iv) Suppose that c is not an eigenvalue of L. Let f ∈ H. Then we have
(L− c)−1f ∈ H.

For the proof we refer [4].

Lemma 2.2. Let c < λ1 and s1, s2 > 0. Assume that the conditions
(1.3) and (1.4) hold. Then the system

∆2u + c∆u + av = s1φ1 in Ω,
∆2v + c∆v + bu = s2φ1 in Ω, (2.1)
u = 0, ∆u = 0 on ∂Ω,
v = 0, ∆v = 0 on ∂Ω,

has a unique solution (u∗, v∗) ∈ E, which is of the form

u∗ = [
ν1s2 − s2a

ν2
1 − ab

]φ1, v∗ = [
ν1s2 − s1b

ν2
1 − ab

]φ1.

Proof. If we put u∗ = αφ1, v∗ = βφ1 and insert it into (2.1), then we
get the solution (u∗, v∗) of system (2.1) of the above form.

The solution (u∗, v∗) ∈ E satisfies that u∗ > 0, v∗ > 0. Thus we have
the following lemma.

Lemma 2.3. Let c < λ1 and s1, s2 > 0. Assume that the conditions
(1.3) and (1.4) hold. Then the system

∆2u + c∆u + av+ = s1φ1 in Ω,
∆2v + c∆v + bu+ = s2φ1 in Ω, (2.1)
u = 0, ∆u = 0 on ∂Ω,
v = 0, ∆v = 0 on ∂Ω,

has a positive unique solution (u∗, v∗) ∈ E.

Lemma 2.4. Assume that the conditions (1.3) and (1.4) hold.
Then the system
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{
∆2U + c∆U + AU =

(
0
0

)
in Ω, (2.2)

U =
(
0
0

)
, ∆U =

(
0
0

)
on ∂Ω,

where U =
(

u
v

)
, ∆2U + c∆U =

(
∆2u+c∆u
∆2v+c∆v

)
, has only the trivial solution

U =
(
0
0

)
.

Proof. We assume that there exists a nontrivial solution U = (u, v) ∈ E
of (2.2) of the form u = φj and v = φk. Let LU = ∆2U + c∆U . The
equation

L

(
φj

φk

)
+ A

(
φj

φk

)
=

(
0

0

)
is equivalent to the equation(

νjφj

νkφk

)
+

(
aφk

bφj

)
=

(
0

0

)
.

Thus when j 6= k, we have a contradiction since φj and φk are linearly
independent. When j = k, we have νj + a = 0 and νj + b = 0, which
means that ν2

j −ab = 0. These contradicts to the assumption (1.3).

Lemma 2.5. Assume that the conditions (1.3)and (1.4) hold. Sup-
pose that h1, h2 ∈ H are bounded functions with

∫
Ω

h1φ1 =
∫

Ω
h2φ1 = 0.

Then the system{
∆2U + c∆U + AU =

(
h1

h2

)
in Ω, (2.2)

U =
(
0
0

)
, ∆U =

(
0
0

)
on ∂Ω,

has a unique solution (ǔ, v̌) ∈ E.

Proof. Let δ > 0 and δ > max{a, b}. Let us consider the modified
system

∆2u + c∆u + av + ν1u + δu = h1(x) in Ω,
∆2v + c∆v + bu + ν1v + δv = h2(x) in Ω, (2.3)
u = 0, ∆u = 0 on ∂Ω,
v = 0, ∆v = 0 on ∂Ω.

Let us set

LδU = ∆2U + c∆U + AU + ν1U + δU, U =

(
u

v

)
.
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System (2.3) is invertible. Thus there exists an inverse operator L−1
δ :

H ×H → E which is a linear and compact operator such that (u, v) =
L−1

δ (h1, h2). Thus we have that if (u, v) is a solution of (2.2) if and only
if

(u, v) = L−1
δ (h1, h2) + ν1(u, v) + δ(u, v)). (2.4)

Thus we have

(I − (ν1 + δ)L−1
δ )((h1, h2) + ν1(u, v) + δ(u, v))) = (h1, h2).

By the conditions (1.3) and (1.4), 1
ν1+δ

/∈ σ(L−1
δ ). Since L−1

δ is a compact

operator, system (2.4) has a unique solution, thus system (2.2) has a
unique solution.

Proof of Theorem 1.1 By Lemma 2.3 and Lemma 2.5, (u∗ +
ε1ǔ, v∗ + ε2v̌) is a solution of the system

∆2u + c∆u + av = s1φ1 + ε1h1(x) in Ω,
∆2v + c∆v + bu = s2φ1 + ε2h2(x) in Ω, (2.5)
u = 0, ∆u = 0 on ∂Ω,
v = 0, ∆v = 0 on ∂Ω,

where u∗ = [ν1s2−s2a
ν2
1−ab

]φ1, v∗ = [ν1s2−s1b
ν2
1−ab

]φ1. Therefore if ν2
1 − ab < 0,

then there exist small numbers ε∗1, ε∗2 with ε∗1 > 0 and ε∗2 > 0 such that
u∗ + ε1ǔ > 0 and v∗ + ε2v̌ > 0 for each ε1 < ε∗1 and ε2 < ε∗2.

Therefore there exist small numbers ε∗1 and ε∗2 such that if ε1 < ε∗1 and
ε2 < ε∗2 then system (1.1) has a positive solution (u∗ + ε1ǔ, v∗ + ε2v̌).
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