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EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF

QUASILINEAR ELLIPTIC SYSTEM WITH

CONCAVE-CONVEX NONLINEARITIES†

HONGHUI YIN AND ZUODONG YANG∗

Abstract. In this paper, our main purpose is to establish the existence of
weak solutions of a class of p-q-Laplacian system involving concave-convex
nonlinearities:




−4pu−4qu = λV (x)|u|r−2u+ 2α
α+β

|u|α−2u|v|β , x ∈ Ω

−4pv −4qv = θV (x)|v|r−2v + 2β
α+β

|u|α|v|β−2v, x ∈ Ω

u = v = 0, x ∈ ∂Ω

where Ω is a bounded domain in RN , λ, θ > 0, and 1 < α, β, α + β =

p∗ = Np
N−p

is the critical Sobolev exponent, 4su = div(|∇u|s−2∇u) is the

s-Laplacian of u. when 1 < r < q < p < N , we prove that there exist
infinitely many weak solutions. We also obtain some results for the case
1 < q < p < r < p∗. The existence results of solutions are obtained by
variational methods.

AMS Mathematics Subject Classification : 35B09, 35J47.
Key words and phrases : p-q-Laplacian, critical exponent, concave-convex
nonlinearities, weak solution.

1. Introduction

In this paper, we are interested in finding multiple nontrivial weak solutions to
the following nonlinear elliptic system of p-q-Laplacian type with concave-convex
nonlinearities




−4pu−4qu = λV (x)|u|r−2u+ 2α
α+β |u|α−2u|v|β , x ∈ Ω

−4pv −4qv = θV (x)|v|r−2v + 2β
α+β |u|α|v|β−2v, x ∈ Ω

u = v = 0, x ∈ ∂Ω

(1.1)
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where Ω is a bounded domain in RN , λ, θ > 0, and 1 < r < q < p < N , 1 < α, β,
α + β = p∗ = Np

N−p is the critical Sobolev exponent, 4su = div(|∇u|s−2∇u) is

the s-Laplacian of u.
When u = v, α = β and λ = θ, System (1.1) reduce to the p-q-Laplacian

equations:
{ −4pu−4qu = λV (x)|u|r−2u+ |u|p∗−2u, x ∈ Ω

u = 0, x ∈ ∂Ω
(1.2)

Problem (1.2) comes, for example, from a general reaction-diffusion system

ut = div[H(u)∇u] + c(x, u) (1.3)

where H(u) = |∇u|p−2 + |∇u|q−2. This system has a wide range of applications
in physics and related science such as biophysics, plasma physics and chemical
reaction design. Typically, in chemical and biological applications, the reaction
term c(x, u) has a polynomial form with respect to the concentration u.

Recently, the stationary solution of (1.3) was studied by many authors, that
is many works considered the solutions of the following problem

−div[H(u)∇u] = c(x, u). (1.4)

for example,see [6.19-21,26].
If p = q = 2, (1.2) can be reduced to

{ −4u = λV (x)|u|r−2u+ |u|2∗−2u, x ∈ Ω
u = 0, x ∈ ∂Ω

(1.5)

which is a normal Schrodinger equation and has been widely studied, see[10-
12,23].

The solutions of problem (1.5) corresponds to the critical points of the energy
functional

I(u) =
1

2

∫

Ω

|∇u|2dx− λ

r

∫

Ω

V (x)|u|rdx− 1

2∗

∫

Ω

|u|2∗dx

defined on W 1,2
0 (Ω). When r = 2, the pioneer result of Brezis-Nirenberg [8]

studied problem (1.5) and shows that under some suitable conditions, probnlem

(1.5) possesses a positive solution in W 1,2
0 (Ω). For more results see [9,17] and

reference therein.
The typically difficulty in dealing with problem (1.5) is that the corresponding

functional I(u) doesn’t satisfy (PS) condition due to the lack of compactness of
the embedding: H1

0 ↪→ L2∗(Ω). Hence we couldn’t use the standard variational
methods.

However, if 1 < r < 2, the situation is quite different, see [5,25]. The main
essence is that when 1 < r < 2, the functional I(u) is sublinear, when λ is small
enough, I(u) satisfies (PS)c condition for c < 0, so we can look for critical points
of negative critical values of I(u).
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For the general p-Laplacian problem

{ −4pu = λV (x)|u|r−2u+ |u|p∗−2u, x ∈ Ω
u = 0, x ∈ ∂Ω

(1.6)

which is a special case of (1.2) when p = q. Problem (1.6) was also studied
by many authors, many results valid for problem (1.5) has been extended to
problem (1.6). For example, see [4,18,27]. The main difficulty in extending the
results for problem (1.5) to the corresponding results for problem (1.6) is that

W 1,p
0 (Ω) is not a Hilbert space in general, then more analysis is needed.
We recall some results about problem (1.4) now. In [26], M.Wu and Z.Yang

proved the existence of a nontrivial solution to problem (1.4) with

c(x, u) = a(x)|u|p−2u+ b(x)|u|q−2u− f(x, u)

in the whole space RN , where a(x), b(x) are positive functions, also when a(x) ≡
m, b(x) ≡ n are positive constants, it was proved in [19] that problem (1.4) has
a nontrivial solution. Recently in [20], G.Li and G.Zhang studied problem (1.4)
involving critical exponent with

c(x, u) = |u|p∗−2u+ θ|u|r−2u

by using Lusternik-Schnirelman’s theory(see also in [4]). Other results see [6,21]
and reference therein.

At the same time, much attention has been paid to the existence of solutions
for elliptic systems. especially for the following case





−4pu = λ|u|q−2u+ 2α
α+β |u|α−2u|v|β , x ∈ Ω

−4pv = θ|v|q−2v + 2β
α+β |u|α|v|β−2v, x ∈ Ω

u = v = 0 x ∈ ∂Ω

(1.7)

where α + β = p∗. In fact system (1.7) is a special case of (1.1) when p = q.
When p = 2 and q = 2, Alves et al [2] considered (1.7) and proved the existence
of least energy solutions for any λ, θ ∈ (0, λ1) and generalized the corresponding
results of [8] to the case of system (1.7), here λ1 denote the first eigenvalue
of operator −4. Subsequently, Han [14] considered the existence of multiple
positive solutions for(1.7) and in [16] T.S.Hsu studied system (1.7) when 1 <
q < p < N,α+ β = p∗, more results see [15,24] etc..

However, as far as we know, there are few results on problem (1.1) with
concave-convex nonlinearities. Motivated by [4,16,20], we shall extend the re-
sults of the above to problem (1.1). Let us denote the Banach space H =

W 1,p
0 (Ω) × W 1,p

0 (Ω) in this paper, and for the functions V (x), we add the fol-
lowing assumptions:

(V0) Suppose V (x) ∈ L
p∗

p∗−r (Ω) and V (x) > σ > 0 in Ω.
Then we have the following results:
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Theorem 1.1. Assume 1 < r < q < p < N , and (V0) hold. Then there is a
positive constant Λ∗ such that for any 0 < (λ+ θ) ≤ Λ∗, problem (1.1) possesses
infinitely many weak solutions in H.

In the present parer, we also consider problem (1.1) for the case:1 < q < p ≤
r < p∗, and obtain the following theorem:
Theorem 1.2. If 1 < q < p ≤ r < p∗ and (V0) hold, then there is a Λ∗ > 0,
such that for any (λ+ θ) > Λ∗, problem (1.1) has a nontrivial solution.
Remark 1.3. In [4], J.G.Azvrero and I.P.Aloson obtained that there exist a
nontrivial solution for (1.6) with V (x) ≡ 1 by the Mountain Pass Lemma. In
fact, Theorem 1.2 is an extension of Theorem 3.2 in [4] to p-q-Laplacian system
(1.1).

The present paper is organized as follows, in section 2, we give some prelim-
inary results; in section 3, we will prove the main result, Theorem1.1.; and we
will study (1.1) for the case 1 < q < p ≤ r < p∗, and prove Theorem 1.2 in
section 4.

2. Preliminaries results

Let H ′ be dual of H, 〈, 〉 the duality paring between H ′ and H, the norm on
H is given by

‖z‖p = ‖(u, v)‖p = (‖u‖pp + ‖v‖pp)
1
p

and the norm on Lp(Ω)× Lp(Ω) is given by

|z|p = |(u, v)|p = (|u|pp + |v|pp)
1
p

where z = (u, v) ∈ H and ‖ · ‖p, | · |p are the norm on W 1,p
0 (Ω) and Lp(Ω)

respectively, that is,

‖u‖p = (

∫

Ω

|∇u|pdx) 1
p , |u|p = (

∫

Ω

|u|pdx) 1
p .

Throughout this paper, we denote weak converge by ⇀, and denote strong
converge by →, also we denote positive constants(possibly different) by Ci.

As usually, we also denote by

Sα+β = inf
u∈W 1,p(Ω)\{0}

‖u‖p
(
∫
Ω
|u|α+βdx))

p
α+β

(2.1)

and

Sα,β = inf
z∈H\{0}

‖z‖p
(
∫
Ω
|u|α|v|βdx)) p

α+β

. (2.2)

Easily, we have
∫
Ω
|u|α|v|βdx ≤ S

−α+β
p

α,β ‖z‖α+β and

Lemma 2.1. Assume 1 < α, β and α + β ≤ p∗, Ω ∈ RN (N ≥ 3) be a domain
(not necessarily bounded). Then we have

Sα,β = [(
α

β
)

β
α+β + (

α

β
)−

α
α+β ]Sα+β .
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Proof. The proof of Lemma 2.1. is essentially given in [2] when p = 2, modifying
the proof of [2], we can deduce our result. For the readers’ convenience, we give
a sketch here.

Suppose {wn} is a minimizing sequence for Sα+β , let un = swn, vn = twn,
where s, t > 0 will be chosen later. Then from (2.2), we infer that

Sα,β ≤ sp + tp

(sαtβ)
p

α+β

‖wn‖p

(
∫
Ω
|wn|α+βdx)

p
α+β

= [(
s

t
)

pβ
α+β + (

s

t
)

pα
α+β ]

‖wn‖p

(
∫
Ω
|wn|α+βdx)

p
α+β

(2.3)

Define the function

h(x) = x
pβ

α+β + x− pα
α+β , x > 0.

By a direct calculation, the minimum of the function h is achieved at the point

x0 = (αβ )
1
p with the minimum value

h(x0) = (
α

β
)

β
α+β + (

α

β
)−

α
α+β .

Thus, choosing s, t > 0 in (2.3) such that s
t = (αβ )

1
p , we obtain

Sα,β ≤ [(
α

β
)

β
α+β + (

α

β
)−

α
α+β ]Sα+β .

To complete the proof, let zn = (un, vn) be a minimizing sequence for Sα,β .
Define ωn = tnvn for some tn > 0 such that∫

Ω

|un|α+βdx =

∫

Ω

|ωn|α+βdx.

Then we have∫

Ω

|un|α|ωn|βdx ≤ α

α+ β

∫

Ω

|un|α+βdx+
β

α+ β

∫

Ω

|ωn|α+βdx

=

∫

Ω

|un|α+βdx =

∫

Ω

|ωn|α+βdx.

Therefore, we deduce from the above inequality that

‖zn‖p
(
∫
Ω
|un|α|vn|βdx))

p
α+β

= t
pβ

α+β
n

‖zn‖p
(
∫
Ω
|un|α|ωn|βdx))

p
α+β

≥ t
pβ

α+β
n

‖un‖p
(
∫
Ω
|un|α+βdx))

p
α+β

+ t
pβ

α+β
−p

n
‖ωn‖p

(
∫
Ω
|ωn|α+βdx))

p
α+β

≥ h(tn)Sα+β

≥ h(t0)Sα+β .

Passing to the limit in the above inequality, we obtain

Sα,β ≥ [(
α

β
)

β
α+β + (

α

β
)−

α
α+β ]Sα+β .

That’s end the proof of Lemma 2.1. ¤
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Let’s study the energy functional associated with problem (1.1) defined by

E(z) = E(u, v) =
1

p

∫

Ω

|∇u|p + |∇v|pdx+
1

q

∫

Ω

|∇u|q + |∇v|qdx

−1

r

∫

Ω

λV (x)|u|r + θV (x)|u|rdx− 2

α+ β

∫

Ω

|u|α|v|βdx.

Obviously, E(z) is even and it is well known that E(z) ∈ C1(H,R) and nontrival
critical points of E(z) are weak solutions of problem (1.1). By a weak solution
of (1.1)we mean that (u, v) ∈ H satisfying
∫

Ω

(|∇u|p−2∇u∇ϕ+ |∇v|p−2∇v∇ψ)dx+

∫

Ω

(|∇u|q−2∇u∇ϕ+ |∇v|q−2∇v∇ψ)dx

−λ

∫

Ω

V (x)|u|rϕdx− θ

∫

Ω

V (x)|v|rψdx

− 2α

α+ β

∫

Ω

|u|α−2uvβϕdx− 2β

α+ β

∫

Ω

|u|αvβ−2vψdx = 0.

for all (ϕ,ψ) ∈ E.
Now, we define the Palais-Smale(PS)-sequence, (PS)-value, and (PS)-conditions

in H for E as follows.
Definition 2.2. (I) For c ∈ R, a sequence {zn} ∈ H is a (PS)c-sequence for E
if E(zn) = c+ o(1) and E′(zn) = o(1) strongly in H ′ as n → ∞.

(II) c ∈ R is a (PS)-value for E if there exists a (PS)c-sequence in H for E.
(III) E satisfies the (PS)c-condition in H for E if every (PS)c-sequence in H

for E contains a convergent sub-sequence.
Now we give some results for the proof of Theorem 1.1.

Lemma 2.3. If {zn} ⊂ H is a (PS)c secquence for E, then {zn} is bounded in
H.

Proof. Modified the proof of Lemma 2.3 in [16], we can obtain the results. ¤

Lemma 2.4. If {zn} ⊂ H is a (PS)c secquence for E, then there exists z ∈ H
and M > 0 such that

E(z) ≥ −M(λ+ θ)
q

q−r ,

where M will be given later.

Proof. Similar to the proof of Lemma 2.2 in [16]. ¤

Lemma 2.5. E satisfies the (PS)c condition with c satisfying

c ≤ 2

N
(
Sα,β

2
)

N
p −M(λ+ θ)

q
q−r .
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Proof. Suppose {zn} ⊂ H is a (PS)c sequence of E, i.e.,

E(zn) = c+ o(1), E′(zn) = o(1), (2.4)

by Lemma 2.3, we may assume there exist a z ∈ H, E′(z) = 0, and extracting a
subsequence such that zn ⇀ z in H, Thus we have that

un → u, vn → v in Ls(Ω), 1 ≤ s < p∗

and un → u, vn → v a.e. on Ω. Hence we have∫

Ω

λV (x)|un|r + θV (x)|vn|rdx =

∫

Ω

λV (x)|u|r + θV (x)|v|rdx+ o(1).

Let ṽn = un − u, ṽn = vn − v and z̃n = (ũn, ṽn). Then by Brezis-Lieb’s
Lemma(see[7]), we deduce that

‖z̃n‖pp = ‖zn‖pp − ‖z‖pp + o(1), ‖z̃n‖qq = ‖zn‖qq − ‖z‖qq + o(1). (2.5)

By an argument of Han [15,Lemma 2.1], we obtain∫

Ω

|ũn|α|ṽn|βdx =

∫

Ω

|un|α|vn|βdx−
∫

Ω

|u|α|v|βdx+ o(1). (2.6)

Together with (2.4)-(2.6), we have that

1

p
‖z̃n‖pp +

1

q
‖z̃n‖qq −

1

r

∫

Ω

(λV (x)|u|r + θV (x)|v|r)dx− 2

p∗

∫

Ω

|ũn|α|ṽn|βdx

+
1

p
‖z‖pp +

1

q
‖z‖qq −

2

p∗

∫

Ω

|u|α|v|βdx = c+ o(1).

and

‖z̃n‖pp + ‖z̃n‖qq −
∫

Ω

(λV (x)|u|r + θV (x)|v|r)dx− 2

∫

Ω

|ũn|α|ṽn|βdx

+‖z‖pp + ‖z‖qq − 2

∫

Ω

|u|α|v|βdx = o(1).

Or we have
1

p
‖z̃n‖pp +

1

q
‖z̃n‖qq −

2

p∗

∫

Ω

|ũn|α|ṽn|βdx = c− E(z) + o(1). (2.7)

and

‖z̃n‖pp + ‖z̃n‖qq −
2

p∗

∫

Ω

|ũn|α|ṽn|βdx = o(1). (2.8)

Hence, we may suppose that

‖z̃n‖pp → a, ‖z̃n‖qq → b, 2

∫

Ω

|ũn|α|ṽn|βdx → l,

if a = 0, then we have zn → z in H, we complete the proof. On the contrary,
we ssume a > 0, then from (2.2) and (2.8), we obtain

a ≤ l ≤ 2(Sα,β)
− p∗

p a
p∗
p ,

which implies that a ≥ 2(
Sα,β

2 )
N
p .
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On the other hand, from (2.7) we have that

c =
a

p
+

b

q
− l

p∗
+ E(z)

= (
1

p
− 1

p∗
)a+ (

1

q
− 1

p∗
)b+ E(z)

>
2

N
(
Sα,β

2
)

N
p −M(λ+ θ)

q
q−r

which contradicts c ≤ 2
N (

Sα,β

2 )
N
p −M(λ+ θ)

q
q−r . ¤

The following is the classical Deformation Lemma:
Lemma 2.6 (see[1]). Let f ∈ C1(X,R) and satisfy (PS) condition. If c ∈ R
and N is any neighborhood of Kc

.
= {u ∈ X|f(u) = c, f ′(u) = 0}, there exists

η(t, x) ≡ ηt(x) ∈ C([0, 1]×X,X) and constants ε > ε > 0 such that
(1) η0(x) = x for all x ∈ X,
(2) ηt(x) = x for all x∈f−1[c− ε, c+ ε],
(3) ηt(x) is a homeomorphism of X onto X for all t ∈ [0, 1],
(4) f(ηt(x)) ≤ f(x) for all x ∈ X, t ∈ [0, 1],
(5) η1(Ac+ε −N) ⊂ Ac+ε, where Ac = {x ∈ X|f(x) ≤ c} for any c ∈ R,
(6) if Kc = Ø, η1(Ac+ε) ⊂ Ac−ε,
(7) if f is even, ηt is odd in x.

Remark 2.7. Lemma 2.6 is also true if f satisfies (PS)c condition for c < c0
for some c0 ∈ R.

At the end of this section, we recall some concepts in minimax theory. Let X
be a Banach space, and

Σ = {A ⊂ X \ {0}|A is closed, −A = A},
and

Σk = {A ∈ Σ|γ(A) ≥ k},
where γ(A) is the Z2 genus of A, that is

γ(A) =





inf{n : there exist odd, continuous h : A → Rn \ {0}},
+∞, if it doesn’t exist odd, continuous h : A → Rn \ {0}, ∀n ∈ Z+,
0, if A = Ø.

The main properties of genus are contained in the following lemma.
Lemma 2.8 (see[22]). Let A,B ∈ Σ. Then

(1) If there exists f ∈ C(A,B), odd, then γ(A) ≤ γ(B).
(2) If A ⊂ B, then γ(A) ≤ γ(B).
(3) If there exists an odd homeomorphism between A and B, then γ(A) =

γ(B).
(4) If SN−1 is the sphere in RN , then γ(SN−1) = N .
(5) γ(A ∪B) ≤ γ(A) + γ(B).
(6) If γ(A) < ∞, then γ(A−B) ≥ γ(A)− γ(B).
(7) If A is compact, then γ(A) < ∞, and there exists δ > 0 such that γ(A) =

γ(Nδ(A)), where Nδ(A) = {x ∈ X|d(x,A) ≤ δ}.
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(8) If X0 is a subspace of X with codimension k, and γ(A) > k, then A∩X0 6=
Ø.

3. Proof of Theorem 1.1

We will prove the existence of infinitely many solutions for system (1.1) in
this section. We try to use Lusternik-Schnirelman’s theory for Z2−invariant
functional (see [22]). But since the functional E(z) defined in section 2 is not
bounded from below, so we following [4](or see [20]) to consider a truncated
functional E∞(z) which will be constructed later.

At first, let’s consider the functional E(z), using the Sobolev’s inequality with
the hypothesis 1 < r < q < p < N , we obtain

E(z) ≥ 1

p
‖z‖pp −

1

r

∫

Ω

λV (x)|u|r + θV (x)|u|rdx− 2

p∗

∫

Ω

|u|α|v|βdx

≥ 1

p
‖z‖pp −

2

p∗S
p∗
p

α,β

‖z‖p∗
p − 1

r
S
− r

p
p |V (x)| p∗

p∗−r

(λ+ θ)‖z‖rp

= C3‖z‖pp − C4‖z‖p
∗

p − C5(λ+ θ)‖z‖rp
where C3 = 1

p , C4 = 2

p∗S
p∗
p

α,β

, C5 = 1
rS

− r
p

p |V (x)| p∗
p∗−r

are all positive constants.

We now consider function

h(x) = C3x
p − C4x

p∗ − C5(λ+ θ)xr, x > 0

by the hypothesis 1 < r < p < p∗, we easily know that there exists a Λ∗ > 0
such that for any 0 < (λ+ θ) ≤ Λ∗, we have the following results hold:

(a) h(x) reaches its positive maximum;

(b) 2
N (

Sα,β

2 )
N
p −M(λ+ θ)

q
q−r ≥ 0, where M is given in Lemma 2.4.

From the structure of h(x), we see that there are two positive solutions R1 <
R2 of h(x) = 0. Then we can easily know that

h(x)

{
< 0, x ∈ (0, R1) ∪ (R2,∞)
> 0, x ∈ (R1, R2)

(3.1)

We let τ : R+ → [0, 1] be C∞ and nonincreasing function such that

τ(x) = 1, if x ∈ (0, R1)

τ(x) = 0, if x ∈ (R2,∞).

Let ϕ(u) = τ(‖u‖p), we consider the truncated functional

E∞(z) =
1

p
‖z‖pp +

1

q
‖z‖qq −

1

r

∫

Ω

λV (x)|u|r + θV (x)|v|rdx

− 2

p∗

∫

Ω

|u|α|v|βϕ(u)dx.
similar as above, we consider the function

h(x) = C3x
p − C4x

p∗
τ(x)− C5(λ+ θ)xr,
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and have that

E∞(z) ≥ h(‖z‖p) (3.2).

By further analysis, we can see h(x) ≥ h(x), for all x ∈ (0,∞); and h(x) = h(x),
for x ∈ (0, R1]; and h(x) ≥ 0, for x ∈ [R2,∞). So we have that E(z) = E∞(z)
when ‖z‖p ∈ (0, R1], and since τ ∈ C∞, we get E∞(z) ∈ C1(H,R). Also we
obtain the following results.
Lemma 3.1.(1) If E∞(z) < 0, then ‖z‖p ∈ (0, R1), and E(w) = E∞(w) for all
w in a small enough neighborhood of z.

(2) There exists a Λ∗ > 0, such that when 0 < (λ+ θ) ≤ Λ∗, E∞(z) satisfies
the (PS)c condition for c < 0.

Proof. We prove (1) by contradiction, assume E∞(z) < 0 and ‖z‖p ∈ [R1,∞).
Then if ‖z‖p ∈ [R1, R2], by (3.1),(3.2), we see that

E∞(z) ≥ h(‖z‖p) ≥ h(‖z‖p) ≥ 0.

If ‖z‖p ∈ (R2,∞), by (3.2) and above analysis, we also have that

E∞(z) ≥ h(‖z‖p) ≥ 0.

Thus ‖z‖p ∈ (0, R1), (1) holds.
Now, we prove (2), let Λ∗ as above. If c < 0 and {zn} ⊂ H is a (PS)c

sequence of E∞, then we may assume that E∞(zn) < 0 and E′
∞(zn) = o(1), by

(1),‖zn‖p ∈ (0, R1), hence E(zn) = E∞(zn) and E′(zn) = E′
∞(zn). Since (b)

hold when 0 < (λ+ θ) ≤ Λ∗, By Lemma 2.5, E(z) satisfies the (PS)c condition
for c < 0. Thus E∞(z) satisfies the (PS)c condition for c < 0, (2) holds. ¤
Now we prove our main result via genus.

Proof of Theorem 1.1. Let Σk = {A ⊂ H−{(0, 0)}, A is closed, A = −A, γ(A) ≥
k}, ck = infA∈Σk

supz∈A E∞(z), Kc = {z ∈ H| E∞(z) = c, E′
∞(z) = 0}, and

suppose that 0 < (λ+ θ) ≤ Λ∗, Λ∗ is as above.
We claim that if k, l ∈ N are such that c = ck = ck+1 = · · · = ck+l, then

γ(Kc) ≥ l + 1.
In fact, we assume

E−ε
∞ = {z ∈ H| E∞(z) ≤ −ε},

we will show for any k ∈ N , there exist an ε = ε(k) > 0, such that

γ(E−ε
∞ (z)) ≥ k.

Fix k ∈ N , denote Hk be an k-dimensional subspace of H, choose z = (u, v) ∈
Hk, with ‖z‖p = 1, for 0 < ρ < R1, we have

E(ρz) = E∞(ρz) =
1

p
ρp +

ρq

q
‖z‖qq −

ρr

r

∫

Ω

λV (x)|u|r

+θV (x)|v|rdx− 2ρp
∗

p∗

∫

Ω

|u|α|v|βdx. (3.3)
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For Hk is a finite dimension space, all the norms in Hk are equivalent. So we
can define

αk = sup{‖z‖qq| u ∈ Hk, ‖z‖p = 1} < ∞, (3.4)

βk = inf{|z|rr| z ∈ Hk, ‖z‖p = 1} > 0, (3.5)

from (3.3)-(3.5), we have

E∞(ρz) ≤ 1

p
ρp + αk

ρq

q
− σβk

min{λ, θ}ρr
r

.

For any ε > 0 and an 0 < ρ < R1 such that E∞(ρz) ≤ −ε for z ∈ Hk,
‖z‖p = 1, let Sρ = {z ∈ H| ‖z‖p = ρ}, then Sρ ∩Hk ⊂ E−ε

∞ . By Lemma 2.8, we
obtain that

γ(E−ε
∞ (z)) ≥ γ(Sρ ∩Hk) = k. (3.6)

Since E∞ is continuous and even, with (3.6), we have E−ε
∞ ∈ Σk and c =

ck ≤ −ε < 0. As E∞ is bounded from below, we see that c = ck > −∞(This is
the main reason that we consider E∞ instead of E). Then by Lemma 3.1 E∞
satisfies (PS)c condition and it is easy to see that Kc is a compact set.

Now we prove our claim by contradiction, suppose on the contrary γ(Kc) ≤ l.
By Lemma 2.8, there is a closed and symmetric set U withKc ⊂ U and γ(U) ≤ l.
Since c < 0, we also can assume that the closed set U ⊂ E0

∞. By Lemma 2.6,
there exists an odd homeomorphism

η : H → H

such that η(Ec+δ
∞ − U) ⊂ Ec−δ

∞ for some 0 < δ < −c.
From the definition of c = ck+l, we know that there is an A ∈ Σk+l such that

sup
z∈A

E∞(z) < c+ δ

i.e., A ⊂ Ec+δ
∞ , and

η(A− U) ⊂ η(Ec+δ
∞ − U) ⊂ Ec−δ

∞ ,

that’s meaning
sup

z∈η(A−U)

E∞(z) ≤ c− δ. (3.7)

Again by Lemma 2.8, we have

γ(η(A− U)) ≥ γ(A− U) ≥ γ(A)− γ(U) ≥ k.

Thus we have η(A− U) ∈ Σk and supz∈η(A−U) E∞(z) ≥ ck = c, which contra-

dicts to (3.7). So we have proved our claim.
Now let’s complete the proof of Theorem 1.1. If for all k ∈ N , we have

Σk+1 ⊂ Σk, ck ≤ ck+1 < 0. If all ck are distinct, then γ(Kck) ≥ 1, and we see
that {ck} is a sequence of distinct negative critical values of E∞; if for some k0,
there is a l ≥ 1 such that c = ck0 = ck0+1 = · · · = ck)+l, then by the claim, we
have

γ(Kc) ≥ l + 1,

which shows that Kc contains infinitely many distinct elements.
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By Lemma 3.1, we know E(z) = E∞(z) when E∞(z) < 0, so we show that
there are infinitely many critical points of E(z). Theorem 1.1 is proved. 2

4. Proof of Theorem 1.2.

In this section, we will study problem (1.1) with 1 < q < p < r < p∗, and
will prove Theorem 1.2 by the following general version of the Mountain Pass
Lemma(see[3]).
Lemma 4.1. Let E be a functional on a Banach space H, E ∈ C1(H,R). Let
us assume that there exists ρ,R > 0 such that

(i) E(z) > ρ, ∀z ∈ H with ‖z‖p = R.
(ii) E(0) = 0, and E(w0) < ρ for some w0 ∈ H, with ‖w0‖p > R.
Let us define Γ = {γ ∈ C([0, 1],H)| γ(0) = 0, γ(1) = w0}, and

µ = inf
γ∈Γ

max
t∈[0,1]

E(γ(t)). (4.1)

Then there exists a sequence {zn} ⊂ H, such that E(zn) → µ, and E′(zn) → 0
in H ′ (dual of H) as n → ∞.

Now similar to Lemma 2.5 in section 2, we have the following result.
Lemma 4.2. Suppose 1 < q < p ≤ r < p∗ hold, then any (PS)c sequence
{zn} ⊂ H of E(z) contains a convergent subsequence when

c <
2

N
S

N
p

α,β . (4.2)

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. From (4.1) and (4.2), we only need to show

µ <
2

N
S

N
p

α,β , (4.3)

then Lemma 4.1 and Lemma 4.2 give the existence of the critical point of E.
To obtain (4.3), Let us choose z0 = (u0, u0) ∈ H, with

|z0|p∗ = 1, lim
t→∞

E(tz0) = −∞,

then there exists a tθλ > 0 such that supt≥0 E(tz0) = E(tθλz0) holds, and then
tθλ satisfies

0 = tp−1
θλ ‖z0‖pp + tq−1

θλ ‖z0‖qq − (λ+ θ)tr−1
θλ

∫

Ω

V (x)|u0|rdx− tp
∗−1

θλ

then we get

(λ+ θ)

∫

Ω

V (x)|u0|rdx = tp−r
θλ ‖z0‖pp + tq−r

θλ ‖z0‖qq − tp
∗−r

θλ
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from 1 < q < p ≤ r < p∗, we get tθλ → 0 as (λ + θ) → ∞. Then there exists
Λ∗ > 0 such that for any (λ+ θ) > Λ∗, we have

sup
t≥0

E(tz0) <
2

N
S

N
p

α,β .

Now we take w0 = t0z0 with t0 large enough to verify E(w0) < 0, we get

α ≤ max
t∈[0,1]

E(γ0(t))

where γ0(t) = tw0. Therefore,

µ ≤ sup
t≥0

E(tw0) <
2

N
S

N
p

α,β .

then we have proved (4.3), that’s complete the proof. 2

Now let’s assume 1 < q < N(p−1)
N−1 < p ≤ max{p, p∗ − q

p−1} < r < p∗, and
define, for ε > 0,

uε(x) =
ψ(x)

(ε+ |x| p
p−1 )

N−p
p

, vε(x) =
uε(x)

|uε(x)|p∗

where ψ(x) ∈ C∞
0 (B(0, 2R)) is such that 0 ≤ ψ(x) ≤ 1, and ψ(x) ≡ 1 on B(0, R).

We obtain the following estimates(see[13]).

∫

Ω

|uε|tdx =





K1ε
N(p−1)−t(N−p)

p +O(1), t > N(p−1)
N−p

K1|lnε|+O(1), t = N(p−1)
N−p

O(1), t < N(p−1)
N−p

(4.4)

∫

Ω

|∇uε|tdx =





K2ε
t+N(p−1)−tN

p +O(1), t > N(p−1)
N−1

K2|lnε|+O(1), t = N(p−1)
N−1

O(1), t < N(p−1)
N−1

(4.5)

In particular, we have ∫

Ω

|∇uε|pdx = K2ε
p−N

p +O(1) (4.6)

and

(

∫

Ω

|uε|p
∗
dx)

p
p∗ = K3ε

p−N
p +O(1) (4.7)

∫

Ω

|uε|pdx =





K1ε
p2−N

p +O(1), p2 < N
K1|lnε|+O(1), p2 = N
O(1), p2 > N

(4.8)

where K1,K2,K3 are positive constants independent of ε, and S = K2

K3
is the

best Sobolev constant given in section 2.
If we choosing w0 in the proof of Theorm 1.2 carefully, we can prove the

following stronger result.
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Theorem 4.3. If 1 < q < N(p−1)
N−1 < p ≤ max{p, p∗ − q

p−1} < r < p∗ and V0

hold, then for any θ > 0, λ > 0, problem (1.1) has a nontrivial solution.

Proof. Following [16], we can take zε = (vε, vε), and

g(t) = E(tzε) =
2tp

p
‖vε‖pp +

2tq

q
‖vε‖pp −

(λ+ θ)tr

r

∫

Ω

V (x)|vε|rdx− 2tp
∗

p∗
.

then there exists a tε > 0 such that supt≥0 E(tzε) = E(tεzε) hold, and then
tε satisfies

g′(tε) = 2tp−1‖vε‖pp+2tq−1||vε|pp−(λ+θ)tr−1

∫

Ω

V (x)|vε|rdx−2tp
∗−1 = 0. (4.9)

then we have ∫

Ω

|∇vε|pdx+ tq−p
ε

∫

Ω

|∇vε|qdx > tp
∗−p

ε

From (4.4)-(4.8) we can know
∫

Ω

|∇vε|pdx = S +O(ε
N−p

p ),

∫

Ω

|∇vε|qdx = O(ε
q(N−p)

p2 )

set ε small enough, then we can have

tp
∗−p

ε ≤ 2S.

here we use the fact that tε → t0 = (
∫
Ω
|∇vε|pdx)

1
p∗−p > 0 as ε → 0, where t0

will be given later.
Then from (4.9) we obtain

2‖vε‖pp < (λ+ θ)tr−p
ε ‖V (x)‖∞|vε|rr + 2tp

∗−p
ε (4.10)

From (4.4)-(4.8), and (4.10), choose ε small enough, we have

tp
∗−p

ε ≥ S

2

Now we consider

h(t) =
tp

p

∫

Ω

|∇vε|pdx− tp
∗

p∗

the function attains its maximum at t0 = (
∫
Ω
|∇vε|pdx)

1
p∗−p , and again combine

with (4.4)-(4.8), we have

g(tε) ≤ 2h(tε) +
tqε
q

∫

Ω

|∇vε|qdx− (λ+ θ)trε
r

∫

Ω

V (x)|vε|rdx

≤ 2h((

∫

Ω

|∇vε|pdx)
1

p∗−p ) +
(2S)q

q

∫

Ω

|∇vε|qdx− (λ+ θ)(S
2
)r

r
σ

∫

Ω

|vε|rdx

≤ 2

N
S

N
p + C6ε

N−p
p + C7O(ε

q(N−p)

p2 )− C8O(ε)
p−1
p

(N−r
N−p

p
)
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where C6, C7, C8 are positive constants independent with ε. Since 1 < q <
N(p−1)
N−1 < p ≤ max{p, p∗ − q

p−1} < r < p∗, we obtain that

N − p

p
>

q(N − p)

p2
>

p− 1

p
(N − r

N − p

p
),

then we choose ε small enough, by Lemma 2.1, we get g(tε) = supt≥0 E(tvε) <

2
N S

N
p ≤ 2

N S
N
p

α,β , by Lemma 4.1 and Lemma 4.2, we complete the proof. ¤
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