EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEM WITH CONCAVE-CONVEX NONLINEARITIES ${ }^{\dagger}$

HONGHUI YIN AND ZUODONG YANG*

Abstract

In this paper, our main purpose is to establish the existence of weak solutions of a class of $p-q$-Laplacian system involving concave-convex nonlinearities: $$
\left\{\begin{array}{l} -\triangle_{p} u-\triangle_{q} u=\lambda V(x)|u|^{r-2} u+\frac{2 \alpha}{\alpha+\beta}|u|^{\alpha-2} u|v|^{\beta}, \quad x \in \Omega \\ -\triangle_{p} v-\triangle_{q} v=\theta V(x)|v|^{r-2} v+\frac{2 \beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2} v, \quad x \in \Omega \\ u=v=0, \quad x \in \partial \Omega \end{array}\right.
$$ where Ω is a bounded domain in $\mathbf{R}^{N}, \lambda, \theta>0$, and $1<\alpha, \beta, \alpha+\beta=$ $p^{*}=\frac{N p}{N-p}$ is the critical Sobolev exponent, $\triangle_{s} u=\operatorname{div}\left(|\nabla u|^{s-2} \nabla u\right)$ is the s-Laplacian of u. when $1<r<q<p<N$, we prove that there exist infinitely many weak solutions. We also obtain some results for the case $1<q<p<r<p^{*}$. The existence results of solutions are obtained by variational methods.

AMS Mathematics Subject Classification: 35B09, 35J47. Key words and phrases : p-q-Laplacian, critical exponent, concave-convex nonlinearities, weak solution.

1. Introduction

In this paper, we are interested in finding multiple nontrivial weak solutions to the following nonlinear elliptic system of $p-q$-Laplacian type with concave-convex nonlinearities

$$
\begin{cases}-\triangle_{p} u-\triangle_{q} u=\lambda V(x)|u|^{r-2} u+\frac{2 \alpha}{\alpha+\beta}|u|^{\alpha-2} u|v|^{\beta}, & x \in \Omega \tag{1.1}\\ -\triangle_{p} v-\triangle \triangle_{q} v=\theta V(x)|v|^{r-2} v+\frac{2 \beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2} v, & x \in \Omega \\ u=v=0, \quad x \in \partial \Omega\end{cases}
$$

[^0]where Ω is a bounded domain in $\mathbf{R}^{N}, \lambda, \theta>0$, and $1<r<q<p<N, 1<\alpha, \beta$, $\alpha+\beta=p^{*}=\frac{N p}{N-p}$ is the critical Sobolev exponent, $\triangle_{s} u=\operatorname{div}\left(|\nabla u|^{s-2} \nabla u\right)$ is the s-Laplacian of u.

When $u=v, \alpha=\beta$ and $\lambda=\theta$, System (1.1) reduce to the p - q-Laplacian equations:

$$
\left\{\begin{array}{l}
-\triangle_{p} u-\triangle_{q} u=\lambda V(x)|u|^{r-2} u+|u|^{p^{*}-2} u, \quad x \in \Omega \tag{1.2}\\
u=0, \quad x \in \partial \Omega
\end{array}\right.
$$

Problem (1.2) comes, for example, from a general reaction-diffusion system

$$
\begin{equation*}
u_{t}=\operatorname{div}[H(u) \nabla u]+c(x, u) \tag{1.3}
\end{equation*}
$$

where $H(u)=|\nabla u|^{p-2}+|\nabla u|^{q-2}$. This system has a wide range of applications in physics and related science such as biophysics, plasma physics and chemical reaction design. Typically, in chemical and biological applications, the reaction term $c(x, u)$ has a polynomial form with respect to the concentration u.

Recently, the stationary solution of (1.3) was studied by many authors, that is many works considered the solutions of the following problem

$$
\begin{equation*}
-\operatorname{div}[H(u) \nabla u]=c(x, u) \tag{1.4}
\end{equation*}
$$

for example,see [6.19-21,26].
If $p=q=2,(1.2)$ can be reduced to

$$
\left\{\begin{array}{l}
-\triangle u=\lambda V(x)|u|^{r-2} u+|u|^{2^{*}-2} u, \quad x \in \Omega \tag{1.5}\\
u=0, \quad x \in \partial \Omega
\end{array}\right.
$$

which is a normal Schrodinger equation and has been widely studied, see[10$12,23]$.

The solutions of problem (1.5) corresponds to the critical points of the energy functional

$$
I(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{\lambda}{r} \int_{\Omega} V(x)|u|^{r} d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x
$$

defined on $W_{0}^{1,2}(\Omega)$. When $r=2$, the pioneer result of Brezis-Nirenberg [8] studied problem (1.5) and shows that under some suitable conditions, probnlem (1.5) possesses a positive solution in $W_{0}^{1,2}(\Omega)$. For more results see $[9,17]$ and reference therein.

The typically difficulty in dealing with problem (1.5) is that the corresponding functional $I(u)$ doesn't satisfy (PS) condition due to the lack of compactness of the embedding: $H_{0}^{1} \hookrightarrow L^{2^{*}}(\Omega)$. Hence we couldn't use the standard variational methods.

However, if $1<r<2$, the situation is quite different, see [5,25]. The main essence is that when $1<r<2$, the functional $I(u)$ is sublinear, when λ is small enough, $I(u)$ satisfies $(P S)_{c}$ condition for $c<0$, so we can look for critical points of negative critical values of $I(u)$.

For the general p-Laplacian problem

$$
\left\{\begin{array}{l}
-\triangle_{p} u=\lambda V(x)|u|^{r-2} u+|u|^{p^{*}-2} u, \quad x \in \Omega \tag{1.6}\\
u=0, \quad x \in \partial \Omega
\end{array}\right.
$$

which is a special case of (1.2) when $p=q$. Problem (1.6) was also studied by many authors, many results valid for problem (1.5) has been extended to problem (1.6). For example, see $[4,18,27]$. The main difficulty in extending the results for problem (1.5) to the corresponding results for problem (1.6) is that $W_{0}^{1, p}(\Omega)$ is not a Hilbert space in general, then more analysis is needed.

We recall some results about problem (1.4) now. In [26], M.Wu and Z.Yang proved the existence of a nontrivial solution to problem (1.4) with

$$
c(x, u)=a(x)|u|^{p-2} u+b(x)|u|^{q-2} u-f(x, u)
$$

in the whole space \mathbf{R}^{N}, where $a(x), b(x)$ are positive functions, also when $a(x) \equiv$ $m, b(x) \equiv n$ are positive constants, it was proved in [19] that problem (1.4) has a nontrivial solution. Recently in [20], G.Li and G.Zhang studied problem (1.4) involving critical exponent with

$$
c(x, u)=|u|^{p^{*}-2} u+\theta|u|^{r-2} u
$$

by using Lusternik-Schnirelman's theory(see also in [4]). Other results see [6,21] and reference therein.

At the same time, much attention has been paid to the existence of solutions for elliptic systems. especially for the following case

$$
\left\{\begin{array}{l}
-\triangle_{p} u=\lambda|u|^{q-2} u+\frac{2 \alpha}{\alpha+\beta}|u|^{\alpha-2} u|v|^{\beta}, \quad x \in \Omega \tag{1.7}\\
-\triangle_{p} v=\theta|v|^{q-2} v+\frac{2 \beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2} v, \quad x \in \Omega \\
u=v=0 \quad x \in \partial \Omega
\end{array}\right.
$$

where $\alpha+\beta=p^{*}$. In fact system (1.7) is a special case of (1.1) when $p=q$. When $p=2$ and $q=2$, Alves et al [2] considered (1.7) and proved the existence of least energy solutions for any $\lambda, \theta \in\left(0, \lambda_{1}\right)$ and generalized the corresponding results of $[8]$ to the case of system (1.7), here λ_{1} denote the first eigenvalue of operator $-\triangle$. Subsequently, Han [14] considered the existence of multiple positive solutions for(1.7) and in [16] T.S.Hsu studied system (1.7) when $1<$ $q<p<N, \alpha+\beta=p^{*}$, more results see [15,24] etc..

However, as far as we know, there are few results on problem (1.1) with concave-convex nonlinearities. Motivated by [4,16,20], we shall extend the results of the above to problem (1.1). Let us denote the Banach space $H=$ $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ in this paper, and for the functions $V(x)$, we add the following assumptions:
$\left(V_{0}\right)$ Suppose $V(x) \in L^{\frac{p^{*}}{p^{*}-r}}(\Omega)$ and $V(x)>\sigma>0$ in Ω.
Then we have the following results:

Theorem 1.1. Assume $1<r<q<p<N$, and $\left(V_{0}\right)$ hold. Then there is a positive constant Λ^{*} such that for any $0<(\lambda+\theta) \leq \Lambda^{*}$, problem (1.1) possesses infinitely many weak solutions in H.

In the present parer, we also consider problem (1.1) for the case: $1<q<p \leq$ $r<p^{*}$, and obtain the following theorem:
Theorem 1.2. If $1<q<p \leq r<p^{*}$ and (V_{0}) hold, then there is a $\Lambda_{*}>0$, such that for any $(\lambda+\theta)>\Lambda_{*}$, problem (1.1) has a nontrivial solution.
Remark 1.3. In [4], J.G.Azvrero and I.P.Aloson obtained that there exist a nontrivial solution for (1.6) with $V(x) \equiv 1$ by the Mountain Pass Lemma. In fact, Theorem 1.2 is an extension of Theorem 3.2 in [4] to p - q-Laplacian system (1.1).

The present paper is organized as follows, in section 2, we give some preliminary results; in section 3, we will prove the main result, Theorem1.1.; and we will study (1.1) for the case $1<q<p \leq r<p^{*}$, and prove Theorem 1.2 in section 4.

2. Preliminaries results

Let H^{\prime} be dual of H,\langle,$\rangle the duality paring between H^{\prime}$ and H, the norm on H is given by

$$
\|z\|_{p}=\|(u, v)\|_{p}=\left(\|u\|_{p}^{p}+\|v\|_{p}^{p}\right)^{\frac{1}{p}}
$$

and the norm on $L^{p}(\Omega) \times L^{p}(\Omega)$ is given by

$$
|z|_{p}=|(u, v)|_{p}=\left(|u|_{p}^{p}+|v|_{p}^{p}\right)^{\frac{1}{p}}
$$

where $z=(u, v) \in H$ and $\|\cdot\|_{p},|\cdot|_{p}$ are the norm on $W_{0}^{1, p}(\Omega)$ and $L^{p}(\Omega)$ respectively, that is,

$$
\|u\|_{p}=\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{\frac{1}{p}}, \quad|u|_{p}=\left(\int_{\Omega}|u|^{p} d x\right)^{\frac{1}{p}} .
$$

Throughout this paper, we denote weak converge by \rightharpoonup, and denote strong converge by \rightarrow, also we denote positive constants(possibly different) by C_{i}.

As usually, we also denote by

$$
\begin{equation*}
S_{\alpha+\beta}=\inf _{u \in W^{1, p}(\Omega) \backslash\{0\}} \frac{\|u\|^{p}}{\left.\left(\int_{\Omega}|u|^{\alpha+\beta} d x\right)\right)^{\frac{p}{\alpha+\beta}}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\alpha, \beta}=\inf _{z \in H \backslash\{0\}} \frac{\|z\|^{p}}{\left.\left(\int_{\Omega}|u|^{\alpha}|v|^{\beta} d x\right)\right)^{\frac{p}{\alpha+\beta}}} \tag{2.2}
\end{equation*}
$$

Easily, we have $\int_{\Omega}|u|^{\alpha}|v|^{\beta} d x \leq S_{\alpha, \beta}^{-\frac{\alpha+\beta}{p}}\|z\|^{\alpha+\beta}$ and
Lemma 2.1. Assume $1<\alpha, \beta$ and $\alpha+\beta \leq p^{*}, \Omega \in \mathbf{R}^{N}(N \geq 3)$ be a domain (not necessarily bounded). Then we have

$$
S_{\alpha, \beta}=\left[\left(\frac{\alpha}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}+\left(\frac{\alpha}{\beta}\right)^{-\frac{\alpha}{\alpha+\beta}}\right] S_{\alpha+\beta} .
$$

Proof. The proof of Lemma 2.1. is essentially given in [2] when $p=2$, modifying the proof of [2], we can deduce our result. For the readers' convenience, we give a sketch here.

Suppose $\left\{w_{n}\right\}$ is a minimizing sequence for $S_{\alpha+\beta}$, let $u_{n}=s w_{n}, v_{n}=t w_{n}$, where $s, t>0$ will be chosen later. Then from (2.2), we infer that

$$
\begin{equation*}
S_{\alpha, \beta} \leq \frac{s^{p}+t^{p}}{\left(s^{\alpha} t^{\beta}\right)^{\frac{p}{\alpha+\beta}}} \frac{\left\|w_{n}\right\|^{p}}{\left(\int_{\Omega}\left|w_{n}\right|^{\alpha+\beta} d x\right)^{\frac{p}{\alpha+\beta}}}=\left[\left(\frac{s}{t}\right)^{\frac{p \beta}{\alpha+\beta}}+\left(\frac{s}{t}\right)^{\frac{p \alpha}{\alpha+\beta}}\right] \frac{\left\|w_{n}\right\|^{p}}{\left(\int_{\Omega}\left|w_{n}\right|^{\alpha+\beta} d x\right)^{\frac{p}{\alpha+\beta}}} \tag{2.3}
\end{equation*}
$$

Define the function

$$
h(x)=x^{\frac{p \beta}{\alpha+\beta}}+x^{-\frac{p \alpha}{\alpha+\beta}}, x>0 .
$$

By a direct calculation, the minimum of the function h is achieved at the point $x_{0}=\left(\frac{\alpha}{\beta}\right)^{\frac{1}{p}}$ with the minimum value

$$
h\left(x_{0}\right)=\left(\frac{\alpha}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}+\left(\frac{\alpha}{\beta}\right)^{-\frac{\alpha}{\alpha+\beta}} .
$$

Thus, choosing $s, t>0$ in (2.3) such that $\frac{s}{t}=\left(\frac{\alpha}{\beta}\right)^{\frac{1}{p}}$, we obtain

$$
S_{\alpha, \beta} \leq\left[\left(\frac{\alpha}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}+\left(\frac{\alpha}{\beta}\right)^{-\frac{\alpha}{\alpha+\beta}}\right] S_{\alpha+\beta} .
$$

To complete the proof, let $z_{n}=\left(u_{n}, v_{n}\right)$ be a minimizing sequence for $S_{\alpha, \beta}$. Define $\omega_{n}=t_{n} v_{n}$ for some $t_{n}>0$ such that

$$
\int_{\Omega}\left|u_{n}\right|^{\alpha+\beta} d x=\int_{\Omega}\left|\omega_{n}\right|^{\alpha+\beta} d x
$$

Then we have

$$
\begin{aligned}
\int_{\Omega}\left|u_{n}\right|^{\alpha}\left|\omega_{n}\right|^{\beta} d x & \leq \frac{\alpha}{\alpha+\beta} \int_{\Omega}\left|u_{n}\right|^{\alpha+\beta} d x+\frac{\beta}{\alpha+\beta} \int_{\Omega}\left|\omega_{n}\right|^{\alpha+\beta} d x \\
& =\int_{\Omega}\left|u_{n}\right|^{\alpha+\beta} d x=\int_{\Omega}\left|\omega_{n}\right|^{\alpha+\beta} d x
\end{aligned}
$$

Therefore, we deduce from the above inequality that

$$
\begin{aligned}
\frac{\left\|z_{n}\right\|^{p}}{\left.\left(\int_{\Omega}\left|u_{n}\right|^{\alpha}\left|v_{n}\right|^{\beta} d x\right)\right)^{\frac{p}{\alpha+\beta}}} & =t_{n}^{\frac{p \beta}{\alpha+\beta}} \frac{\left\|z_{n}\right\|^{p}}{\left.\left(\int_{\Omega}\left|u_{n}\right|^{\alpha}\left|\omega_{n}\right|^{\beta} d x\right)\right)^{\frac{p}{\alpha+\beta}}} \\
& \geq t_{n}^{\frac{p \beta}{\alpha+\beta}} \frac{\left\|u_{n}\right\|^{p}}{\left.\left(\int_{\Omega}\left|u_{n}\right|^{\alpha+\beta} d x\right)\right)^{\frac{p}{\alpha+\beta}}}+t_{n}^{\frac{p \beta}{\alpha+\beta}-p} \frac{\left\|\omega_{n}\right\|^{p}}{\left.\left(\int_{\Omega}\left|\omega_{n}\right|^{\alpha+\beta} d x\right)\right)^{\frac{p}{\alpha+\beta}}} \\
& \geq h\left(t_{n}\right) S_{\alpha+\beta} \\
& \geq h\left(t_{0}\right) S_{\alpha+\beta} .
\end{aligned}
$$

Passing to the limit in the above inequality, we obtain

$$
S_{\alpha, \beta} \geq\left[\left(\frac{\alpha}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}+\left(\frac{\alpha}{\beta}\right)^{-\frac{\alpha}{\alpha+\beta}}\right] S_{\alpha+\beta} .
$$

That's end the proof of Lemma 2.1.

Let's study the energy functional associated with problem (1.1) defined by

$$
\begin{aligned}
E(z) & =E(u, v)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p}+|\nabla v|^{p} d x+\frac{1}{q} \int_{\Omega}|\nabla u|^{q}+|\nabla v|^{q} d x \\
& -\frac{1}{r} \int_{\Omega} \lambda V(x)|u|^{r}+\theta V(x)|u|^{r} d x-\frac{2}{\alpha+\beta} \int_{\Omega}|u|^{\alpha}|v|^{\beta} d x
\end{aligned}
$$

Obviously, $E(z)$ is even and it is well known that $E(z) \in C^{1}(H, R)$ and nontrival critical points of $E(z)$ are weak solutions of problem (1.1). By a weak solution of (1.1)we mean that $(u, v) \in H$ satisfying

$$
\begin{gathered}
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \nabla \varphi+|\nabla v|^{p-2} \nabla v \nabla \psi\right) d x+\int_{\Omega}\left(|\nabla u|^{q-2} \nabla u \nabla \varphi+|\nabla v|^{q-2} \nabla v \nabla \psi\right) d x \\
-\lambda \int_{\Omega} V(x)|u|^{r} \varphi d x-\theta \int_{\Omega} V(x)|v|^{r} \psi d x \\
-\frac{2 \alpha}{\alpha+\beta} \int_{\Omega}|u|^{\alpha-2} u v^{\beta} \varphi d x-\frac{2 \beta}{\alpha+\beta} \int_{\Omega}|u|^{\alpha} v^{\beta-2} v \psi d x=0 .
\end{gathered}
$$

for all $(\varphi, \psi) \in E$.
Now, we define the Palais-Smale(PS)-sequence, (PS)-value, and (PS)-conditions in H for E as follows.
Definition 2.2. (I) For $c \in R$, a sequence $\left\{z_{n}\right\} \in H$ is a (PS) $)_{c}$-sequence for E if $E\left(z_{n}\right)=c+o(1)$ and $E^{\prime}\left(z_{n}\right)=o(1)$ strongly in H^{\prime} as $n \rightarrow \infty$.
(II) $c \in R$ is a (PS)-value for E if there exists a (PS) ${ }_{c}$-sequence in H for E.
(III) E satisfies the (PS) ${ }_{c}$-condition in H for E if every $(\mathrm{PS})_{c}$-sequence in H for E contains a convergent sub-sequence.

Now we give some results for the proof of Theorem 1.1.
Lemma 2.3. If $\left\{z_{n}\right\} \subset H$ is a $(P S)_{c}$ secquence for E, then $\left\{z_{n}\right\}$ is bounded in H.

Proof. Modified the proof of Lemma 2.3 in [16], we can obtain the results.
Lemma 2.4. If $\left\{z_{n}\right\} \subset H$ is a $(P S)_{c}$ secquence for E, then there exists $z \in H$ and $M>0$ such that

$$
E(z) \geq-M(\lambda+\theta)^{\frac{q}{q-r}},
$$

where M will be given later.
Proof. Similar to the proof of Lemma 2.2 in [16].
Lemma 2.5. E satisfies the $(P S)_{c}$ condition with c satisfying

$$
c \leq \frac{2}{N}\left(\frac{S_{\alpha, \beta}}{2}\right)^{\frac{N}{p}}-M(\lambda+\theta)^{\frac{q}{q-r}} .
$$

Proof. Suppose $\left\{z_{n}\right\} \subset H$ is a $(\mathrm{PS})_{c}$ sequence of E, i.e.,

$$
\begin{equation*}
E\left(z_{n}\right)=c+o(1), E^{\prime}\left(z_{n}\right)=o(1) \tag{2.4}
\end{equation*}
$$

by Lemma 2.3, we may assume there exist a $z \in H, E^{\prime}(z)=0$, and extracting a subsequence such that $z_{n} \rightharpoonup z$ in H, Thus we have that

$$
u_{n} \rightarrow u, v_{n} \rightarrow v \text { in } L^{s}(\Omega), 1 \leq s<p^{*}
$$

and $u_{n} \rightarrow u, v_{n} \rightarrow v$ a.e. on Ω. Hence we have

$$
\int_{\Omega} \lambda V(x)\left|u_{n}\right|^{r}+\theta V(x)\left|v_{n}\right|^{r} d x=\int_{\Omega} \lambda V(x)|u|^{r}+\theta V(x)|v|^{r} d x+o(1) .
$$

Let $\widetilde{v}_{n}=u_{n}-u, \widetilde{v}_{n}=v_{n}-v$ and $\widetilde{z}_{n}=\left(\widetilde{u}_{n}, \widetilde{v}_{n}\right)$. Then by Brezis-Lieb's Lemma(see[7]), we deduce that

$$
\begin{equation*}
\left\|\widetilde{z}_{n}\right\|_{p}^{p}=\left\|z_{n}\right\|_{p}^{p}-\|z\|_{p}^{p}+o(1),\left\|\widetilde{z}_{n}\right\|_{q}^{q}=\left\|z_{n}\right\|_{q}^{q}-\|z\|_{q}^{q}+o(1) . \tag{2.5}
\end{equation*}
$$

By an argument of Han [15,Lemma 2.1], we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\widetilde{u}_{n}\right|^{\alpha}\left|\widetilde{v}_{n}\right|^{\beta} d x=\int_{\Omega}\left|u_{n}\right|^{\alpha}\left|v_{n}\right|^{\beta} d x-\int_{\Omega}|u|^{\alpha}|v|^{\beta} d x+o(1) \tag{2.6}
\end{equation*}
$$

Together with (2.4)-(2.6), we have that

$$
\begin{gathered}
\frac{1}{p}\left\|\widetilde{z}_{n}\right\|_{p}^{p}+\frac{1}{q}\left\|\widetilde{z}_{n}\right\|_{q}^{q}-\frac{1}{r} \int_{\Omega}\left(\lambda V(x)|u|^{r}+\theta V(x)|v|^{r}\right) d x-\frac{2}{p^{*}} \int_{\Omega}\left|\widetilde{u}_{n}\right|^{\alpha}\left|\widetilde{v}_{n}\right|^{\beta} d x \\
+\frac{1}{p}\|z\|_{p}^{p}+\frac{1}{q}\|z\|_{q}^{q}-\frac{2}{p^{*}} \int_{\Omega}|u|^{\alpha}|v|^{\beta} d x=c+o(1)
\end{gathered}
$$

and

$$
\begin{gathered}
\left\|\widetilde{z}_{n}\right\|_{p}^{p}+\left\|\widetilde{z}_{n}\right\|_{q}^{q}-\int_{\Omega}\left(\lambda V(x)|u|^{r}+\theta V(x)|v|^{r}\right) d x-2 \int_{\Omega}\left|\widetilde{u}_{n}\right|^{\alpha}\left|\widetilde{v}_{n}\right|^{\beta} d x \\
+\|z\|_{p}^{p}+\|z\|_{q}^{q}-2 \int_{\Omega}|u|^{\alpha}|v|^{\beta} d x=o(1)
\end{gathered}
$$

Or we have

$$
\begin{equation*}
\frac{1}{p}\left\|\widetilde{z}_{n}\right\|_{p}^{p}+\frac{1}{q}\left\|\widetilde{z}_{n}\right\|_{q}^{q}-\frac{2}{p^{*}} \int_{\Omega}\left|\widetilde{u}_{n}\right|^{\alpha}\left|\widetilde{v}_{n}\right|^{\beta} d x=c-E(z)+o(1) . \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\widetilde{z}_{n}\right\|_{p}^{p}+\left\|\widetilde{z}_{n}\right\|_{q}^{q}-\frac{2}{p^{*}} \int_{\Omega}\left|\widetilde{u}_{n}\right|^{\alpha}\left|\widetilde{v}_{n}\right|^{\beta} d x=o(1) \tag{2.8}
\end{equation*}
$$

Hence, we may suppose that

$$
\left\|\widetilde{z}_{n}\right\|_{p}^{p} \rightarrow a,\left\|\widetilde{z}_{n}\right\|_{q}^{q} \rightarrow b, 2 \int_{\Omega}\left|\widetilde{u}_{n}\right|^{\alpha}\left|\widetilde{v}_{n}\right|^{\beta} d x \rightarrow l
$$

if $a=0$, then we have $z_{n} \rightarrow z$ in H, we complete the proof. On the contrary, we ssume $a>0$, then from (2.2) and (2.8), we obtain

$$
a \leq l \leq 2\left(S_{\alpha, \beta}\right)^{-\frac{p^{*}}{p}} a^{\frac{p^{*}}{p}},
$$

which implies that $a \geq 2\left(\frac{S_{\alpha, \beta}}{2}\right)^{\frac{N}{p}}$.

On the other hand, from (2.7) we have that

$$
\begin{aligned}
c & =\frac{a}{p}+\frac{b}{q}-\frac{l}{p^{*}}+E(z) \\
& =\left(\frac{1}{p}-\frac{1}{p^{*}}\right) a+\left(\frac{1}{q}-\frac{1}{p^{*}}\right) b+E(z) \\
& >\frac{2}{N}\left(\frac{S_{\alpha, \beta}}{2}\right)^{\frac{N}{p}}-M(\lambda+\theta)^{\frac{q}{q-r}}
\end{aligned}
$$

which contradicts $c \leq \frac{2}{N}\left(\frac{S_{\alpha, \beta}}{2}\right)^{\frac{N}{p}}-M(\lambda+\theta)^{\frac{q}{q-r}}$.
The following is the classical Deformation Lemma:
Lemma 2.6 (see[1]). Let $f \in C^{1}(X, R)$ and satisfy (PS) condition. If $c \in R$ and N is any neighborhood of $K_{c} \doteq\left\{u \in X \mid f(u)=c, f^{\prime}(u)=0\right\}$, there exists $\eta(t, x) \equiv \eta_{t}(x) \in C([0,1] \times X, X)$ and constants $\bar{\epsilon}>\epsilon>0$ such that
(1) $\eta_{0}(x)=x$ for all $x \in X$,
(2) $\eta_{t}(x)=x$ for all $x \bar{\in} f^{-1}[c-\bar{\epsilon}, c+\bar{\epsilon}]$,
(3) $\eta_{t}(x)$ is a homeomorphism of X onto X for all $t \in[0,1]$,
(4) $f\left(\eta_{t}(x)\right) \leq f(x)$ for all $x \in X, t \in[0,1]$,
(5) $\eta_{1}\left(A_{c+\epsilon}-N\right) \subset A_{c+\epsilon}$, where $A_{c}=\{x \in X \mid f(x) \leq c\}$ for any $c \in R$,
(6) if $K_{c}=\emptyset, \eta_{1}\left(A_{c+\epsilon}\right) \subset A_{c-\epsilon}$,
(7) if f is even, η_{t} is odd in x.

Remark 2.7. Lemma 2.6 is also true if f satisfies $(P S)_{c}$ condition for $c<c_{0}$ for some $c_{0} \in R$.

At the end of this section, we recall some concepts in minimax theory. Let X be a Banach space, and

$$
\Sigma=\{A \subset X \backslash\{0\} \mid A \text { is closed, }-A=A\}
$$

and

$$
\Sigma_{k}=\{A \in \Sigma \mid \gamma(A) \geq k\}
$$

where $\gamma(A)$ is the Z_{2} genus of A, that is
$\gamma(A)=\left\{\begin{array}{l}\inf \left\{n: \text { there exist odd, continuous } h: A \rightarrow R^{n} \backslash\{0\}\right\}, \\ +\infty, \text { if it doesn't exist odd, continuous } h: A \rightarrow R^{n} \backslash\{0\}, \forall n \in Z_{+}, \\ 0, \text { if } A=\varnothing .\end{array}\right.$
The main properties of genus are contained in the following lemma.
Lemma 2.8 (see[22]). Let $A, B \in \Sigma$. Then
(1) If there exists $f \in C(A, B)$, odd, then $\gamma(A) \leq \gamma(B)$.
(2) If $A \subset B$, then $\gamma(A) \leq \gamma(B)$.
(3) If there exists an odd homeomorphism between A and B, then $\gamma(A)=$ $\gamma(B)$.
(4) If S^{N-1} is the sphere in R^{N}, then $\gamma\left(S^{N-1}\right)=N$.
(5) $\gamma(A \cup B) \leq \gamma(A)+\gamma(B)$.
(6) If $\gamma(A)<\infty$, then $\gamma(\overline{A-B}) \geq \gamma(A)-\gamma(B)$.
(7) If A is compact, then $\gamma(A)<\infty$, and there exists $\delta>0$ such that $\gamma(A)=$ $\gamma\left(N_{\delta}(A)\right)$, where $N_{\delta}(A)=\{x \in X \mid d(x, A) \leq \delta\}$.
(8) If X_{0} is a subspace of X with codimension k, and $\gamma(A)>k$, then $A \cap X_{0} \neq$ Ø.

3. Proof of Theorem 1.1

We will prove the existence of infinitely many solutions for system (1.1) in this section. We try to use Lusternik-Schnirelman's theory for Z_{2}-invariant functional (see [22]). But since the functional $E(z)$ defined in section 2 is not bounded from below, so we following [4](or see [20]) to consider a truncated functional $E_{\infty}(z)$ which will be constructed later.

At first, let's consider the functional $E(z)$, using the Sobolev's inequality with the hypothesis $1<r<q<p<N$, we obtain

$$
\begin{aligned}
E(z) & \geq \frac{1}{p}\|z\|_{p}^{p}-\frac{1}{r} \int_{\Omega} \lambda V(x)|u|^{r}+\theta V(x)|u|^{r} d x-\frac{2}{p^{*}} \int_{\Omega}|u|^{\alpha}|v|^{\beta} d x \\
& \geq \frac{1}{p}\|z\|_{p}^{p}-\frac{2}{p^{*} S_{\alpha, \beta}^{\frac{p^{*}}{p}}}\|z\|_{p}^{p^{*}}-\frac{1}{r} S_{p}^{-\frac{r}{p}}|V(x)|_{\frac{p^{*}}{p^{*}-r}}(\lambda+\theta)\|z\|_{p}^{r} \\
& =C_{3}\|z\|_{p}^{p}-C_{4}\|z\|_{p}^{p^{*}}-C_{5}(\lambda+\theta)\|z\|_{p}^{r}
\end{aligned}
$$

where $C_{3}=\frac{1}{p}, C_{4}=\frac{2}{p^{*} S_{\alpha, \beta}^{\frac{p^{*}}{p}}}, C_{5}=\frac{1}{r} S_{p}^{-\frac{r}{p}}|V(x)|_{\frac{p^{*}}{p^{*}-r}}$ are all positive constants.
We now consider function

$$
h(x)=C_{3} x^{p}-C_{4} x^{p^{*}}-C_{5}(\lambda+\theta) x^{r}, x>0
$$

by the hypothesis $1<r<p<p^{*}$, we easily know that there exists a $\Lambda^{*}>0$ such that for any $0<(\lambda+\theta) \leq \Lambda^{*}$, we have the following results hold:
(a) $h(x)$ reaches its positive maximum;
(b) $\frac{2}{N}\left(\frac{S_{\alpha, \beta}}{2}\right)^{\frac{N}{p}}-M(\lambda+\theta)^{\frac{q}{q-r}} \geq 0$, where M is given in Lemma 2.4.

From the structure of $h(x)$, we see that there are two positive solutions $R_{1}<$ R_{2} of $h(x)=0$. Then we can easily know that

$$
h(x)\left\{\begin{array}{l}
<0, x \in\left(0, R_{1}\right) \cup\left(R_{2}, \infty\right) \tag{3.1}\\
>0, x \in\left(R_{1}, R_{2}\right)
\end{array}\right.
$$

We let $\tau: R^{+} \rightarrow[0,1]$ be C^{∞} and nonincreasing function such that

$$
\begin{gathered}
\tau(x)=1, \quad \text { if } x \in\left(0, R_{1}\right) \\
\tau(x)=0, \quad \text { if } x \in\left(R_{2}, \infty\right)
\end{gathered}
$$

Let $\varphi(u)=\tau\left(\|u\|_{p}\right)$, we consider the truncated functional

$$
\begin{gathered}
E_{\infty}(z)=\frac{1}{p}\|z\|_{p}^{p}+\frac{1}{q}\|z\|_{q}^{q}-\frac{1}{r} \int_{\Omega} \lambda V(x)|u|^{r}+\theta V(x)|v|^{r} d x \\
-\frac{2}{p^{*}} \int_{\Omega}|u|^{\alpha}|v|^{\beta} \varphi(u) d x
\end{gathered}
$$

similar as above, we consider the function

$$
\bar{h}(x)=C_{3} x^{p}-C_{4} x^{p^{*}} \tau(x)-C_{5}(\lambda+\theta) x^{r},
$$

and have that

$$
\begin{equation*}
E_{\infty}(z) \geq \bar{h}\left(\|z\|_{p}\right) \tag{3.2}
\end{equation*}
$$

By further analysis, we can see $\bar{h}(x) \geq h(x)$, for all $x \in(0, \infty)$; and $\bar{h}(x)=h(x)$, for $x \in\left(0, R_{1}\right]$; and $\bar{h}(x) \geq 0$, for $x \in\left[R_{2}, \infty\right)$. So we have that $E(z)=E_{\infty}(z)$ when $\|z\|_{p} \in\left(0, R_{1}\right]$, and since $\tau \in C^{\infty}$, we get $E_{\infty}(z) \in C^{1}(H, R)$. Also we obtain the following results.
Lemma 3.1. (1) If $E_{\infty}(z)<0$, then $\|z\|_{p} \in\left(0, R_{1}\right)$, and $E(w)=E_{\infty}(w)$ for all w in a small enough neighborhood of z.
(2) There exists a $\Lambda^{*}>0$, such that when $0<(\lambda+\theta) \leq \Lambda^{*}, E_{\infty}(z)$ satisfies the $(P S)_{c}$ condition for $c<0$.
Proof. We prove (1) by contradiction, assume $E_{\infty}(z)<0$ and $\|z\|_{p} \in\left[R_{1}, \infty\right)$. Then if $\|z\|_{p} \in\left[R_{1}, R_{2}\right]$, by (3.1),(3.2), we see that

$$
E_{\infty}(z) \geq \bar{h}\left(\|z\|_{p}\right) \geq h\left(\|z\|_{p}\right) \geq 0
$$

If $\|z\|_{p} \in\left(R_{2}, \infty\right)$, by (3.2) and above analysis, we also have that

$$
E_{\infty}(z) \geq \bar{h}\left(\|z\|_{p}\right) \geq 0 .
$$

Thus $\|z\|_{p} \in\left(0, R_{1}\right)$, (1) holds.
Now, we prove (2), let Λ^{*} as above. If $c<0$ and $\left\{z_{n}\right\} \subset H$ is a $(P S)_{c}$ sequence of E_{∞}, then we may assume that $E_{\infty}\left(z_{n}\right)<0$ and $E_{\infty}^{\prime}\left(z_{n}\right)=o(1)$, by (1), $\left\|z_{n}\right\|_{p} \in\left(0, R_{1}\right)$, hence $E\left(z_{n}\right)=E_{\infty}\left(z_{n}\right)$ and $E^{\prime}\left(z_{n}\right)=E_{\infty}^{\prime}\left(z_{n}\right)$. Since (b) hold when $0<(\lambda+\theta) \leq \Lambda^{*}$, By Lemma 2.5, $E(z)$ satisfies the $(P S)_{c}$ condition for $c<0$. Thus $E_{\infty}(z)$ satisfies the $(P S)_{c}$ condition for $c<0,(2)$ holds.
Now we prove our main result via genus.
Proof of Theorem 1.1. Let $\Sigma_{k}=\{A \subset H-\{(0,0)\}, A$ is closed, $A=-A, \gamma(A) \geq$ $k\}, c_{k}=\inf _{A \in \Sigma_{k}} \sup _{z \in A} E_{\infty}(z), K_{c}=\left\{z \in H \mid E_{\infty}(z)=c, E_{\infty}^{\prime}(z)=0\right\}$, and suppose that $0<(\lambda+\theta) \leq \Lambda^{*}, \Lambda^{*}$ is as above.

We claim that if $k, l \in N$ are such that $c=c_{k}=c_{k+1}=\cdots=c_{k+l}$, then $\gamma\left(K_{c}\right) \geq l+1$.

In fact, we assume

$$
E_{\infty}^{-\varepsilon}=\left\{z \in H \mid E_{\infty}(z) \leq-\varepsilon\right\}
$$

we will show for any $k \in N$, there exist an $\varepsilon=\varepsilon(k)>0$, such that

$$
\gamma\left(E_{\infty}^{-\varepsilon}(z)\right) \geq k
$$

Fix $k \in N$, denote H_{k} be an k-dimensional subspace of H, choose $z=(u, v) \in$ H_{k}, with $\|z\|_{p}=1$, for $0<\rho<R_{1}$, we have

$$
\begin{align*}
E(\rho z)= & E_{\infty}(\rho z)=\frac{1}{p} \rho^{p}+\frac{\rho^{q}}{q}\|z\|_{q}^{q}-\frac{\rho^{r}}{r} \int_{\Omega} \lambda V(x)|u|^{r} \\
& +\theta V(x)|v|^{r} d x-\frac{2 \rho^{p^{*}}}{p^{*}} \int_{\Omega}|u|^{\alpha}|v|^{\beta} d x . \tag{3.3}
\end{align*}
$$

For H_{k} is a finite dimension space, all the norms in H_{k} are equivalent. So we can define

$$
\begin{gather*}
\alpha_{k}=\sup \left\{\|z\|_{q}^{q} \mid u \in H_{k},\|z\|_{p}=1\right\}<\infty, \tag{3.4}\\
\beta_{k}=\inf \left\{|z|_{r}^{r} \mid z \in H_{k},\|z\|_{p}=1\right\}>0, \tag{3.5}
\end{gather*}
$$

from (3.3)-(3.5), we have

$$
E_{\infty}(\rho z) \leq \frac{1}{p} \rho^{p}+\alpha_{k} \frac{\rho^{q}}{q}-\sigma \beta_{k} \frac{\min \{\lambda, \theta\} \rho^{r}}{r}
$$

For any $\varepsilon>0$ and an $0<\rho<R_{1}$ such that $E_{\infty}(\rho z) \leq-\varepsilon$ for $z \in H_{k}$, $\|z\|_{p}=1$, let $S_{\rho}=\left\{z \in H \mid\|z\|_{p}=\rho\right\}$, then $S_{\rho} \cap H_{k} \subset E_{\infty}^{-\varepsilon}$. By Lemma 2.8, we obtain that

$$
\begin{equation*}
\gamma\left(E_{\infty}^{-\varepsilon}(z)\right) \geq \gamma\left(S_{\rho} \cap H_{k}\right)=k \tag{3.6}
\end{equation*}
$$

Since E_{∞} is continuous and even, with (3.6), we have $E_{\infty}^{-\varepsilon} \in \Sigma_{k}$ and $c=$ $c_{k} \leq-\varepsilon<0$. As E_{∞} is bounded from below, we see that $c=c_{k}>-\infty$ (This is the main reason that we consider E_{∞} instead of E). Then by Lemma $3.1 E_{\infty}$ satisfies $(P S)_{c}$ condition and it is easy to see that K_{c} is a compact set.

Now we prove our claim by contradiction, suppose on the contrary $\gamma\left(K_{c}\right) \leq l$. By Lemma 2.8, there is a closed and symmetric set U with $K_{c} \subset U$ and $\gamma(U) \leq l$. Since $c<0$, we also can assume that the closed set $U \subset E_{\infty}^{0}$. By Lemma 2.6, there exists an odd homeomorphism

$$
\eta: H \rightarrow H
$$

such that $\eta\left(E_{\infty}^{c+\delta}-U\right) \subset E_{\infty}^{c-\delta}$ for some $0<\delta<-c$.
From the definition of $c=c_{k+l}$, we know that there is an $A \in \Sigma_{k+l}$ such that

$$
\sup _{z \in A} E_{\infty}(z)<c+\delta
$$

i.e., $A \subset E_{\infty}^{c+\delta}$, and

$$
\eta(A-U) \subset \eta\left(E_{\infty}^{c+\delta}-U\right) \subset E_{\infty}^{c-\delta}
$$

that's meaning

$$
\begin{equation*}
\sup _{z \in \eta(A-U)} E_{\infty}(z) \leq c-\delta \tag{3.7}
\end{equation*}
$$

Again by Lemma 2.8, we have

$$
\gamma(\eta(\overline{A-U})) \geq \gamma(\overline{A-U}) \geq \gamma(A)-\gamma(U) \geq k
$$

Thus we have $\eta(\overline{A-U}) \in \Sigma_{k}$ and $\sup _{z \in \eta(\overline{A-U})} E_{\infty}(z) \geq c_{k}=c$, which contradicts to (3.7). So we have proved our claim.

Now let's complete the proof of Theorem 1.1. If for all $k \in N$, we have $\Sigma_{k+1} \subset \Sigma_{k}, c_{k} \leq c_{k+1}<0$. If all c_{k} are distinct, then $\gamma\left(K_{c_{k}}\right) \geq 1$, and we see that $\left\{c_{k}\right\}$ is a sequence of distinct negative critical values of E_{∞}; if for some k_{0}, there is a $l \geq 1$ such that $c=c_{k_{0}}=c_{k_{0}+1}=\cdots=c_{k)+l}$, then by the claim, we have

$$
\gamma\left(K_{c}\right) \geq l+1
$$

which shows that K_{c} contains infinitely many distinct elements.

By Lemma 3.1, we know $E(z)=E_{\infty}(z)$ when $E_{\infty}(z)<0$, so we show that there are infinitely many critical points of $E(z)$. Theorem 1.1 is proved.

4. Proof of Theorem 1.2.

In this section, we will study problem (1.1) with $1<q<p<r<p^{*}$, and will prove Theorem 1.2 by the following general version of the Mountain Pass Lemma(see[3]).
Lemma 4.1. Let E be a functional on a Banach space $H, E \in C^{1}(H, R)$. Let us assume that there exists $\rho, R>0$ such that
(i) $E(z)>\rho, \forall z \in H$ with $\|z\|_{p}=R$.
(ii) $E(0)=0$, and $E\left(w_{0}\right)<\rho$ for some $w_{0} \in H$, with $\left\|w_{0}\right\|_{p}>R$.

Let us define $\Gamma=\left\{\gamma \in C([0,1], H) \mid \gamma(0)=0, \gamma(1)=w_{0}\right\}$, and

$$
\begin{equation*}
\mu=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} E(\gamma(t)) \tag{4.1}
\end{equation*}
$$

Then there exists a sequence $\left\{z_{n}\right\} \subset H$, such that $E\left(z_{n}\right) \rightarrow \mu$, and $E^{\prime}\left(z_{n}\right) \rightarrow 0$ in H^{\prime} (dual of H) as $n \rightarrow \infty$.

Now similar to Lemma 2.5 in section 2, we have the following result.
Lemma 4.2. Suppose $1<q<p \leq r<p^{*}$ hold, then any $(P S)_{c}$ sequence $\left\{z_{n}\right\} \subset H$ of $E(z)$ contains a convergent subsequence when

$$
\begin{equation*}
c<\frac{2}{N} S_{\alpha, \beta}^{\frac{N}{p}} . \tag{4.2}
\end{equation*}
$$

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. From (4.1) and (4.2), we only need to show

$$
\begin{equation*}
\mu<\frac{2}{N} S_{\alpha, \beta}^{\frac{N}{p}} \tag{4.3}
\end{equation*}
$$

then Lemma 4.1 and Lemma 4.2 give the existence of the critical point of E.
To obtain (4.3), Let us choose $z_{0}=\left(u_{0}, u_{0}\right) \in H$, with

$$
\left|z_{0}\right|_{p^{*}}=1, \lim _{t \rightarrow \infty} E\left(t z_{0}\right)=-\infty
$$

then there exists a $t_{\theta \lambda}>0$ such that $\sup _{t \geq 0} E\left(t z_{0}\right)=E\left(t_{\theta \lambda} z_{0}\right)$ holds, and then $t_{\theta \lambda}$ satisfies

$$
0=t_{\theta \lambda}^{p-1}\left\|z_{0}\right\|_{p}^{p}+t_{\theta \lambda}^{q-1}\left\|z_{0}\right\|_{q}^{q}-(\lambda+\theta) t_{\theta \lambda}^{r-1} \int_{\Omega} V(x)\left|u_{0}\right|^{r} d x-t_{\theta \lambda}^{p^{*}-1}
$$

then we get

$$
(\lambda+\theta) \int_{\Omega} V(x)\left|u_{0}\right|^{r} d x=t_{\theta \lambda}^{p-r}\left\|z_{0}\right\|_{p}^{p}+t_{\theta \lambda}^{q-r}\left\|z_{0}\right\|_{q}^{q}-t_{\theta \lambda}^{p^{*}-r}
$$

from $1<q<p \leq r<p^{*}$, we get $t_{\theta \lambda} \rightarrow 0$ as $(\lambda+\theta) \rightarrow \infty$. Then there exists $\Lambda_{*}>0$ such that for any $(\lambda+\theta)>\Lambda_{*}$, we have

$$
\sup _{t \geq 0} E\left(t z_{0}\right)<\frac{2}{N} S_{\alpha, \beta}^{\frac{N}{p}}
$$

Now we take $w_{0}=t_{0} z_{0}$ with t_{0} large enough to verify $E\left(w_{0}\right)<0$, we get

$$
\alpha \leq \max _{t \in[0,1]} E\left(\gamma_{0}(t)\right)
$$

where $\gamma_{0}(t)=t w_{0}$. Therefore,

$$
\mu \leq \sup _{t \geq 0} E\left(t w_{0}\right)<\frac{2}{N} S_{\alpha, \beta}^{\frac{N}{p}}
$$

then we have proved (4.3), that's complete the proof.
Now let's assume $1<q<\frac{N(p-1)}{N-1}<p \leq \max \left\{p, p^{*}-\frac{q}{p-1}\right\}<r<p^{*}$, and define, for $\varepsilon>0$,

$$
u_{\varepsilon}(x)=\frac{\psi(x)}{\left(\varepsilon+|x|^{\frac{p}{p-1}}\right)^{\frac{N-p}{p}}}, v_{\varepsilon}(x)=\frac{u_{\varepsilon}(x)}{\left|u_{\varepsilon}(x)\right|_{p^{*}}}
$$

where $\psi(x) \in C_{0}^{\infty}(B(0,2 R))$ is such that $0 \leq \psi(x) \leq 1$, and $\psi(x) \equiv 1$ on $B(0, R)$.
We obtain the following estimates(see[13]).

$$
\begin{align*}
& \int_{\Omega}\left|u_{\varepsilon}\right|^{t} d x=\left\{\begin{array}{l}
K_{1} \varepsilon^{\frac{N(p-1)-t(N-p)}{p}}+O(1), t>\frac{N(p-1)}{N-p} \\
K_{1}|\operatorname{ln\varepsilon }|+O(1), t=\frac{N(p-1)}{N-p} \\
O(1), t<\frac{N(p-1)}{N-p}
\end{array}\right. \tag{4.4}\\
& \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{t} d x=\left\{\begin{array}{l}
K_{2} \varepsilon^{\frac{t+N(p-1)-t N}{p}}+O(1), t>\frac{N(p-1)}{N-1} \\
K_{2}|\ln \varepsilon|+O(1), t=\frac{N(p-1)}{N-1} \\
O(1), t<\frac{N(p-1)}{N-1}
\end{array}\right. \tag{4.5}
\end{align*}
$$

In particular, we have

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p} d x=K_{2} \varepsilon^{\frac{p-N}{p}}+O(1) \tag{4.6}
\end{equation*}
$$

and

$$
\begin{gather*}
\left(\int_{\Omega}\left|u_{\varepsilon}\right|^{p^{*}} d x\right)^{\frac{p}{p^{*}}}=K_{3} \varepsilon^{\frac{p-N}{p}}+O(1) \tag{4.7}\\
\int_{\Omega}\left|u_{\varepsilon}\right|^{p} d x=\left\{\begin{array}{l}
K_{1} \varepsilon^{\frac{p^{2}-N}{p}}+O(1), \quad p^{2}<N \\
K_{1}|\ln \varepsilon|+O(1), \quad p^{2}=N \\
O(1), p^{2}>N
\end{array}\right. \tag{4.8}
\end{gather*}
$$

where K_{1}, K_{2}, K_{3} are positive constants independent of ε, and $S=\frac{K_{2}}{K_{3}}$ is the best Sobolev constant given in section 2.

If we choosing w_{0} in the proof of Theorm 1.2 carefully, we can prove the following stronger result.

Theorem 4.3. If $1<q<\frac{N(p-1)}{N-1}<p \leq \max \left\{p, p^{*}-\frac{q}{p-1}\right\}<r<p^{*}$ and V_{0} hold, then for any $\theta>0, \lambda>0$, problem (1.1) has a nontrivial solution.

Proof. Following [16], we can take $z_{\varepsilon}=\left(v_{\varepsilon}, v_{\varepsilon}\right)$, and

$$
g(t)=E\left(t z_{\varepsilon}\right)=\frac{2 t^{p}}{p}\left\|v_{\varepsilon}\right\|_{p}^{p}+\frac{2 t^{q}}{q}\left\|v_{\varepsilon}\right\|_{p}^{p}-\frac{(\lambda+\theta) t^{r}}{r} \int_{\Omega} V(x)\left|v_{\varepsilon}\right|^{r} d x-\frac{2 t^{p^{*}}}{p^{*}}
$$

then there exists a $t_{\varepsilon}>0$ such that $\sup _{t \geq 0} E\left(t z_{\varepsilon}\right)=E\left(t_{\varepsilon} z_{\varepsilon}\right)$ hold, and then t_{ε} satisfies

$$
\begin{equation*}
g^{\prime}\left(t_{\varepsilon}\right)=2 t^{p-1}\left\|v_{\varepsilon}\right\|_{p}^{p}+2 t^{q-1} \|\left. v_{\varepsilon}\right|_{p} ^{p}-(\lambda+\theta) t^{r-1} \int_{\Omega} V(x)\left|v_{\varepsilon}\right|^{r} d x-2 t^{p^{*}-1}=0 . \tag{4.9}
\end{equation*}
$$

then we have

$$
\int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{p} d x+t_{\varepsilon}^{q-p} \int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{q} d x>t_{\varepsilon}^{p^{*}-p}
$$

From (4.4)-(4.8) we can know

$$
\int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{p} d x=S+O\left(\varepsilon^{\frac{N-p}{p}}\right), \int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{q} d x=O\left(\varepsilon^{\frac{q(N-p)}{p^{2}}}\right)
$$

set ε small enough, then we can have

$$
t_{\varepsilon}^{p^{*}-p} \leq 2 S
$$

here we use the fact that $t_{\varepsilon} \rightarrow t_{0}=\left(\int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{p} d x\right)^{\frac{1}{p^{*}-p}}>0$ as $\varepsilon \rightarrow 0$, where t_{0} will be given later.

Then from (4.9) we obtain

$$
\begin{equation*}
2\left\|v_{\varepsilon}\right\|_{p}^{p}<(\lambda+\theta) t_{\varepsilon}^{r-p}\|V(x)\|_{\infty}\left|v_{\varepsilon}\right|_{r}^{r}+2 t_{\varepsilon}^{p^{*}-p} \tag{4.10}
\end{equation*}
$$

From (4.4)-(4.8), and (4.10), choose ε small enough, we have

$$
t_{\varepsilon}^{p^{p^{*}-p}} \geq \frac{S}{2}
$$

Now we consider

$$
h(t)=\frac{t^{p}}{p} \int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{p} d x-\frac{t^{p^{*}}}{p^{*}}
$$

the function attains its maximum at $t_{0}=\left(\int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{p} d x\right)^{\frac{1}{p^{*}-p}}$, and again combine with (4.4)-(4.8), we have

$$
\begin{aligned}
g\left(t_{\varepsilon}\right) & \leq 2 h\left(t_{\varepsilon}\right)+\frac{t_{\varepsilon}^{q}}{q} \int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{q} d x-\frac{(\lambda+\theta) t_{\varepsilon}^{r}}{r} \int_{\Omega} V(x)\left|v_{\varepsilon}\right|^{r} d x \\
& \leq 2 h\left(\left(\int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{p} d x\right)^{\frac{1}{p^{*}-p}}\right)+\frac{(2 S)^{q}}{q} \int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{q} d x-\frac{(\lambda+\theta)\left(\frac{S}{2}\right)^{r}}{r} \sigma \int_{\Omega}\left|v_{\varepsilon}\right|^{r} d x \\
& \leq \frac{2}{N} S^{\frac{N}{p}}+C_{6} \varepsilon^{\frac{N-p}{p}}+C_{7} O\left(\varepsilon^{\frac{q(N-p)}{p^{2}}}\right)-C_{8} O(\varepsilon)^{\frac{p-1}{p}\left(N-r \frac{N-p}{p}\right)}
\end{aligned}
$$

where C_{6}, C_{7}, C_{8} are positive constants independent with ε. Since $1<q<$ $\frac{N(p-1)}{N-1}<p \leq \max \left\{p, p^{*}-\frac{q}{p-1}\right\}<r<p^{*}$, we obtain that

$$
\frac{N-p}{p}>\frac{q(N-p)}{p^{2}}>\frac{p-1}{p}\left(N-r \frac{N-p}{p}\right),
$$

then we choose ε small enough, by Lemma 2.1, we get $g\left(t_{\varepsilon}\right)=\sup _{t \geq 0} E\left(t v_{\varepsilon}\right)<$ $\frac{2}{N} S^{\frac{N}{p}} \leq \frac{2}{N} S_{\alpha, \beta}^{\frac{N}{p}}$, by Lemma 4.1 and Lemma 4.2, we complete the proof.

References

1. A.Ambrosetti,P.H.Rabinowitz, Dual variational methods in critical point theory and application,J.Funct.Anal.14(1973)349-381.
2. C.O.Alves,D.C.de Morais Filho,M.A.S.Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal.42(2000)771-787.
3. J.P.Aubin,I.Ekeland, Applied nonlinear analysis,Wiley,New York.(1984).
4. J.G.Azvrero,I.P.Aloson, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer.Math.Soc.323(1991)877-895.
5. A.Ambrosetti,H.Brezis,G.Cerami, Combined effects of concave and convex nonlinearlities in some elliptic problems, J.Funct.Anal. 122(1994)519-543.
6. V.Benci,A.M.Micheletti,D.Visetti,An eigvenvalue problem for a quasilinear elliptic field equation, J.Diff.Equations.184(2)(2002)299-320.
7. H.Brézis,E.lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc.Amer.Math.Soc. 88 (1983)486-490.
8. H.Brézis,L.Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm.Pure Appl.Math. 36(1983)437-477.
9. H.Brezis, Nonlinear equation involving the critical Sobolev exp- onent-survey and perspectives Crandall M C,et al,ed.Directions in Partial.Diff.Equations.New York:Academic Press Inc,(1987)17-36.
10. J.Byeon,Z.Wang,Standing waves with a critical frequency for nonlinear Schrödinger equations, Archive for Rational Mechanics. Anal.165(4)(2002)295-316.
11. T.Bartsch,A.Pankov,Z.Wang,Nonlinear Schrödinger equations with steep potential well, Communication in Contemporary Mathematics. 3(4)(2001)549-569.
12. W.Ding,W.Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Archive for Rational Mechanics.Anal. 31(4)(1986)283-328.
13. P. Drábek and Y.Huang, Multiplicity of positive solutions for some quasilinear elliptic equation in R^{N} with critical Sobolev exponent, J.Diff. Equations.140(1)(1997) 106-132.
14. P.Han,High-energy positive solutions for critical growth Dirichlet problem in noncontractible domains, Nonlinear Anal.60(2005)369-387.
15. P.Han, The effect of the domain topology on the number of positive solutions of elliptic systems involving critical Sobolev exponents, Houston.J.Math.32(2006)1241-1257.
16. T.S.Hsu, Multiple positive solutions for a critical quasilinear elliptic system with concaveconvex nonlinearities, Nonlinear Anal. 71 (2009)2688-2698.
17. H.Liu, Multiple positive solutions for a semilinear elliptic equation with critical Sobolev exponent, J.Math.Anal.Appl.354(2009) 451-458.
18. H.Liu, Multiple positive solutions for a quasilinear elliptic equation involving singular potential and critical Sobolev exponent, Nonlinear Anal.71(2009)1684-1690.
19. G.Li, The existence of nontrivial solution to the $p-q$-Laplacian problem with nonlinearlity asymptotic to u^{p-1} at infinity in \mathbf{R}^{N}, Nonlinear Anal.68(2008)1100-1119.
20. G.Li,G.Zhang,Multiple solutions for the $p-q$-Laplician problem with critical exponent, Acta.Math.Sci.2009,29B(4):903-918.
21. G.Li,X.Liang, The existence of nontrivial solutions to nonlinear elliptic equation of $p-q$ Laplacian type on R^{N}, Nonlinear Anal. 71 (2009)2316-2334.
22. P.H.Rabinowitz,Minimax methods in critical points theory with application to differential equations, CBMS.Regional.ConfSer in Math.Vol 65.Providence, RI:Amer. Math.Soc.(1986).
23. J.Su,Z.Wang,M.Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Communication in Contemporary Mathematics.9(4)(2007)571-583.
24. T.F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions, Nonlinear Anal.68(2008)1733-1745.
25. T.F.Wu, On semilinear elliptic equations involving critical Sobolev exponents and signchanging weight function, Com.Pure.Appl. Anal.7(2008)383-405.
26. M.Wu,Z.Yang. A class of $p-q$-Laplacian type equation with potentials eigenvalue problem in \mathbf{R}^{N}, Boundary Value Problems 2009. Art.ID 185319,1-19.
27. X.Zhu, Nontrivial solution of quasilinear elliptic equations involving critical Sobolev exponent, Sciences Sinica.Ser A, 31(1988)1166-1181.

Honghui Yin His research interests focus on the structure of solution for a class of quasilinear elliptic equations(systems).
School of Mathematical Sciences, Nanjing Normal University, Jiangsu Nanjing 210046, China.
School of Mathematical Sciences, Huaiyin Normal University, Jiangsu Huaian 223001, China.
e-mail: yinhh@hytc.edu.cn
Zuodong Yang His research interests focus on the structure of solution for a class of quasilinear elliptic equations(systems) and parabolic equations(systems).
School of Mathematical Sciences, Nanjing Normal University, Jiangsu Nanjing 210046, China.
College of Zhongbei, Nanjing Normal University, Jiangsu Nanjing 210046, China.
e-mail: zdyang_jin@263.net

[^0]: Received March 23, 2010. Revised July 7, 2010. Accepted July 27, 2010. ${ }^{*}$ Corresponding author. ${ }^{\dagger}$ Project Supported by the National Natural Science Foundation of China(Grant No.10871060). Project Supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.08KJB110005).
 (c) 2011 Korean SIGCAM and KSCAM.

