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A New PID Controller with Lyapunov Stability for 
Regulation Servo Systems
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Abstract

In this paper, the stability of second order uncertain systems with regulation of PID type controllers is 

analyzed by using Lyapunov second method for the first time in the time domain. The property of the 

stability of PIDregulation servo systems is revealed in sense of Lyapunov, i.e., bounded stability due to the 

disturbances and uncertainties. By means of the results of this stability analysis, the maximum norm bound of 

the error from the output without variation of the uncertainties and disturbances is determined as a function 

of the gains of the PID control,which make it enable to analyze the effect resulted from the variations of the 

disturbances and uncertainties using this norm bound for given PID gains. Using the relationship of the error 

from the output without variation of the uncertainties and disturbances and the PID gain with maximum 

bounds of the disturbances and uncertainties, the robust gain design rule is suggested so that the error from 

the output without the variation of the disturbances and uncertainties can be guaranteed by the prescribed 

specifications as the advantages of this study. The usefulness of the proposed algorithm is verified through an 

illustrative example.
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I.  Introduction

   The PID control shown in Fig.1 is the very old, 

well known, useful, and most popular standard form 

control algorithm to engineers in almost industrial 

fields such as power electronics, robotics, aircraft 

engineering, boilers, instrument equipment, automatic 

machines, processes among the existing developed 

control algorithms so far because of fast response, 

most simple structure, feedback type, zero steady 

state error, capability of coping with actuator 

saturation and time delay, stable and excellent 

performance for slow dynamic plants, good 

robustness after elaborate tuning, practical proof, 

and trust from field engineers[1]. The reason 

of the difficulty of tuning the PID control is the 

different output from the theoretically expected 
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output designed in the time or frequency domains  

due to the modeling errors and zeros in closed loop 

transfer functions and the function of the reference 

value for closed loop regulation servo systems. 

Since Ziegler and Nichols proposed  the design 

methods of the PID gains, based on the open loop 

step response in time domain and relay feedback 

frequency response in frequency domain in 1942[2], 

the many design methods has been 

suggested[1,3,4-17], for example, model based pole 
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            Fig. 1 standard PID controller
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assignment[4-7],optimal method[6], Bang-Bang+PI[8], 

method for Integral wind-up[9,10], phase and gain 

margin satisfying PI[11,12], and auto-tuning 

automation [13,14,18,17] etc. The most studies on 

the design of PID controller until now are 

concentrated on the selection or tuning of the 

suitable and stable PID gains based on the model or 

test output response in the time or frequency 

domain in order to satisfy the field requirements. 

However, the study about the time domain stability 

analysis on the transient behavior due to 

disturbance and parameter variations and the robust 

gain selection is rarely reported except only the fact 

that the steady state error is zero because of the 

integral action. 

   In this paper, the stability of 2
nd
order servo 

regulation systems such as a position control of 

dynamic plants investigated using the Lyapunov 

second method for the first time in time domain. 

The stability feature of the PID regulation servo 

systems is identified in the sense of Lyapunov 

under uncertainties and disturbance. The bound of 

the stable region of PID controllers is obtained with 

respect to the uncertainty, disturbance and PID 

gains. And the robust design rules to guarantee the 

specifications on the error from the nominal output 

is suggested as the advantages of this study. A 

MATLAB simulation of a position regulation servo 

control of a brushless direct drive motor by the PID 

algorithm with the suggested gains is given to 

show the usefulness of the proposed design rules 

which are not unique but useful.

 II.  Stability Analysis Using Lyapunov  

Second Method

2.1 Plant  and  PID  control

A. Plant Description

   In the position control of dynamic plants such as 

motors, plants can be modeled as a second order 

system

    

                   (1) 

where   is the position state variable of the 

control object as an output,   is the speed state 

variable,   is the PID control input to be designed, 

  is the disturbance including the load variations, 

and  ,  , and   are the uncertain system 

parameters expressed as 

       
  

       
  

                                     (2)

where 
 , 

 , and   are the nominal parameters 

obtained from the modeling process. The modeling 

errors, ,  , , and   are assumed 

to be bounded by the known bounds determined in 

the modeling process and are defined as

     max 
     max 
     max
     max                           (3)
and without any loss of generality,   is assumed 

to be positive and its minimum and maximum 

bounds are represented as

                                  (4)

where

     min  max           (5) 

B. PID control

For regulating the o utput of the plants (1) to the 

reference  , the typical standard type of the PID 

control becomes

    





                 

              (6)

where the error   and its derivative   are 

defined respectively as

      

                                       

                             (7)

and   means the constant desired reference value 

for the position output. If the PID control is 
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working with the stable gains, the steady state 

value of the integral in the PID control can be 

obtained as

    



 

    
             

          (8)

where   implies the tine in steady state. This 

value will be used in next stability analysis. By PID 

control, the closed loop servo regulation system 

becomes

    

     
   

   








 
                  

          (9)

where   is the lumped disturbance as

                      

           (10)

The output in form of the transfer function with the 

reference and lumped disturbance can be obtained 

as

      

  
 


           

       (11)

where    and   are each Laplace transform

      


                                   

                               (12) 

and   is the characteristic equation as

       
  

 
  

        

  (13)

As can be seen, the closed loop system becomes 3rd 

order with one zero at   . Generally, the 

PID regulation servo system is designed by using 

the transfer function (11) with possibly large zero 

or pre-filter for canceling the zero and desired three 

roots of (13) with the three degree of freedom,  , 

 , and  . However, since the lumped 

disturbances clearly influence on the output of the 

servo system from (11) which results in the 

difficulty of the controller design, many engineers 

notice the robustness problems to guarantee the 

designed performance for all the lumped 

disturbances. In this paper, this robustness problems 

can be easily solved by means of the analysis about 

the stability of the PID regulation control servo 

system with Lyapunov second method in time 

domain for deriving the robust gain design rule.

2.2 Analysis of Lyapunov Stability and 

Robust Gain Design Rule

A. Analysis of Lyapunov  Stability

To analyze the stability of the PID regulation servo 

system, first of all, a Lyapunov candidate function 

is taken as in this paper

     

⋅                      

            (14)

where   is defined as an error of the integral to 

the steady state valueof the integral, i..e.:

       




                           (15)

Defferentiating (14) with respect to time and 

rearanging it with (1), (6), and (7) leads

 ⋅
⋅

⋅

⋅⋅
⋅ 


 












 



 


  







 



′    and ⋯

  

                                              (16)  

where ′  is defined as
′   

 
  

 







  

                                              (17)

and the positive definite matrices   should be non 

singular. unfortunately the matrices   are not 

unique for example,     and   are 
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 






  

  
 

 
  

  







    






  
  

 

 
  

  







    






  
  

 

 
  

  





     (18)
moreover, many other   may exist. The choice is 
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Fig. 2 Stable region in sense of Lyapunov

given to designers. Finally, the following equation 

can be obtained

    for                          (19)  
where   is a stable bound for PID regulation 

servo system as shown in Fig. 2.

      ′                          (20) 
Therefore the PID control exhibits the bounded 

stability in the sense of Lyapunov for the regulation 

servo system with respect to the uncertainties and 

disturbances. The stable bound of the state means 

the maximum error from the nominal output due to 

changes of disturbances and uncetainties. Hence 

after estimating the stable bound using the bounds 

of the uncertainties and disturbances, (3) and (4), 

the error from the nominal output can be estimated 

as functions of the gains  ,  , and  , further 

more, it is possible to derive the rule to determine 

the gains of PID control so that the maximum error 

form the nominal output is guaranteed by a finite 

desired value.    

B.  Robust Gain Design Rule

From (3), (4), (17) and (20), the estimated stable 

bound becomes

    ″                                
                          (21)

   ′′   
 

 
  










  

                                                   

                                             (22)

in (22),   ,  ,  ,  , 
 , and 





  are 

physically bounded in the stable regulation systems, 

for example max.   . Let   be the 

specification of the allowed maximum error from the 

nominal output. The gains of the PID control will 

be designed in the two steps, i.e. stable design and 

robust design in order to satisfy the specification on 

the maximum error from the nominal output in the 

presence of the uncertainties  and  disturbance i.e.  

 


B.1 Stable Design Rule

For the nominal system without any 

uncertaintiesand disturbances, the PID control must 

operate with stability. The gains of PID control 

should be designed for   to be positive real, that 

is all the eigenvalue of   are positive. The 

characteristic euqations of   become

  
 

  



 

 


 
 

    

  (23)

  
 

  



 

  
 

 
 

    

               

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (24)

  
 

  



 

  
 

 
 

    

 (25)

From (23), (24), and (25), the each condition for the 
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stability canbe derived for the positive definite 

matrices of   as

 ∴










 
 


 

  
  for

 
 

  

     (26)

 ∴










 
 

 
 

 
  for

 
 

  

    (27)

 ∴










 
 


 

  
  for

 
 

  

     (28)

If one of equ. (26), (27), and (28) is satisfied, the 

niminal system under PID control can be stable. 

However, it is difficult to satisfy the conditions of  

(26) and (27), that of (28) describes the best 

solution for the stability. Thus, using the condition 

of (28), the gains of the PID control will be used in 

view of the stability as a minimum requirement of 

general control systems.  

B.2 Robust Design Rule

The robust design rule will be discussed through 

the two cases, i.e, with only disturbances and with 

uncertainties and disturbances.

i)  With uncertainties and disturbances 

The following relationship of the error specification 

and the estimated stable bound should be satisfied 

because the maximum error from the nominal 

output isresulted from the overshoot due to the 

damping condition of the gains and uncertainties 

and disturbance itself  

 
   











  


 max max                           (29)
where    means the maximum overshoot 

according to the damping condition of the uncertain 

system with the gains,   and   due to the 

variations of the uncertainties and disturbances. 

ii) With only disturbances

   
 

  ⋅




≧ 
 

         (30)

where    means the overshoot according to the 

damping condition of the nominal system with the 

gains ,  , and   due to the variations of the 

disturbances, if critical and over damping conditions, 

then   . Therefore, the PID gain to satisfy the 

specification on the error from the output without 

variations of the uncertainties and disturbances can 

be determined using the stable design and robust 

design rule. There may be an iterative design in 

order to satisfy both design rules. Then this design 

method to determine the gain of the PID control can 

guarantee the maximum error from the output 

without the variation of the for all the uncertainties 

and disturbances. In addition to, it can be applicable 

to analyze the induced error due to changes of 

disturbance and uncertainties for the previously 

chosen gains. 

III.  Simulation Studies

To show the usefulness of the suggested gain 

design rules, the simulation on the position control 

of a brushless direct drive servo motor as shown in 

Table 1 will be carried out under only load 

disturbances. Using the parameters in Table 1, a 

nominal model of the motor can be obtained as

   

   ⋅ ⋅                   (31) 

A reference command is given as typically. Full 

load didturbance is applied from  0.5 [sec] to 

1.0[sec]. Under this condition, for the two cases of 

the error from the nominal output, i.e, i) 20[%] of 

command(  
 ) and ii) 1[%]of command
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    (a) nominal output response without load 

variations

(b) output response with load variations

Fig. 3 Simulation results for case I) 20[%] error

(  
)

Table 1 Characteristics of a motor

표 1 전동기의 특성

 Item  Value  Unit

 Rated Power

 Rated Torque

 Rated Speed

 Rated Voltage

 Rotor Inertia

 Current constant

 Number of Pole

 120

 11.0

 123

 70.0

 0.00156

 3.038

 16

 [Watt]

 [Nm]

 [rpm]

 [Volt]

 [Kgm2]

 [Nm/A]

(  
 ),  the PID gains are designed by the 

stable design rule, (28) and the robust design rule, 

(30) equation for matrix   as the representative 

and the no overshoot condition as an inherent  rule

 1) case 1)20[%] of command(  
)

    .condition   .gain selection   .pole./zero analysis

     











 

 

 
→










  

  

  
→










 

 

 

 

  

(32)

1) case ii)1[%] of command(  
)

     .condition  .gain selection   .pole./zero analysis

      











 

 

 
→










  

  

  
→










 

 

 

 

 (33)

where      and  are the poles of the closed 
loop transfer function, (10), one of them is relatively  

  (a) nominal output response without load 
variations

(b) output response with load variations

Fig. 4 Simulation results for case ii) 1[%] error

(  
)

 close to the zero . As a results of the computer 

simulations on the position control of the motor by 

the designed PID, Fig. 3 and 4 show the no 

overshoot output responses of the two cases without 

the load variations in (a) and with the load 

variations in (b).In Fig.3,   (19.5%) error from 

the nominal output at 1[sec] and   (19.47[%}) 

error from the output without load variations after 

the first disturbance at 0.5[sec]  at 1.5[sec] appear. 
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In Fig. 4,   (0.96[%]) error from the nominal 

output at 0.6[sec] and   (0.94[%}) error from 

the output without load variations after the first 

variation at 0.5[sec] at  1.1[sec] can be found. 

These results show satisfaction of the given 

specification on the error as designed. If the output 

is designed with overshoot, the overshoot due to the 

variations of the disturbance,    that can be 

found with the nominal plant and maximum value 

of the load disturbance is considered in the design 

of the controller. As can be seen from now, the 

forcus of the this paper is concentrated on the 

analysis of the effect of the disturbance variations 

and guaranteeing the error specifications from the 

output without the vairations, not on the shape of 

the output that is  . Generally, the larger gain, the 

smaller error due to the same disturbances. The 

technique in this paper can provide the accurate 

values of the gains how large gains should be 

selected.

 IV. Conclusions

   In this paper, the stability of second order servo 

systems regulated by PID type controllers is 

analyzed by using Lyapunov second method for the 

first time in the time domain. The stability property 

of PID regulation servo systems is discovered, that 

is the bounded stability in sense of Lyapunov. By 

means of the results of this stability analysis, the 

maximum bound of the error from the output 

without variations of the disturbances and 

uncertainties is determined as a function of the 

gains of the PID control, which can be applied to 

the effect analysis for the output response due to 

the variations of the disturbances and uncertainties. 

And using the relationship of the PID gain and 

maximum bound of the disturbances and 

uncertainties, the rules for selection of the PID gain 

are suggested so that the error from the output 

without the variations of the disturbances and 

uncertainties can be guaranteed by the prescribed 

bound, named by the stable and robust design rules. 

Although those rules are not unique and analytic, it 

is accurate and useful to find the gain solution how 

large values are sufficient to satisfy the given error 

specifications. The usefulness of the proposed 

algorithm is verified through an illustrative example 

withthe MATLAB simulations of a position 

regulation servo control of a brushless direct drive 

motor by the PID algorithm with the suggested 

gains. The techniques in the paper can give rise to 

the capability of analysis of the effect of variations 

of the disturbance to theoutput response, i.e, 

calculation of the error from the output without 

variations and possibility of gain design to satisfy 

the specification on the error given by users. 
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