• Title/Summary/Keyword: Bounded domain

Search Result 190, Processing Time 0.022 seconds

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.

A New PID Controller with Lyapunov Stability for Regulation Servo Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • In this paper, the stability of second order uncertain systems with regulation of PID type controllers is analyzed by using Lyapunov second method for the first time in the time domain. The property of the stability of PID regulation servo systems is revealed in sense of Lyapunov, i.e., bounded stability due to the disturbances and uncertainties. By means of the results of this stability analysis, the maximum norm bound of the error from the output without variation of the uncertainties and disturbances is determined as a function of the gains of the PID control, which make it enable to analyze the effect resulted from the variations of the disturbances and uncertainties using this norm bound for given PID gains. Using the relationship of the error from the output without variation of the uncertainties and disturbances and the PID gain with maximum bounds of the disturbances and uncertainties, the robust gain design rule is suggested so that the error from the output without the variation of the disturbances and uncertainties can be guaranteed by the prescribed specifications as the advantages of this study. The usefulness of the proposed algorithm is verified through an illustrative example.

  • PDF

ON THE EXISTENCE OF POSITIVE SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • Rasouli, S.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.557-564
    • /
    • 2012
  • This study concerns the existence of positive solution for the following nonlinear system $$\{-div(|x|^{-ap}|{\nabla}u|^{p-2}{\nabla}u)=|x|^{-(a+1)p+c_1}({\alpha}_1f(v)+{\beta}_1h(u)),x{\in}{\Omega},\\-div(|x|^{-bq}|{\nabla}v|q^{-2}{\nabla}v)=|x|^{-(b+1)q+c_2}({\alpha}_2g(u)+{\beta}_2k(v)),x{\in}{\Omega},\\u=v=0,x{\in}{\partial}{\Omega}$$, where ${\Omega}$ is a bounded smooth domain of $\mathbb{R}^N$ with $0{\in}{\Omega}$, 1 < $p,q$ < N, $0{{\leq}}a<\frac{N-p}{p}$, $0{{\leq}}b<\frac{N-q}{q}$ and $c_1$, $c_2$, ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, ${\beta}_2$ are positive parameters. Here $f,g,h,k$ : $[0,{\infty}){\rightarrow}[0,{\infty})$ are nondecresing continuous functions and $$\lim_{s{\rightarrow}{\infty}}\frac{f(Ag(s)^{\frac{1}{q-1}})}{s^{p-1}}=0$$ for every A > 0. We discuss the existence of positive solution when $f,g,h$ and $k$ satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.

A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER

  • Lee, Chang-Ock;Park, Eun-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.461-477
    • /
    • 2017
  • A dual substructuring method with a penalty term was introduced in the previous works by the authors, which is a variant of the FETI-DP method. The proposed method imposes the continuity not only by using Lagrange multipliers but also by adding a penalty term which consists of a positive penalty parameter ${\eta}$ and a measure of the jump across the interface. Due to the penalty term, the proposed iterative method has a better convergence property than the standard FETI-DP method in the sense that the condition number of the resulting dual problem is bounded by a constant independent of the subdomain size and the mesh size. In this paper, a further study for a dual iterative substructuring method with a penalty term is discussed in terms of its convergence analysis. We provide an improved estimate of the condition number which shows the relationship between the condition number and ${\eta}$ as well as a close spectral connection of the proposed method with the FETI-DP method. As a result, a choice of a moderately small penalty parameter is guaranteed.

A Study on the Improvement of Convergence for a Discrete-time Learning Controller by Approximated Inverse Model (근사 역모델에 의한 이산시간 학습제어기의 수렴성 개선에 관한 연구)

  • Moon, Myung-Soo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.101-105
    • /
    • 1989
  • The iterative learning controller makes the system output follow the desired output over a finite time interval through iterating trials. In this paper, first we discuss that the design problem of learning controller is originally the design problem of the inverse model. Then we show that the tracking error which is the difference between the desired output and the system output is reduced monotonically by properly modeled inverse system if the magnitude of the learning operator being introduced is bounded within the unit circle in complex domain. Also it would be shown that the conventional learning control method is a kind of extremely simplified inverse model learning control method of the objective controlled system. Hence this control method can be considered as a generalization of the conventional learning control method. The more a designer model the objective controlled system precisely, the better the performance of the approximated inverse model learning controller would be. Finally we compare the performance of the conventional learning control method with that of the approximated inverse model learning control method by computer simulation.

  • PDF

STABILITY RESULTS OF POSITIVE WEAK SOLUTION FOR SINGULAR p-LAPLACIAN NONLINEAR SYSTEM

  • KHAFAGY, SALAH;SERAG, HASSAN
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.173-179
    • /
    • 2018
  • In this paper, we investigate the stability of positive weak solution for the singular p-Laplacian nonlinear system $-div[{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u]+m(x){\mid}u{\mid}^{p-2}u={\lambda}{\mid}x{\mid}^{-(a+1)p+c}b(x)f(u)$ in ${\Omega}$, Bu = 0 on ${\partial}{\Omega}$, where ${\Omega}{\subset}R^n$ is a bounded domain with smooth boundary $Bu={\delta}h(x)u+(1-{\delta})\frac{{\partial}u}{{\partial}n}$ where ${\delta}{\in}[0,1]$, $h:{\partial}{\Omega}{\rightarrow}R^+$ with h = 1 when ${\delta}=1$, $0{\in}{\Omega}$, 1 < p < n, 0 ${\leq}$ a < ${\frac{n-p}{p}}$, m(x) is a weight function, the continuous function $b(x):{\Omega}{\rightarrow}R$ satisfies either b(x) > 0 or b(x) < 0 for all $x{\in}{\Omega}$, ${\lambda}$ is a positive parameter and $f:[0,{\infty}){\rightarrow}R$ is a continuous function. We provide a simple proof to establish that every positive solution is unstable under certain conditions.

EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEM WITH CONCAVE-CONVEX NONLINEARITIES

  • Yin, Honghui;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.921-936
    • /
    • 2011
  • In this paper, our main purpose is to establish the existence of weak solutions of a weak solutions of a class of p-q-Laplacian system involving concave-convex nonlinearities: $$\{\array{-{\Delta}_pu-{\Delta}_qu={\lambda}V(x)|u|^{r-2}u+\frac{2{\alpha}}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta},\;x{\in}{\Omega}\\-{\Delta}p^v-{\Delta}q^v={\theta}V(x)|v|^{r-2}v+\frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v,\;x{\in}{\Omega}\\u=v=0,\;x{\in}{\partial}{\Omega}}$$ where ${\Omega}$ is a bounded domain in $R^N$, ${\lambda}$, ${\theta}$ > 0, and 1 < ${\alpha}$, ${\beta}$, ${\alpha}+{\beta}=p^*=\frac{N_p}{N_{-p}}$ is the critical Sobolev exponent, ${\Delta}_su=div(|{\nabla}u|^{s-2}{\nabla}u)$ is the s-Laplacian of u. when 1 < r < q < p < N, we prove that there exist infinitely many weak solutions. We also obtain some results for the case 1 < q < p < r < $p^*$. The existence results of solutions are obtained by variational methods.

POSITIVE SOLUTION FOR A CLASS OF NONLOCAL ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • AFROUZI, G.A.;ZAHMATKESH, H.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.121-130
    • /
    • 2017
  • This study is concerned with the existence of positive solution for the following nonlinear elliptic system $$\{-M_1(\int_{\Omega}{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^pdx)div({\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)\\{\hfill{120}}={\mid}x{\mid}^{-(a+1)p+c_1}\({\alpha}_1A_1(x)f(v)+{\beta}_1B_1(x)h(u)\),\;x{\in}{\Omega},\\-M_2(\int_{\Omega}{\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^qdx)div({\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^{q-2}{\nabla}v)\\{\hfill{120}}={\mid}x{\mid}^{-(b+1)q+c_2}\({\alpha}_2A_2(x)g(u)+{\beta}_2B_2(x)k(v)\),\;x{\in}{\Omega},\\{u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}$ is a bounded smooth domain of ${\mathbb{R}}^N$ with $0{\in}{\Omega}$, 1 < p, q < N, $0{\leq}a$ < $\frac{N-p}{p}$, $0{\leq}b$ < $\frac{N-q}{q}$ and ${\alpha}_i,{\beta}_i,c_i$ are positive parameters. Here $M_i,A_i,B_i,f,g,h,k$ are continuous functions and we discuss the existence of positive solution when they satisfy certain additional conditions. Our approach is based on the sub and super solutions method.

FRACTIONAL ORDER SOBOLEV SPACES FOR THE NEUMANN LAPLACIAN AND THE VECTOR LAPLACIAN

  • Kim, Seungil
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.721-745
    • /
    • 2020
  • In this paper we study fractional Sobolev spaces characterized by a norm based on eigenfunction expansions. The goal of this paper is twofold. The first one is to define fractional Sobolev spaces of order -1 ≤ s ≤ 2 equipped with a norm defined in terms of Neumann eigenfunction expansions. Due to the zero Neumann trace of Neumann eigenfunctions on a boundary, fractional Sobolev spaces of order 3/2 ≤ s ≤ 2 characterized by the norm are the spaces of functions with zero Neumann trace on a boundary. The spaces equipped with the norm are useful for studying cross-sectional traces of solutions to the Helmholtz equation in waveguides with a homogeneous Neumann boundary condition. The second one is to define fractional Sobolev spaces of order -1 ≤ s ≤ 1 for vector-valued functions in a simply-connected, bounded and smooth domain in ℝ2. These spaces are defined by a norm based on series expansions in terms of eigenfunctions of the vector Laplacian with boundary conditions of zero tangential component or zero normal component. The spaces defined by the norm are important for analyzing cross-sectional traces of time-harmonic electromagnetic fields in perfectly conducting waveguides.

${H^1}({\Omega})$-NORM ERROR ANALYSIS UNDER NUMERICAL QUADRATURE RULES BY THE P-VERSION OF THE FINITE ELEMENT METHOD

  • Kim, Ik-Sung;Kim, Chang-Geun;Song, Man-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.467-489
    • /
    • 1994
  • Let $\Omega$ be a closed and bounded polygonal domain in R$^2$, or a closed line segment in R$^1$ with boundary $\Gamma$, such that there exists an invertible mapping T : $\Omega$ \longrightarrow $\Omega$ with the following correspondence: x$\in$$\Omega$ ↔ x = T(x) $\in$$\Omega$, (1.1) and (1.2) t $\in$ U$\sub$p/($\Omega$) ↔ t = to T$\^$-1/ $\in$ U$\sub$p/($\Omega$), where $\Omega$ denotes the corresponding reference elements I = [-1,1] and I ${\times}$ I in R$^1$ and R$^2$ respectively, (1.3) U$\sub$p/($\Omega$) = {t : t is a polynomial of degree $\leq$ p in each variable on $\Omega$}, and (1.4) U$\sub$p/($\Omega$) = {t : t = to T $\in$ U$\sub$p/($\Omega$)}.(omitted)

  • PDF