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FRACTIONAL ORDER SOBOLEV SPACES FOR THE

NEUMANN LAPLACIAN AND THE VECTOR LAPLACIAN

Seungil Kim

Abstract. In this paper we study fractional Sobolev spaces character-

ized by a norm based on eigenfunction expansions. The goal of this paper
is twofold. The first one is to define fractional Sobolev spaces of order

−1 ≤ s ≤ 2 equipped with a norm defined in terms of Neumann eigen-
function expansions. Due to the zero Neumann trace of Neumann eigen-

functions on a boundary, fractional Sobolev spaces of order 3/2 ≤ s ≤ 2

characterized by the norm are the spaces of functions with zero Neumann
trace on a boundary. The spaces equipped with the norm are useful for

studying cross-sectional traces of solutions to the Helmholtz equation in

waveguides with a homogeneous Neumann boundary condition. The sec-
ond one is to define fractional Sobolev spaces of order −1 ≤ s ≤ 1 for

vector-valued functions in a simply-connected, bounded and smooth do-

main in R2. These spaces are defined by a norm based on series expansions
in terms of eigenfunctions of the vector Laplacian with boundary condi-

tions of zero tangential component or zero normal component. The spaces

defined by the norm are important for analyzing cross-sectional traces of
time-harmonic electromagnetic fields in perfectly conducting waveguides.

1. Introduction

This paper deals with fractional Sobolev spaces characterized by a norm
based on eigenfunction expansions associated with the scalar Laplacian and
the vector Laplacian on bounded and smooth domains. There are many ways
to define a norm in fractional Sobolev spaces, which is equivalent to each other,
such as Fourier transformation, Slobodeckij semi-norm or interpolation method
[19]. Among others, the formula of the norm presented in this paper is useful
for studying a fractional Laplace operator [3] and, in particular, for series repre-
sentations of solutions to the Helmholtz equation and the Maxwell’s equations
posed in waveguides because their traces on cross-sections of waveguides can
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be written as series expansions in terms of cross-sectional eigenfunctions of the
scalar Laplacian [2, 11, 14–16] and the vector Laplacian [1, 13]. They are also
utilized importantly to define the Dirichlet-to-Neumann operator [12, 20] and
the Electric-to-Magnetic operator [13] crucial to understand radiating solutions
for wave propagation problems.

Let Ω be a bounded and smooth domain in Rd, d = 2 or 3. We use usual
notations for Sobolev spaces, for example, L2(Ω) is the set of square integrable
functions on Ω and Hk(Ω) for k positive integer is the subspace of L2(Ω) of
functions whose derivatives up to the k-th order are square integrable as well,
with H0(Ω) = L2(Ω). We denote the L2-inner product on Ω by (·, ·)Ω and

the H1-inner product by (·, ·)1,Ω. In addition, H̃−1(Ω) represents the dual
space of H1(Ω) with the pivot space L2(Ω), and 〈·, ·〉1,Ω denotes the duality

pairing between H̃−1(Ω) and H1(Ω). Fractional Sobolev spaces Hs(Ω) of order
0 < s < 1 can be defined by the real interpolation [5, 17]

Hs(Ω) = [H0(Ω), H1(Ω)]s

and their norms are defined by

(1) ‖u‖Hs(Ω) = Cs

(∫ ∞
0

K(u, t,H0(Ω), H1(Ω))2t−2s−1dt

)1/2

with Cs =
√

2 sin(πs)/π and

K(u, t,H0(Ω), H1(Ω)) = inf
θ∈H1(Ω)

(‖u− θ‖2H0(Ω) + t2‖θ‖2H1(Ω))
1/2.

Also, H̃s(Ω) for −1 < s < 0 and Hs(Ω) for 1 < s < 2 are defined as

Hs(Ω) = [H1(Ω), H2(Ω)]s−1, 1 < s < 2,

H̃s(Ω) = [H̃−1(Ω), H0(Ω)]s+1, −1 < s < 0

with norms defined analogously to (1). For simple presentation, let Hs(Ω) =

Hs(Ω) for s ≥ 0 with H0(Ω) = L2(Ω) and Hs(Ω) = H̃s(Ω) for s < 0.
It is worth beginning with a review on a result in [3] related to the main

goal of this paper but for Dirichlet boundary value problems. For Dirichlet
boundary value problems, the interpolation space

Hs(Ω) :=

 H1
0 (Ω) ∩Hs(Ω), 1 ≤ s ≤ 2,

[L2(Ω), H1
0 (Ω)]s, 0 ≤ s ≤ 1,

[H−1(Ω), L2(Ω)]1+s, −1 ≤ s ≤ 0,

is importantly used for regularity estimates. Here H1
0 (Ω) is the subspace in

H1(Ω) of functions with zero Dirichlet trace on ∂Ω and H−1(Ω) is the dual
space of H1

0 (Ω). In [3], it is shown that for a complete orthonormal basis
{Vn}∞n=1 consisting of Dirichlet eigenfunctions associated with eigenvalues µn,
the interpolation space is identical with a space defined in terms of a norm
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based on Dirichlet eigenfunction expansions. More precisely, the space Ḣs(Ω)
of functions u =

∑∞
n=1 unVn satisfying

(2) ‖u‖Ḣs(Ω) :=

( ∞∑
n=1

(1 + µn)s|un|2
)1/2

<∞

coincides with the interpolation space Hs(Ω) and their norms are equivalent.
The aim of this paper is twofold and it is a development of similar results

for the Neumann Laplacian and the vector Laplacian. The first main result for
the Neumann Laplacian is as follows: let {Yn}∞n=0 be a complete orthonormal
basis consisting of Neumann eigenfunctions pertaining to eigenvalues λn. We
introduce a space Ḣs(Ω) of functions u =

∑∞
n=0 unYn satisfying

(3) ‖u‖Ḣs(Ω) :=

( ∞∑
n=0

(1 + λn)s|un|2
)1/2

<∞

for −1 ≤ s ≤ 2. We will show that for −1 ≤ s ≤ 1 the space Ḣs(Ω) is identical

with the interpolation space Hs(Ω), and the norm (3) of Ḣs(Ω) coincides with
the norm (1) (analogously defined for −1 < s < 0). In case of 1 < s ≤ 2,

the analysis for Ḣs(Ω) is more involved, since Yn has zero Neumann trace on

∂Ω, {Yn}∞n=0 is not dense in Hs(Ω) for 3/2 ≤ s ≤ 2 and hence Ḣs(Ω) is a
proper subspace of Hs(Ω). In this case, we restrict Hs(Ω) to a subspace of
functions with zero Neumann trace on ∂Ω, then it turns out that two spaces
are identical and the norms are equivalent. More precisely, let H2

n(Ω) be a
subspace of functions with zero Neumann trace on ∂Ω in H2(Ω) and define
an interpolation space Hsn(Ω) := [H1(Ω), H2

n(Ω)]s−1 for 1 ≤ s ≤ 2. Then we

can show that two spaces Hsn(Ω) and Ḣs(Ω) for 1 ≤ s ≤ 2 coincide and the
norms are equivalent. The space Hsn(Ω) is well-analyzed in [9,18], showing that

Hsn(Ω) = Hs(Ω) for 1 ≤ s < 3/2 (and so Hs(Ω) = Ḣs(Ω)) and Hsn(Ω) = {u ∈
Hs(Ω) : ∂u/∂ν = 0 on ∂Ω} for 3/2 < s ≤ 2. For s = 3/2, functions in H3/2

n (Ω)
has a Neumann trace which vanishes on ∂Ω in a special sense.

The second part is devoted to studying fractional Sobolev spaces of order
−1 ≤ s ≤ 1 consisting of vector-valued functions related to the boundary con-
ditions of zero tangential component or zero normal component in a simply-
connected, bounded and smooth domain Ω ⊂ R2. These spaces can be defined
by a norm based on eigenfunction expansions for the vector Laplacian supple-
mented with zero tangential component or zero normal component on ∂Ω for
the essential boundary condition. It can be found in [1, 13] that they play an
important role for an analysis of time-harmonic electromagnetic wave propa-
gation in perfectly conducting waveguides in R3.

The remaining part of the paper is composed of two sections. In Section
2 we will analyze fractional Sobolev spaces Ḣs(Ω) for −1 ≤ s ≤ 2 based on
Neumann eigenfunction expansions. It will be shown that they coincide with
Hs(Ω) for −1 ≤ s ≤ 1 and Hsn(Ω) for 1 ≤ s ≤ 2 and their norms are equivalent.
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The result is established thanks to a standard spectral theory [21] of a compact
self-adjoint operator and the real interpolation technique [5, 17]. In Section 3
we will study fractional Sobolev spaces of order −1 ≤ s ≤ 1 for vector-valued
functions in Ω. Here we start with eigenvalue problems of the vector Laplacian
and follow the same lines as those in Section 2 to obtain a characterization of
the spaces and equivalent norms based on eigenfunction expansions. In each
section, we provide an analysis for cross-sectional trace operators in waveguides
as an application of fractional Sobolev spaces equipped with the norms based
on eigenfunction expansions.

2. Fractional Sobolev spaces for Neumann boundary value
problems

In this section we will define fractional Sobolev spaces of order −1 ≤ s ≤ 2
associated with Neumann boundary value problems in a bounded and smooth
domain Ω ⊂ Rd, d = 2 or 3. We first consider the Neumann Laplacian in the
weak sense and define a solution operator pertaining to the Neumann Lapla-
cian. Since the solution operator is continuous, compact and self-adjoint, the
spectral theory [21] comes into play for series expansions of functions in terms
of Neumann eigenfunctions. The main idea of this section is one used in [3].
Some of the analysis are somewhat elementary but we will provide them for
completeness.

2.1. Preliminaries

We first introduce L : H1(Ω) → H−1(Ω) associated with the Neumann
Laplace operator defined by

〈L(u), v〉1,Ω := (∇u,∇v)Ω + (u, v)Ω = (u, v)1,Ω for all u, v ∈ H1(Ω),

which is continuous from H1(Ω) to H−1(Ω) and satisfies ‖L(u)‖H−1(Ω) =

‖u‖H1(Ω). The dual space H−1(Ω) of H1(Ω) is equipped with the standard
operator norm

(4) ‖F‖H−1(Ω) := sup
0 6=φ∈H1(Ω)

〈F, φ〉1,Ω
‖φ‖H1(Ω)

for F ∈ H−1(Ω). Also, due to the Lax-Milgram lemma, we can define the
solution operator

T : H−1(Ω)→ H1(Ω) ⊂ H−1(Ω)

by T (F ) for F ∈ H−1(Ω) satisfying

(5) (T (F ), v)1,Ω = 〈F, v〉1,Ω for all v ∈ H1(Ω).

It is obvious that LT = IH−1(Ω) and T L = IH1(Ω).
Now, by using the solution operator T , we can define the inner product

(·, ·)−1,Ω in H−1(Ω) by (F,G)−1,Ω := 〈F, T (G)〉1,Ω for F,G ∈ H−1(Ω). By the
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definition of the operator T , it holds that

(6) (F,G)−1,Ω = (T (F ), T (G))1,Ω.

The norm of H−1(Ω) induced from the inner product (·, ·)−1,Ω coincides with
the operator norm (4),

‖F‖H−1(Ω) = (F, F )
1/2
−1,Ω.

2.2. Orthonormal bases of Neumann eigenfunctions

We consider the Neumann eigenvalue problem of −∆,

(7)

−∆Y = λY in Ω,

∂Y

∂ν
= 0 on ∂Ω,

where ν stands for the outward unit normal vector on ∂Ω. It is well-known,
e.g. in [6, 7], that there exist non-negative real eigenvalues λn such that

0 = λ0 < λ1 ≤ λ2 ≤ · · ·

and λn → ∞ as n → ∞, and eigenfunctions Yn ∈ L2(Ω) associated with λn,
which form an orthonormal basis in L2(Ω).

In the sequel, we discuss complete orthonormal bases consisting of eigen-
functions of T as an operator defined in three different spaces H−1(Ω), H0(Ω)
and H1(Ω).

Lemma 2.1. The operator T is a continuous and compact operator from
H−1(Ω) to H−1(Ω) satisfying

‖T (F )‖H−1(Ω) ≤ ‖F‖H−1(Ω).

Proof. We use the continuous embedding of H1(Ω) into H−1(Ω) and (6) to
obtain

‖T (F )‖H−1(Ω) ≤ ‖T (F )‖H1(Ω) = ‖F‖H−1(Ω).

Also, since H1(Ω) is compactly embedded in H−1(Ω), T : H−1(Ω) → H−1(Ω)
is compact. �

Lemma 2.2. The linear map T : H−1(Ω) → H−1(Ω) is self-adjoint with
respect to (·, ·)−1,Ω.

Proof. The proof proceeds with repeated use of definitions of the inner product
in H−1(Ω) and the operator T as follows: for F,G ∈ H−1(Ω),

(T (F ), G)−1,Ω = 〈T (F ), T (G)〉1,Ω = (T (F ), T (G))Ω

= (T (G), T (F ))Ω = 〈T (G), T (F )〉1,Ω
= (T (G), F )−1,Ω = (F, T (G))−1,Ω,

which shows that T is self-adjoint. �
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Lemma 2.3. There exists an orthonormal basis {Ỹn}∞n=0 with respect to
(·, ·)−1,Ω consisting of eigenfunctions of T : H−1(Ω) → H−1(Ω) associated

with eigenvalues ηn := (1 + λn)−1, that is, T (Ỹn) = (1 + λn)−1Ỹn.

Proof. The existence of an orthonormal basis consisting of eigenfunctions Ỹn
of T in H−1(Ω) is established by the Hilbert-Schmidt theorem in the spectral
theory [21] as T is continuous, compact and self-adjoint in H−1(Ω) proved in
Lemma 2.1 and Lemma 2.2.

To show that eigenvalues ηn of T are of the form ηn = (1 +λn)−1, let Ỹn be
an eigenfunction for an eigenvalue ηn. Then it holds that

(T (Ỹn), v)1,Ω = 〈Ỹn, v〉1,Ω for all v ∈ H1(Ω)

by the definition of T . From the fact that T (Ỹn) = ηnỸn ∈ H1(Ω) it follows
that

ηn(Ỹn, v)1,Ω = (Ỹn, v)Ω for all v ∈ H1(Ω).

Now it can be written as (∇Ỹn,∇v)Ω = (η−1
n − 1)(Ỹn, v)Ω for all v ∈ H1(Ω),

which reveals that ηn satisfies λn = η−1
n − 1 for an eigenvalue λn associated for

the Neumann eigenfunction Ỹn. �

Lemma 2.4. Let Yn = (1+λn)−1/2Ỹn. Then {Yn}∞n=0 is a complete orthonor-
mal basis of H0(Ω) with respect to the L2-inner product (·, ·)Ω consisting of
eigenfunctions of T : H0(Ω)→ H0(Ω).

Proof. We first observe that

δm,n = (Ỹm, Ỹn)−1,Ω = 〈Ỹm, T (Ỹn)〉1,Ω
= 〈Ỹm, (1 + λn)−1Ỹn〉1,Ω = (1 + λn)−1(Ỹm, Ỹn)Ω,

from which it follows that Ỹn is orthogonal with respect to the inner product

(·, ·)Ω and ‖Ỹn‖H0(Ω) = (1+λn)1/2. Since Yn is an eigenfunction in H0(Ω) of T
and {Yn}∞n=0 has all eigenfunctions of the continuous, compact and self-adjoint
operator T : H0(Ω) → H0(Ω), {Yn}∞n=0 is a complete orthonormal basis of
H0(Ω). �

Lemma 2.5. Let Ŷn = (1+λn)−1/2Yn. Then {Ŷn}∞n=0 is a complete orthonor-
mal basis of H1(Ω) with respect to the H1-inner product (·, ·)1,Ω consisting of
eigenfunctions of T : H1(Ω)→ H1(Ω).

Proof. It is clear that Ŷn are eigenfunctions of T in H1(Ω). Also, Ŷn are
orthonormal with respect to (·, ·)1,Ω. In fact, by utilizing (6) we are led to

(Ŷm, Ŷn)1,Ω = (T (Ỹm), T (Ỹn))1,Ω = (Ỹm, Ỹn)−1,Ω = δm,n.

For completeness of {Ŷn}∞n=0 in H1(Ω), we choose any u ∈ H1(Ω) and suppose
that

(Ŷn, u)1,Ω = 0 for all n = 0, 1, 2, . . . .
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Then by the definition of T , we have

0 = (Ŷn, u)1,Ω = (1 + λn)(T (Ŷn), u)1,Ω = (1 + λn)〈Ŷn, u〉1,Ω
= (1 + λn)(Ŷn, u)Ω = (1 + λn)1/2(Yn, u)Ω.

Since {Yn}∞n=0 is dense in H0(Ω), it follows that u = 0, which establishes the
completeness of {Yn}∞n=0 in H1(Ω). �

2.3. Fractional Sobolev spaces Ḣs(Ω) of order −1 ≤ s ≤ 1

In this subsection, we study fractional Sobolev spaces Ḣs(Ω) of order −1 ≤
s ≤ 1 characterized by a norm based on series expansions in terms of Neumann
eigenfunctions in H0(Ω). We recall

Ḣs(Ω) = {u =

∞∑
n=0

unYn : ‖u‖Ḣs(Ω) <∞}

with the definition (3) of ‖ · ‖Ḣs(Ω). We note that fractional Sobolev spaces

Ḣs(Ω) of order −1 ≤ s ≤ 2 can be interpreted as interpolation spaces. The
following lemma can be proved as in [5, Appendix B].

Lemma 2.6. The fractional Sobolev space Ḣs(Ω) is interpreted as an interpo-
lation space

Ḣs(Ω) =


[Ḣ1(Ω), Ḣ2(Ω)]s−1 1 < s < 2,

[Ḣ0(Ω), Ḣ1(Ω)]s 0 < s < 1,

[Ḣ−1(Ω), Ḣ0(Ω)]s+1 −1 < s < 0.

The main result of this subsection is that Ḣs(Ω) is identical with the in-
terpolation space Hs(Ω) and the norm (3) coincides with the norm (1) (with
analogous one for −1 < s < 0). We begin by comparing these spaces of order
s = −1, 0, 1. Clearly, every F ∈ H0(Ω) has a series representation in terms
of the orthonormal basis Yn in H0(Ω), F =

∑∞
n=0(F, Yn)ΩYn and the norm in

H0(Ω) is given by Parseval’s identity

‖F‖2H0 =

∞∑
n=0

|(F, Yn)Ω|2 = ‖F‖2Ḣ0(Ω)
,

which means that Ḣ0(Ω) = H0(Ω) with the same norm.

The first lemma is concerned with the identification of Ḣ−1(Ω) with the
Sobolev space H−1(Ω).

Lemma 2.7. It holds that Ḣ−1(Ω) = H−1(Ω). In addition, for F ∈ H−1(Ω),

(8) ‖F‖Ḣ−1(Ω) = ‖F‖H−1(Ω).
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Proof. For F ∈ Ḣ−1(Ω) with F =
∑∞
n=0 FnYn, the relation Yn = (1+λn)−1/2Ỹn

leads to a series expansion of F

(9) F =

∞∑
n=0

(1 + λn)−1/2FnỸn

in terms of the orthonormal basis in H−1(Ω). Since ‖F‖2Ḣ−1(Ω)
=
∑∞
n=0(1 +

λn)−1|Fn|2 <∞, the series (9) converges in H−1(Ω) and hence F ∈ H−1(Ω).

Conversely, since {Ỹn}∞n=0 is a complete orthonormal basis of H−1(Ω), every
F ∈ H−1(Ω) has a series representation

(10) F =

∞∑
n=0

(F, Ỹn)−1,ΩỸn

converging in H−1(Ω) and its norm is evaluated by Parseval’s identity,

(11) ‖F‖2H−1(Ω) =

∞∑
n=0

|(F, Ỹn)−1,Ω|2.

Now, we note that by the definition of the H−1-inner product (·, ·)−1,Ω

(12)

(F, Ỹn)−1,Ω = 〈F, T (Ỹn)〉1,Ω
= 〈F, (1 + λn)−1Ỹn〉1,Ω
= (1 + λn)−1/2〈F, Yn〉1,Ω.

Noting that Ỹn = (1 + λn)1/2Yn, we substitute (12) into (10) and (11) to show
that F =

∑∞
n=0〈F, Yn〉1,ΩYn and

‖F‖2Ḣ−1(Ω)
=

∞∑
n=0

(1 + λn)−1|〈F, Yn〉1,Ω|2 = ‖F‖2H−1(Ω) <∞,

which implies F ∈ Ḣ−1(Ω) and (8). �

The next lemma is the result for H1(Ω) analogous to the preceding lemma.

Lemma 2.8. It holds that Ḣ1(Ω) = H1(Ω). In addition, for F ∈ H1(Ω),

(13) ‖F‖Ḣ1(Ω) = ‖F‖H1(Ω).

Proof. For F ∈ Ḣ1(Ω) with F =
∑∞
n=0 FnYn, the relation Yn = (1 + λn)1/2Ŷn

allows us to have a series expansion of F

(14) F =

∞∑
n=0

(1 + λn)1/2FnŶn

in terms of the orthonormal basis in H1(Ω). Since ‖F‖2Ḣ1(Ω)
=
∑∞
n=0(1 +

λn)|Fn|2 <∞, the series (14) converges in H1(Ω) and hence F ∈ H1(Ω).
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Conversely, since {Ŷn}∞n=0 is a complete orthonormal basis of H1(Ω), every
F ∈ H1(Ω) has a series representation

(15) F =

∞∑
n=0

(F, Ŷn)1,ΩŶn

converging in H1(Ω) and its norm is given by

(16) ‖F‖2H1(Ω) =

∞∑
n=0

|(F, Ŷn)1,Ω|2.

A simple computation by using the definition of T reveals that

(17) (F, Ŷn)1,Ω = (F, (1 + λn)1/2T (Yn))1,Ω = (1 + λn)1/2(F, Yn)Ω.

Since Yn = (1 + λn)1/2Ŷn, substituting (17) into (15) and (16) results in the
eigenfunction expansion F =

∑∞
n=0(F, Yn)ΩYn and

‖F‖2Ḣ1(Ω)
=

∞∑
n=0

(1 + λn)|(F, Yn)Ω|2 = ‖F‖2H1(Ω) <∞,

which shows F ∈ Ḣ1(Ω) and (13). �

Now, we are ready to establish that Ḣs(Ω) = Hs(Ω) and two norms coincide
for −1 ≤ s ≤ 1.

Theorem 2.9. It holds that Ḣs(Ω) = Hs(Ω) for −1 ≤ s ≤ 1. Furthermore,
for u ∈ Hs(Ω),

‖u‖Ḣs(Ω) = ‖u‖Hs(Ω).

Proof. Lemma 2.7 shows that Ḣ−1(Ω) = H−1(Ω) and two norms coincide.

Also Lemma 2.8 gives the same result for Ḣ1(Ω) and H1(Ω). It is obvious

that Ḣ0(Ω) = H0(Ω) and two norms ‖ · ‖Ḣ0(Ω) and ‖ · ‖H0(Ω) are identical.

Consequently, the result for −1 < s < 1 is obtained by the real interpolation
technique [17],

Ḣs(Ω) = [Ḣ−1(Ω), Ḣ0(Ω)]1+s = [H−1(Ω), H0(Ω)]1+s = Hs(Ω)

for −1 < s < 0, and

Ḣs(Ω) = [Ḣ0(Ω), Ḣ1(Ω)]s = [H0(Ω), H1(Ω)]s = Hs(Ω)

for 0 < s < 1. �

2.4. Fractional Sobolev spaces Ḣs(Ω) of order 1 < s ≤ 2

Since Yn has zero Neumann trace on ∂Ω, {Yn}∞n=0 is not dense in H2(Ω). In
order to study the spaces spanned by Yn, we recall the space H2

n(Ω) that is a
closed subspace of functions in H2(Ω) with zero Neumann trace on ∂Ω,

H2
n(Ω) = {u ∈ H2(Ω) : ∂u/∂ν = 0 on ∂Ω},

and Hsn(Ω) = [H1(Ω), H2
n(Ω)]s−1 for 1 < s < 2.
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Remark 2.10. It is shown in [9, 18] that Hsn(Ω) = Hs(Ω) for 1 ≤ s < 3/2,
however, Hsn(Ω) for 3/2 < s ≤ 2 is the subspace of functions in Hs(Ω) with
zero Neumann trace on ∂Ω. Since Hsn(Ω) for 3/2 < s ≤ 2 is closed in Hs(Ω),
two norms ‖·‖Hs

n(Ω) and ‖·‖Hs(Ω) are equivalent to each other. For s = 3/2, the
space Hsn(Ω) is the set of functions u in Hs(Ω) characterized by the condition
ρ(x)−1/2|∇u| ∈ L2(Ω), where ρ(x) is the distance from x to the boundary ∂Ω,

but we remark that H3/2
n (Ω) is not closed in H3/2(Ω) (see also [17]).

Lemma 2.11. It holds that Ḣ2(Ω) = H2
n(Ω) with equivalent norms.

Proof. Noting that for u ∈ H2
n(Ω) and v ∈ H1(Ω),

|〈L(u), v〉1,Ω| = |(∇u,∇v)Ω + (u, v)Ω| = |(−∆u+ u, v)Ω| ≤ C‖u‖H2(Ω)‖v‖H0(Ω)

due to zero Neumann trace of u on ∂Ω, we see that L : H2
n(Ω) → H0(Ω) is

bounded and

(18) ‖L(u)‖H0(Ω) ≤ C‖u‖H2(Ω).

Now, we shall show that ‖L(u)‖H0(Ω) = ‖u‖Ḣ2(Ω), from which together with

(18) it follows that

(19) ‖u‖Ḣ2(Ω) ≤ C‖u‖H2(Ω).

Let u =
∑∞
n=0 unYn ∈ H2

n(Ω) (converging at least in H0(Ω)). Since L(u) is
in H0(Ω), we can find a series expansion of L(u) in terms of the orthonormal
basis {Yn}∞n=0 in H0(Ω). To do this, we observe that due to zero Neumann
trace of Yn on ∂Ω

(L(u), Yn)Ω = (∇u,∇Yn)Ω + (u, Yn)Ω = −(u,∆Yn)Ω + (u, Yn)Ω = (λn + 1)un,

which implies that L(u) =
∑∞
n=0(1 + λn)unYn. Therefore we can obtain the

desired equality

‖L(u)‖H0(Ω) = ‖
∞∑
n=0

(1 + λn)unYn‖H0(Ω) = ‖u‖Ḣ2(Ω).

Conversely, for u ∈ Ḣ2(Ω) having the series expansion, u =
∑∞
n=0 unYn,

satisfying ‖u‖2Ḣ2(Ω)
=
∑∞
n=0(1 + λn)2|un|2 < ∞, we first assert that −∆u =∑∞

n=0 λnunYn. Indeed, let G :=
∑∞
n=0 λnunYn, which is in H0(Ω). Since the

partial sum Um =
∑m
n=0 unYn converges to u in H0(Ω) and −∆Um converges

to G in H0(Ω), it can be shown that −∆u = G. Now the regularity theory for
the Neumann boundary value problem, e.g., [10] shows that

(20) ‖u‖H2(Ω) ≤ C‖ −∆u+ u‖H0(Ω) = C‖u‖Ḣ2(Ω).

As a consequence, two inequalities (19) and (20) establish the equivalence of

two norms and show that two spaces H2
n(Ω) and Ḣ2(Ω) are identical. �

Theorem 2.12. For 1 ≤ s ≤ 2, it holds that Ḣs(Ω) = Hsn(Ω) with equivalent
norms.
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Proof. By Lemma 2.8 and Lemma 2.11, we have Ḣ1(Ω) = H1(Ω) and Ḣ2(Ω) =
H2
n(Ω) with equivalent norms. The real interpolation completes to show that

Ḣs(Ω) = Hsn(Ω) for 1 < s < 2 and their norms are equivalent. �

2.5. Application to a cross-sectional trace estimate in waveguides

Let Ω̂ be a bounded domain in Rd for d = 2 or 3 such that with a bounded
and smooth Ω ⊂ Rd−1 and a constant L > 0,

Ω̂ ∩ {(x, y) ∈ R× Rd−1 : x > −L} = (−L, 0)× Ω

and ∂Ω̂ ∩ {x < 0} is smooth, which is a typical geometry of semi-infinite

waveguides truncated at x = 0. We denote Γ0 := {0} × Ω and Γb := ∂Ω̂ \
Γ̄0 for mutually disjoint parts of the boundary of Ω̂. In this subsection, we
examine a cross-sectional trace estimate of functions whose normal derivative
vanishes on Γb. The cross-sectional trace estimate in terms of the norm based on
eigenfunction expansions is of importance in analyses of acoustic and polarized
electromagnetic wave propagations in waveguides [2,12]. We introduce a trace

operator γ(u) = u|Γ0
for u ∈ Hs(Ω̂) with 1/2 < s ≤ 2.

Theorem 2.13. If u ∈ Hs(Ω̂) for 1/2 < s ≤ 2 satisfies ∂u/∂ν = 0 on Γb,

then γ(u) is in Ḣs−1/2
n (Γ0) and satisfies

(21) ‖γ(u)‖Ḣs−1/2(Γ0) ≤ C‖u‖Hs(Ω̂).

Proof. Since Hs−1/2(Γ0) = Ḣs−1/2(Γ0) for 1/2 < s < 2 as seen in Theorem 2.9,
Remark 2.10 and Theorem 2.12, (21) is a standard trace inequality. So we are
left with only the case of s = 2.

For s = 2, we note that Ḣ3/2(Γ0) = H3/2
n (Γ0) is a strict subspace ofH3/2(Γ0)

with a finer topology. In this case we prove directly the trace inequality by

following the idea as that used in [19]. To do this, let ΩE = Ω̂ ∪ Γ0 ∪ Ω̂∗,

where Ω̂∗ is the domain obtained by reflecting Ω̂ in the y-space and we define

an extension operator E : H2
n(Ω̂)→ H2

n(ΩE) by E(u) = ũ for u ∈ H2
n(Ω̂):

ũ(x, y) =


u(x, y) for (x, y) ∈ Ω̂,

(a1u(−x, y) + a2u(−2x, y))η(x) for (x, y) ∈ Ω̂∗ and 0 < x < L,

0 for (x, y) ∈ Ω̂∗ and x > L,

with a1 + a2 = 1 and −a1 − 2a2 = 1, where η is a smooth cutoff function that
is one near Γ0 and zero for x > L/2. Clearly, the extension ũ is in H2

n(ΩE) and
satisfies ‖ũ‖H2(ΩE) ≤ C‖u‖H2(Ω̂).

Now, we will show that for v ∈ C∞n (ΩE)

(22) ‖γ(v)‖Ḣ3/2(Γ0) ≤ C‖v‖H2(ΩE),
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where C∞n (ΩE) is a subspace of smooth functions u in C∞(ΩE) such that
∂v/∂ν = 0 on ∂ΩE . Once we have it, the desired trace inequality imme-
diately follows from the density of C∞n (ΩE) in H2

n(ΩE) (see Appendix) and

the bounded extension operator E : H2
n(Ω̂) → H2

n(ΩE). To prove (22) let
v ∈ C∞n (ΩE). By using a cutoff function χ of x which is one for |x| < L/2 and
vanishes for |x| > L, we have the zero extension ṽ of χv|(−L,L)×Ω to Ω∞ := R×Ω
such that ‖ṽ‖H2(Ω∞) ≤ C‖v‖H2(ΩE). Also, it has a series representation

ṽ(x, y) =

∞∑
n=0

ṽn(x)Yn(y) =

∞∑
n=0

(∫
R
F(ṽn)(ξ)e−iξxdξ

)
Yn(y)

for (x, y) ∈ R×Ω, where F(ṽn) is a Fourier transform of ṽn. Here we note that
the derivative of ṽ with respect to x can be interchanged with the infinite sum.
Indeed, let ψ(x) = (∂ṽ/∂x(x, ·), Yn)Ω be the n-th Fourier coefficient of ∂ṽ/∂x.
For any φ(x) ∈ C∞0 (R), by integration by parts∫

R
ψ(x)φ(x)dx = −

∫
R

∫
Ω

ṽ(x, y)
dφ

dx
(x)Yn(y)dydx

= −
∫
R
ṽn(x)

dφ

dx
(x)dx =

∫
R

dṽn
dx

(x)φ(x)dx,

which shows that ψ = dṽn/dx and hence

∂ṽ

∂x
(x, y) =

∞∑
n=0

dṽn
dx

(x)Yn(y).

The same argument gives the same result for the second derivative of ṽ with
respect to x,

∂2ṽ

∂x2
(x, y) =

∞∑
n=0

d2ṽn
dx2

(x)Yn(y).

Therefore, by Fubini’s theorem and the monotone convergence theorem to-
gether with Theorems 2.9 and 2.12 we can show that

‖ṽ‖2H2(Ω∞) =

∫
R
‖ṽ(x, ·)‖2H2(Ω) + ‖∂ṽ

∂x
(x, ·)‖2H1(Ω) + ‖∂

2ṽ

∂x2
(x, ·)‖2H0(Ω)dx

=

∫
R

∞∑
n=0

(1 + λn)2|ṽn(x)|2 + (1 + λn)||dṽn
dx

(x)|2 + |d
2ṽn
dx2

(x)|2dx

=

∞∑
n=0

∫
R

(
(1 + λn)2 + (1 + λn)|ξ|2 + |ξ|4

)
|F(ṽn)(ξ)|2dξ(23)

≥ 1

2

∞∑
n=0

∫
R

(1 + λn + |ξ|2)2|F(ṽn)(ξ)|2dξ.

Now, we shall examine the n-th coefficient of γ(v), which is given by

(γ(v))n =

∫
R
F(ṽn)(ξ)dξ
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=

∫
R

(1 + λn + |ξ|2)−1(1 + λn + |ξ|2)F(ṽn)(ξ)dξ.

We apply the Cauchy-Schwarz inequality to show that

|(γ(v))n|2 ≤
∫
R

(1 + λn + |ξ|2)−2dξ

∫
R

(1 + λn + |ξ|2)2|F(ṽn)(ξ)|2dξ.

Since a change of variables leads to∫
R

(1 + λn + |ξ|2)−2dξ =
1

(1 + λn)2

∫
R

(
1 +

(
ξ√

1 + λn

)2
)−2

dξ

= (1 + λn)−3/2

∫
R

(1 + t2)−2dt,

we have that

(1 + λn)3/2|(γ(v))n|2 ≤ C
∫
R

(1 + λn + |ξ|2)2|F(ṽn)(ξ)|2dξ

and hence by (23)

‖γ(v)‖2Ḣ3/2(Γ0)
≤ C

∞∑
n=0

∫
R

(1 + λn + |ξ|2)2|F(ṽn)(ξ)|2dξ

≤ C‖ṽ‖2H2(Ω∞) ≤ C‖v‖
2
H2(ΩE),

which completes the proof. �

3. Fractional Sobolev spaces of vector-valued functions related to
zero tangential component or zero normal component

In this section, for a simply-connected, bounded and smooth domain Ω ⊂ R2,
we study fractional Sobolev spaces of vector-valued functions related to the
boundary condition of zero tangential component or zero normal component in
Ω. To do this, denoting H1(Ω) = (H1(Ω))2, we define

H1
T (Ω) := {u ∈ H1(Ω) : ν · u = 0 on ∂Ω},

H1
N (Ω) := {u ∈ H1(Ω) : ν⊥ · u = 0 on ∂Ω},

where ν⊥ = Rν with R rotation by −90◦. Hereafter we will use boldface to rep-
resent vector-valued functions or operators/spaces of vector-valued functions.
Let H−1

T (Ω) and H−1
N (Ω) be the dual spaces of H1

T (Ω) and H1
N (Ω) with the

pivot space L2(Ω), respectively. Their duality pairings are denoted by 〈·, ·〉1,T,Ω
and 〈·, ·〉1,N,Ω. The operator norms in H1

∗(Ω) are given by

(24) ‖F‖H−1
∗ (Ω) := sup

06=v∈H1
∗(Ω)

|〈F, v〉1,∗,Ω|
‖v‖H1(Ω)

,

where ∗ stands for T or N . We define intermediate spaces by the interpolation

Hs
∗(Ω) :=

{
[L2(Ω), H1

∗(Ω)]s 0 ≤ s ≤ 1,

[H−1
∗ (Ω), L2(Ω)]1+s −1 ≤ s ≤ 0,
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with ∗ = T or ∗ = N . The duality pairing between H−s∗ (Ω) and Hs
∗(Ω) is

denoted by 〈·, ·〉s,∗,Ω. We will characterize the interpolation spaces in terms of a
norm based on series expansions of eigenfunctions with zero normal component
or zero tangential component of the vector Laplacian.

3.1. Eigenvalue problems of the vector Laplacian

Let us consider the eigenvalue problems for the vector Laplacian defined in
Ω ⊂ R2,

(25)
−∇∇ · u +∇⊥∇⊥ · u = ηu in Ω,

ν · u = 0 and ∇⊥ · u = 0 on ∂Ω,

or

(26)
−∇∇ · u +∇⊥∇⊥ · u = ηu in Ω,

ν⊥ · u = 0 and ∇ · u = 0 on ∂Ω,

where ∇⊥· and ∇⊥ are scalar- and vector-curl operators defined by

∇⊥ · u = ∇ ·Ru and ∇⊥u = R∇u,
respectively. The first eigenvalue problem (25) seeks for eigenfunctions with
zero normal component. In contrast, the second eigenvalue problem (26) treats
eigenfunctions with zero tangential component. These two types of eigenfunc-
tions play an essential role in studying a series representation of time-harmonic
electromagnetic fields in perfectly conducting waveguides. In particular, eigen-
functions with zero normal/tangential component are useful to represent cross-
sectional traces of electric/magnetic fields in a series form, respectively [13].

We note that weak solutions to the problem (25) and (26) belong to the
spaces H(curl,Ω)∩H0(div,Ω) and H0(curl,Ω)∩H(div,Ω), respectively. Since
Ω is assumed to be smooth, a regularity theory, e.g., in [8] shows that

H1
T (Ω) = H(curl,Ω) ∩H0(div,Ω) and H1

N (Ω) = H0(curl,Ω) ∩H(div,Ω)

with equivalent norms in the space identities. Thus the spaces H1
T (Ω) and

H1
N (Ω) can be equipped with norm

‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖∇⊥ · u‖2L2(Ω) + ‖∇ · u‖2L2(Ω)

for u ∈ H1
T (Ω) or H1

N (Ω).

3.2. The space Hs
T (Ω) for −1 ≤ s ≤ 1

The eigenvalue problem (25) is reformulated to a weak form in the solution
space H1

T (Ω): finding η ∈ R and u ∈ H1
T (Ω) such that

(27) A(u, v) := (∇·u,∇·v)Ω+(∇⊥·u,∇⊥·v)Ω = η(u, v)Ω for all v ∈ H1
T (Ω).

By the Helmholtz decomposition [8], eigenfunctions u and test functions v in
H1
T (Ω) can be decomposed into

u =∇Y +∇⊥V and v =∇Ψ +∇⊥Φ,
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where V,Φ ∈ H1
0 (Ω) and Y,Ψ ∈ H1(Ω) with ∂Y/∂ν = 0, ∂Ψ/∂ν = 0 on ∂Ω.

Now, noting that the set of Dirichlet eigenfunctions Vn for eigenvalues µn,
n = 1, 2, . . . is dense in H1

0 (Ω) and L2(Ω) as shown in [3], by taking test

functions v =∇⊥Vn, we see that

(−∆V, Vn)Ω = η(V, Vn)Ω

from (27), which implies that V is a Dirichlet eigenfunction and η is a Dirichlet

eigenvalue. In such a case, since A(∇⊥V,∇Ψ) = 0 and (∇⊥V,∇Ψ)Ω = 0 for

all Ψ ∈ H1(Ω), we have A(∇⊥V, v) = η(∇⊥V, v)Ω for all v ∈ H1
T (Ω), which

shows that ∇⊥Vn and µn for n ≥ 1 are eigenpairs of the eigenvalue problem
(27).

On the other hand, at this time we use the fact that the set of Neumann
eigenfunctions Yn for eigenvalues λn, n = 0, 1, . . . is dense in H1(Ω) and L2(Ω)
shown by Lemma 2.5 and Lemma 2.4 and take test functions v = ∇Yn to
obtain that

(−∆Y, Yn)Ω = η(Y, Yn)Ω,

from which it then follows that Y is a Neumann eigenfunction and η is a Neu-
mann eigenvalue except for η = 0. Since A(∇Y,∇⊥Φ) = 0 and (∇Y,∇⊥Φ)Ω =

0 for Φ ∈ H1
0 (Ω), it can be shown that ∇⊥Yn and λn for n ≥ 1 are eigenpairs

of the eigenvalue problem (27). As a conclusion, we have the following propo-
sition.

Proposition 3.1. The complete set of eigenvalues of the problem (26) is given
by {λn}∞n=1 ∪ {µn}∞n=1, the set of non-zero Neumann eigenvalues and Dirich-
let eigenvalues of the Laplacian, and their corresponding eigenfunctions are
{∇Yn}∞n=1 and {∇⊥Vn}∞n=1.

We can develop the same theory as done for the Neumann Laplacian in the
preceding section. We start by defining LT : H1

T (Ω) → H−1
T (Ω) pertaining to

the weak vector Laplacian by

〈LT (u), v〉1,T,Ω = (∇ · u,∇ · v)Ω + (∇⊥ · u,∇⊥ · v)Ω + (u, v)Ω := (u, v)1,Ω

for u, v ∈ H1
T (Ω). For the sake of simplicity, we abuse the notation (·, ·)1,Ω

for the H1(Ω)-inner product of vector-valued functions but it can be clearly
distinguished from the H1(Ω)-inner product of scalar-valued functions from
context. Due to the Lax-Milgram lemma, its inverse operator TT : H−1

T (Ω)→
H1
T (Ω) is also well-defined by

(TT (F), v)1,Ω = 〈F, v〉1,T,Ω for all v ∈ H1
T (Ω)

for F ∈ H−1
T (Ω). By using the inverse operator TT , the inner product (·, ·)−1,T,Ω

in H−1
T (Ω) can be defined as

(F,G)−1,T,Ω := 〈F,TT (G)〉1,T,Ω for F,G ∈ H−1
T (Ω),
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which induces the same norm as the operator norm (24) and makes TT :
H−1
T (Ω)→ H1

T (Ω) an isometry,

(F,G)−1,T,Ω = (TT (F),TT (G))1,Ω for all F,G ∈ H−1
T (Ω).

Then TT : H−1
T (Ω) → H1

T (Ω) ⊂ H−1
T (Ω) and TT : L2(Ω) → H1

T (Ω) ⊂ L2(Ω)

are continuous, compact and self-adjoint operators in H−1
T (Ω) and L2(Ω), re-

spectively. In addition, {(1 + λn)−1, (1 + µn)−1}∞n=1 is the complete set of

eigenvalues of TT for eigenfunctions ∇Yn and ∇⊥Vn. It brings the following
result.

Lemma 3.2. Let Yn be orthonormal Neumann eigenfunctions in L2(Ω) of the
Laplacian for eigenvalues λn and Vn be orthonormal Dirichlet eigenfunctions

in L2(Ω) of the Laplacian for eigenvalues µn. We also denote Y n = λ
−1/2
n ∇Yn

and V ⊥n = µ
−1/2
n ∇⊥Vn for n = 1, 2, . . ..

(1) The set {Y n,V
⊥
n }∞n=1 is a complete orthonormal basis consisting of

eigenfunctions to the problem (25) for L2(Ω).

(2) The set {(1+λn)−1/2Y n, (1+µn)−1/2V ⊥n }∞n=1 is a complete orthonor-
mal basis consisting of eigenfunctions to the problem (25) for H1

T (Ω).

(3) The set {(1+λn)1/2Y n, (1+µn)1/2V ⊥n }∞n=1 is a complete orthonormal
basis consisting of eigenfunctions to the problem (25) for H−1

T (Ω).

Proof. Every assertion in this lemma except for normalization of eigenfunc-
tions can be proved by the same way as in the previous section based on the
spectral theory. Normalization is also easily verified by computing norms of
eigenfunctions,

‖∇Yn‖2L2(Ω) = (∇Yn,∇Yn)Ω = (−∆Yn, Yn)Ω = λn,

‖∇Yn‖2H1(Ω) = (∆Yn,∆Yn)Ω + (∇Yn,∇Yn)Ω = λn(1 + λn),

‖∇Yn‖2H−1
T (Ω)

= ‖TT (∇Yn)‖2H1(Ω) = λn(1 + λn)−1

and the same calculations for Vn with λn replaced by µn. �

Theorem 3.3. The interpolation space Hs
T (Ω), −1 ≤ s ≤ 1, is the space of

functions F =
∑∞
n=1AnYn +BnV

⊥
n satisfying

‖F‖2Hs
T (Ω) :=

∞∑
n=1

(1 + λn)s|An|2 + (1 + µn)s|Bn|2 <∞.

Proof. The case for s = 0 is obvious since Yn and V⊥n form an orthonormal

basis of L2(Ω). For s = −1, let Ỹn = (1+λn)1/2Yn and Ṽ
⊥
n = (1+µn)1/2V⊥n .

Since {Ỹn, Ṽ
⊥
n }∞n=1 is an orthonormal basis of H−1

T (Ω) by Lemma 3.2, any

F ∈ H−1
T (Ω) can be written as

F =

∞∑
n=1

ÃnỸn + B̃nṼ
⊥
n .
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Denoting An = (λn + 1)1/2Ãn and Bn = (µn + 1)1/2B̃n, it can be shown that

F =

∞∑
n=1

AnYn +BnV
⊥
n

and

‖F‖2
H−1

T (Ω)
=

∞∑
n=0

|Ãn|2 + |B̃n|2 =

∞∑
n=0

(λn + 1)−1|An|2 + (µn + 1)−1|Bn|2 <∞.

Similarly, by using the orthonormal basis {(1 + λn)1/2Yn, (1 + µn)1/2V⊥n }∞n=1

of H1
T (Ω) we can derive the result for s = 1, that is H1

T (Ω) is the space of

F =
∑∞
n=1AnYn +BnV

⊥
n satisfying

‖F‖2H1(Ω) =

∞∑
n=1

(1 + λn)|An|2 + (1 + µn)|Bn|2 <∞.

Finally, the other cases for −1 < s < 0 and 0 < s < 1 follow from the real
interpolation. �

3.3. The space Hs
N(Ω) for −1 ≤ s ≤ 1

The eigenvalue problem (26) is reformulated to a weak form in the solution
space H1

N (Ω): finding η ∈ R and u ∈ H1
N (Ω) such that

(28) (∇ · u,∇ · v)Ω + (∇⊥ · u,∇⊥ · v)Ω = η(u, v)Ω for all v ∈ H1
N (Ω).

In this case, we use the Helmholtz decomposition in [4] showing that eigenfunc-
tions u and test functions v in H1

N (Ω) can be decomposed into

u =∇V +∇⊥Y and v =∇Φ +∇⊥Ψ,

where V,Φ ∈ H1
0 (Ω) and Y,Ψ ∈ H1(Ω) with ∂Y/∂ν = 0, ∂Ψ/∂ν = 0 on ∂Ω.

The same arguments as those used for the case of Hs
T (Ω) can be carried over

without any essential change. We summarize the results for Hs
N .

Proposition 3.4. The complete set of eigenvalues of the problem (26) is given
by {λn}∞n=1 ∪ {µn}∞n=1, the set of non-zero Neumann eigenvalues and Dirich-
let eigenvalues of the Laplacian, and their corresponding eigenfunctions are
{∇⊥Yn}∞n=1 and {∇Vn}∞n=1.

Lemma 3.5. Let Yn be orthonormal Neumann eigenfunctions in L2(Ω) of the
Laplacian for eigenvalues λn and Vn be orthonormal Dirichlet eigenfunctions in

L2(Ω) of the Laplacian for eigenvalues µn. We also denote Y ⊥n = λ
−1/2
n ∇⊥Yn

and V n = µ
−1/2
n ∇Vn for n = 1, 2, . . ..

(1) The set {Y ⊥n ,V n}∞n=1 is a complete orthonormal basis consisting of
eigenfunctions to the problem (26) for L2(Ω).

(2) The set {(1+λn)−1/2Y ⊥n , (1+µn)−1/2V n}∞n=1 is a complete orthonor-
mal basis consisting of eigenfunctions to the problem (26) for H1

N (Ω).
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(3) The set {(1+λn)1/2Y ⊥n , (1+µn)1/2V n}∞n=1 is a complete orthonormal
basis consisting of eigenfunctions to the problem (26) for H−1

N (Ω).

Theorem 3.6. The interpolation space Hs
N (Ω), −1 ≤ s ≤ 1, is the space of

functions F =
∑∞
n=1AnY

⊥
n +BnVn satisfying

‖F‖2Hs
N (Ω) :=

∞∑
n=1

(1 + λn)s|An|2 + (1 + µn)s|Bn|2 <∞.

3.4. Application to cross-sectional trace estimates in waveguides

For the domain Ω̂ introduced in Subsection 2.5 with d = 3, we define

Hb(curl, Ω̂) = {u ∈ H(curl, Ω̂) : ν × u = 0 on Γb}.

In this subsection, we will use the convenient norms based on eigenfunction
expansions to analyze the cross-sectional tangential trace and tangential com-

ponent trace of vector-fields u ∈ Hb(curl, Ω̂) on Γ0 (here Γ0 is identified with
Ω). These cross-sectional tangential trace and tangential component trace are
of importance in studying electromagnetic wave propagation in perfectly con-
ducting waveguides [13]. To this end, we first study the regularity estimates
for the divergence and curl operators on the cross-sectional boundary Γ0. Let

divΓ0
: L2(Γ0)→ Ḣ−1(Γ0) and curlΓ0

: L2(Γ0)→ Ḣ−1(Γ0)

be the surface divergence and curl operators in a weak sense defined by

〈divΓ0
φ, ψ〉−1,Γ0

= −(φ,∇yψ)Γ0
,

〈curlΓ0
φ, ψ〉−1,Γ0

= (φ,∇⊥y ψ)Γ0

for φ ∈ L2(Γ0) and ψ ∈ Ḣ1(Γ0). Here the subscript y of the operators ∇y and

∇⊥y is used to indicate that they are differential operators of the variable y on

the surface Γ0 ⊂ R2. Clearly, it holds that

(29) ‖divΓ0φ‖Ḣ−1(Γ0) ≤ ‖φ‖L2(Γ0) and ‖curlΓ0φ‖Ḣ−1(Γ0) ≤ ‖φ‖L2(Γ0).

Now, the surface divergence and curl operators have the following regularity
properties.

Lemma 3.7. For 0 ≤ s ≤ 1, divΓ0
φ for φ ∈ Hs

T (Γ0) is in Ḣs−1(Γ0) and
satisfies

(30) ‖divΓ0φ‖Ḣs−1(Γ0) ≤ ‖φ‖Hs
T (Γ0).

For −1 ≤ s ≤ 0, there exists a continuous extension divΓ0 : Hs
T (Γ0) →

Ḣs−1(Γ0) satisfying

(31) ‖divΓ0
φ‖Ḣs−1(Γ0) ≤ ‖φ‖Hs

T (Γ0),

where Ḣs−1(Γ0) is the dual space of Ḣ1−s(Γ0).
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Proof. Let 0 ≤ s ≤ 1. For φ ∈ H1
T (Γ0) and ψ ∈ Ḣ1(Γ0), by the definition of

divΓ0
and integration by parts with the boundary condition ν · φ = 0 on ∂Γ0

we observe that

〈divΓ0φ, ψ〉1,Γ0 = −(φ,∇yψ)Γ0 = (∇y · φ, ψ)Γ0 = 〈∇y · φ, ψ〉1,Γ0 ,

which shows that divΓ0
φ = ∇y · φ is in Ḣ0(Γ0) and divΓ0

: H1
T (Γ0)→ Ḣ0(Γ0)

is a continuous operator satisfying

(32) ‖divΓ0
φ‖Ḣ0(Γ0) ≤ ‖φ‖H1(Γ0).

The real interpolation theory applied to (29) and (32) establishes (30).

For −1 ≤ s ≤ 0, the operator divΓ0
: L2(Γ0) → Ḣ−1(Γ0) can be extended

to H−1
T (Γ0) by defining divΓ0

: H−1
T (Γ0)→ Ḣ−2(Γ0) by

〈divΓ0
φ, ψ〉2,Γ0

= −〈φ,∇yψ〉1,T,Γ0

for ψ ∈ Ḣ2(Γ0), where Ḣ−2(Γ0) is the dual space of Ḣ2(Γ0) = H2
n(Γ0) and

〈·, ·〉2,Γ0
is the duality pairing between Ḣ−2(Γ0) and Ḣ2(Γ0). For ψ ∈ Ḣ2(Γ0)

with ψ =
∑∞
n=0 ψnYn, since

∑∞
n=1

√
λnψnYn converges in L2(Γ0) it can be

easily shown that

∇yψ =

∞∑
n=1

ψn∇yYn =

∞∑
n=1

√
λnψnYn

and so ‖∇yψ‖2H1(Γ0)
=
∑∞
n=1(1 + λn)λn|ψn| < ‖ψ‖2Ḣ2(Γ0)

. Thus, it is well-

defined since ∇yψ belongs to H1
T (Γ0) for ψ ∈ Ḣ2(Γ0). Also, it is an extension

since

〈divΓ0φ, ψ〉2,Γ0 = −〈φ,∇yψ〉1,T,Γ0 = −(φ,∇yψ)Γ0

for φ ∈ L2(Γ0).
By estimating the duality pairing

|〈divΓ0
φ, ψ〉2,Γ0

| ≤ ‖φ‖H−1
T (Γ0)‖∇yψ‖H1(Γ0) ≤ ‖φ‖H−1

T (Γ0)‖ψ‖Ḣ2(Γ0),

we can obtain that

(33) ‖divΓ0
φ‖Ḣ−2(Γ0) = sup

06=ψ∈Ḣ2(Γ0)

|〈divΓ0
φ, ψ〉2,Γ0

|
‖ψ‖Ḣ2(Γ0)

≤ ‖φ‖H−1
T (Γ0).

Finally, we use the real interpolation theory again to obtain (31) from (29) and
(33). �

The regularity estimate of the operator curlΓ0
can be obtained by using the

same argument as that used in the above lemma.

Lemma 3.8. For 0 ≤ s ≤ 1, curlΓ0
φ for φ ∈ Hs

N (Γ0) is in Ḣs−1(Γ0) and
satisfies

(34) ‖curlΓ0φ‖Ḣs−1(Γ0) ≤ ‖φ‖Hs
N (Γ0).
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For −1 ≤ s ≤ 0, there exists a continuous extension curlΓ0
: Hs

N (Γ0) →
Ḣs−1(Γ0) satisfying

(35) ‖curlΓ0
φ‖Ḣs−1(Γ0) ≤ ‖φ‖Hs

N (Γ0),

where Ḣs−1(Γ0) is the dual space of Ḣ1−s(Γ0).

By using the continuity of the operator divΓ0 proved in Lemma 3.7, for

u =
∑∞
n=1AnYn +BnV

⊥
n ∈ H−1

T (Γ0), we have then

(36) divΓ0
u =

∞∑
n=1

divΓ0
(AnYn +BnV

⊥
n ) =

∞∑
n=1

−
√
λnAnYn,

which converges at least in Ḣ−2(Γ0). Similarly, we use Lemma 3.8 to obtain

that for u =
∑∞
n=1AnY

⊥
n +BnVn ∈ H−1

N (Γ0),

(37) curlΓ0
u =

∞∑
n=1

curlΓ0
(AnY

⊥
n +BnVn) =

∞∑
n=1

√
λnAnYn,

which converges at least in Ḣ−2(Γ0).

For u ∈ Hb(curl, Ω̂) we define γτ (u) = ν × u|Γ0
and πτ (u) = ν × (u× ν)|Γ0

for the tangential trace and tangential component trace of u on Γ0, respectively.
We also define the spaces of three dimensional vector-valued functions

H
−1/2
T (divΓ0

,Γ0) = {φ ∈ H
−1/2
T (Γ0) : divΓ0

φ ∈ H−1/2(Γ0)},

H
−1/2
N (curlΓ0 ,Γ0) = {φ ∈ H

−1/2
N (Γ0) : curlΓ0φ ∈ H−1/2(Γ0)}

via the natural embedding ι : R2 ↪→ {0}×R2 ⊂ R3. The space H
−1/2
T (divΓ0

,Γ0)
for tangential traces can be characterized by the norm estimates analyzed in

Theorem 3.3 and (36): u ∈ H
−1/2
T (divΓ0

,Γ0) if and only if u has a series

representation u =
∑∞
n=1AnYn +BnV

⊥
n satisfying

‖u‖2
H
−1/2
T (divΓ0

,Γ0)
:= ‖u‖2

H
−1/2
T (Γ0)

+ ‖divΓ0u‖2Ḣ−1/2(Γ0)

=
∞∑
n=1

(1 + λn)1/2|An|2 + (1 + µn)−1/2|Bn|2 <∞.

Analogously, due to Theorem 3.6 and (37) the space H
−1/2
N (curlΓ0 ,Γ0) for

tangential component traces can be interpreted as a space equipped with the
norm

‖u‖2
H
−1/2
N (curlΓ0

,Γ0)
:= ‖u‖2

H
−1/2
N (Γ0)

+ ‖curlΓ0
u‖2Ḣ−1/2(Γ0)

=

∞∑
n=1

(1 + λn)1/2|An|2 + (1 + µn)−1/2|Bn|2 <∞

for u =
∑∞
n=1AnY

⊥
n +BnVn.
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In order to investigate regularity estimates and continuity of the trace op-

erators, it is required to study liftings of functions in H
1/2
T (Γ0) and Ḣ3/2(Γ0).

The cylindrical geometry of waveguides allows to define liftings as shown in the
following lemma.

Lemma 3.9. For any φ ∈ H
1/2
T (Γ0) (understood as a vector-valued function in

R3 via the natural embedding ι) there exists φ̃ ∈ H1(Ω̂) = (H1(Ω̂))3 satisfying

φ̃|Γ0
= φ and

‖φ̃‖H1(Ω̂) ≤ C‖φ‖H1/2
T (Γ0)

.

Also, for any φ ∈ Ḣ3/2(Γ0) there exists φ̃ ∈ H2(Ω̂) satisfying φ̃|Γ0
= φ and

‖φ̃‖Hs(Ω̂) ≤ C‖φ‖Ḣs−1/2(Γ0)

for s = 1, 2.

Proof. Let φ ∈ H
1/2
T (Γ0) be given by φ =

∑∞
n=1AnYn + BnV

⊥
n . We denote

a semi-infinite cylindrical domain with base Ω by Ω∞ = (−∞, 0) × Ω. Each
cross-section at x = a of Ω∞ for a < 0 can be identified with Ω. Let us define

ψ(x, y) =

∞∑
n=1

(
Ane

√
1+λnxYn(y) +Bne

√
1+µnxV⊥n (y)

)
in Ω∞.

Fubini’s theorem enables us to estimate ψ in H1(Ω∞) as follows,

(38) ‖ψ‖2H1(Ω∞) =

∫ 0

−∞
‖ψ(x, ·)‖2H1(Ω) + ‖∂ψ

∂x
(x, ·)‖2L2(Ω)dx.

By invoking Theorem 3.3, we obtain that

(39) ‖ψ(x, ·)‖2H1(Ω) =

∞∑
n=0

(1 + λn)|An|2e2
√

1+λnx + (1 + µn)|Bn|2e2
√

1+µnx

for x < 0. For the second term in (38) pertaining to the derivative with respect
to x, let ψm be the partial sum of ψ. Noting that for each x < 0, ζe2ζx is
bounded for all ζ =

√
1 + λn or

√
1 + µn, ∂ψm/∂x(x, ·) converges in L2(Ω) for

each x < 0, that is

lim
m→∞

∂ψm
∂x

(x, ·) =

∞∑
n=1

(1 + λn)1/2Ane
√

1+λnxYn

+ (1 + µn)1/2Bne
√

1+µnxV⊥n ∈ L2(Ω),

which implies that

∂ψ

∂x
(x, ·) =

∞∑
n=1

(1 + λn)1/2Ane
√

1+λnxYn + (1 + µn)1/2Bne
√

1+µnxV⊥n
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and

(40) ‖∂ψ
∂x

(x, ·)‖2L2(Ω) =

∞∑
n=1

(1 + λn)|An|2e2
√

1+λnx + (1 + µn)|Bn|2e2
√

1+µnx.

Now, substitution of (39) and (40) into (38) gives

‖ψ‖2H1(Ω∞) =

∫ 0

−∞

( ∞∑
n=1

2(1 + λn)|An|2e2
√

1+λnx + 2(1+µn)|Bn|2e2
√

1+µnx

)
dx

and the monotone convergence theorem shows that

‖ψ‖2H1(Ω∞) =

∞∑
n=1

(1 + λn)1/2|An|2 + (1 + µn)1/2|Bn|2 = ‖φ‖2
H

1/2
T (Γ0)

.

Finally, by multiplying ψ by a cutoff function χ, which is one for −L/2 < x < 0

and vanishes for x < −L, we have a desired lifting φ̃, the zero extension

of χψ|(−L,0)×Ω to Ω̂, satisfying φ̃|Γ0
= φ and ‖φ̃‖H1(Ω̂) ≤ C‖ψ‖H1(Ω∞) =

C‖φ‖
H

1/2
T (Γ0)

, which completes the first part of the lemma.

The second part can be proved in the same way. In this case we take ψ =∑∞
n=0Ane

√
1+λnxYn(y) for φ =

∑∞
n=0AnYn and define φ̃(x, y) by the zero

extension of χψ|(−L,0)×Ω to Ω̂ with the cutoff function χ defined as above.
Then the similar argument used above can show that

‖φ̃‖2H1(Ω̂)
≤ C‖ψ‖2H1(Ω∞) = C

∫ 0

−∞
‖ψ(x, ·)‖2H1(Ω) + ‖∂ψ

∂x
(x, ·)‖2H0(Ω)dx

= C

∞∑
n=0

(1 + λn)1/2|An|2 = C‖φ‖2Ḣ1/2(Γ0)

and

‖φ̃‖2H2(Ω̂)
≤ C‖ψ‖2H2(Ω∞)

= C

∫ 0

−∞
‖ψ(x, ·)‖2H2(Ω) + ‖∂ψ

∂x
(x, ·)‖2H1(Ω) + ‖∂

2ψ

∂x2
(x, ·)‖2H0(Ω)dx

= C

∞∑
n=0

3

2
(1 + λn)3/2|An|2 ≤ C‖φ‖2Ḣ3/2(Γ0)

,

which completes the proof. �

The main results of the continuity of the tangential trace and tangential
component trace operators will be presented.

Theorem 3.10. The map γτ : Hb(curl, Ω̂)→ H
−1/2
T (divΓ0 ,Γ0) is continuous.

Proof. Let u ∈ Hb(curl, Ω̂). For φ ∈ H
1/2
T (Γ0), we denote by φ̃ the extension

of φ in H1(Ω̂) constructed as in Lemma 3.9. Since ν × u = 0 on Γb, the
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integration by parts gives

(41) (∇× u, φ̃)Ω̂ − (u,∇× φ̃)Ω̂ =

∫
Γ0

γτ (u) · φ dy = 〈γτ (u),φ〉1/2,T,Γ0
.

Therefore, we have

〈γτ (u),φ〉1/2,T,Γ0
≤ C‖u‖H(curl,Ω̂)‖φ̃‖H1(Ω̂) ≤ C‖u‖H(curl,Ω̂)‖φ‖H1/2

T (Γ0)
,

from which it follows that

(42) ‖γτ (u)‖
H
−1/2
T (Ω)

≤ C‖u‖H(curl,Ω̂).

For the estimate of divΓ0(γτ (u)), let φ ∈ Ḣ3/2(Γ0) be expressed by the series

φ =
∑∞
n=0 φnYn and φ̃ be a lifting given by Lemma 3.9. Then it holds that

∇yφ =
∑∞
n=1

√
λnφnYn is in H

1/2
T (Γ0). Therefore, we can show that

(∇× u,∇φ̃)Ω̂ =

∫
Γ0

γτ (u) ·∇yφ dy = 〈γτ (u),∇yφ〉1/2,T,Γ0

and hence

〈divΓ0
(γτ (u)), φ〉3/2,T,Γ0

= −〈γτ (u),∇yφ〉1/2,T,Γ0

≤ C‖u‖H(curl,Ω̂)‖φ̃‖H1(Ω̂)

≤ C‖u‖H(curl,Ω̂)‖φ‖Ḣ1/2(Γ0).

Since Ḣ3/2(Γ0) is dense in Ḣ1/2(Γ0), we can conclude that

(43)
‖divΓ0

(γτ (u))‖Ḣ−1/2(Γ0) = sup
φ∈Ḣ3/2(Γ0)

|〈divΓ0(γτ (u)), φ〉3/2,T,Γ0
|

‖φ‖Ḣ1/2(Γ0)

≤ C‖u‖H(curl,Ω̂).

Finally, combining (42) and (43) completes the proof. �

Theorem 3.11. The map πτ : Hb(curl, Ω̂)→ H
−1/2
N (curlΓ0

,Γ0) is continuous.

Proof. We first note that γτ (u) ∈ H
−1/2
T (Γ0) if and only if πτ (u) ∈ H

−1/2
N (Γ0).

In addition, since

〈divΓ0(γτ (u)), φ〉3/2,Γ0
= −〈γτ (u),∇yφ〉1/2,T,Γ0

= −〈πτ (u),∇⊥y φ〉1/2,N,Γ0
= −〈curlΓ0

(πτ (u)), φ〉3/2,Γ0

for φ ∈ Ḣ3/2(Γ0), we have divΓ0(γτ (u)) = −curlΓ0(πτ (u)). Therefore, the
continuity of the tangential component trace operator πτ follows immediately
from Theorem 3.10. �
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4. Appendix

In this appendix we provide the density of C∞n (ΩE) inH2
n(ΩE) for a bounded

and smooth domain ΩE ⊂ Rd.

Lemma 4.1. The space C∞n (ΩE) is dense in H2
n(ΩE).

Proof. For any u ∈ H2
n(ΩE), let g = u|∂ΩE

be the trace of u on ∂ΩE . Since
C∞(∂ΩE) is dense in H3/2(∂ΩE), there exists a sequence gn ∈ C∞(∂ΩE)
converging to g in H3/2(∂ΩE). Due to the continuous right inverse of a trace
operator, we can find vn ∈ C∞(ΩE) such that vn = gn, ∂vn/∂ν = 0 on
∂ΩE and ‖vn‖H2(ΩE) ≤ C‖gn‖H3/2(∂ΩE) with C independent of gn. Since

{vn}∞n=1 is a Cauchy sequence in H2(ΩE), there exists v ∈ H2(ΩE) such that
vn → v in H2(ΩE). It also satisfies v = g and ∂v/∂ν = 0 on ∂ΩE . Now, as
u − v ∈ H2

0(ΩE), a subspace of functions η in H2(ΩE) such that η = 0 and
∂η/∂ν = 0 on ∂ΩE , the density of C∞0 (ΩE) inH2

0(ΩE) guarantees the existence
of a sequence φn in C∞0 (ΩE) converging to u − v in H2(ΩE). Finally, we can
conclude that φn + vn in C∞n (ΩE) converges to u in H2(ΩE), which completes
the proof. �
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