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A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH

A SMALL PENALTY PARAMETER

Chang-Ock Lee and Eun-Hee Park

Abstract. A dual substructuring method with a penalty term was in-
troduced in the previous works by the authors, which is a variant of the
FETI-DP method. The proposed method imposes the continuity not only
by using Lagrange multipliers but also by adding a penalty term which
consists of a positive penalty parameter η and a measure of the jump
across the interface. Due to the penalty term, the proposed iterative
method has a better convergence property than the standard FETI-DP
method in the sense that the condition number of the resulting dual

problem is bounded by a constant independent of the subdomain size
and the mesh size. In this paper, a further study for a dual iterative
substructuring method with a penalty term is discussed in terms of its
convergence analysis. We provide an improved estimate of the condition
number which shows the relationship between the condition number and
η as well as a close spectral connection of the proposed method with the
FETI-DP method. As a result, a choice of a moderately small penalty
parameter is guaranteed.

1. Introduction

In our previous works [12, 13], a dual iterative substructuring method with
a penalty term was proposed for second order elliptic problems, which is based
on a non-overlapping domain decomposition (DD). For non-overlapping DD
methods as iterative solvers for seeking a finite element approximation of the
weak solution of a concerning model, there are two properties to be considered:
one is the convergence of the DD-based solution to the exact weak solution
and the other is the convergence speed of the resulting iterative algorithm,
which is determined by the condition number of the corresponding problem.
Considering these properties, the key is how to enforce the continuity of fi-
nite element functions across the interface. Various methodologies have been
introduced for handling the continuity constraint across the interface. The
most popular methods, employed for different purposes are the Lagrangian

Received January 26, 2016; Revised July 29, 2016.
2010 Mathematics Subject Classification. 65F10, 65N30, 65N55.
Key words and phrases. augmented Lagrangian, domain decomposition, dual substruc-

turing, FETI-DP, penalty parameter.

c©2017 Korean Mathematical Society

461



462 C.-O. LEE AND E.-H. PARK

method, the method of penalty functions, and the augmented Lagrangian
method (e.g. [2, 4, 5, 6, 7, 11]).

The proposed dual iterative substructuring method is a variant of the dual-
primal finite element tearing and interconnecting (FETI-DP) method [5]. The
FETI-DP method is based on the Lagrangian method, which enforces the con-
tinuity across the interface by introducing Lagrange multipliers. Firstly, it
is well-known that the DD-based solution, the primal finite element solution
of the saddle-point problem in the FETI-DP method converges to the exact
weak solution. Secondly, for the preconditioned FETI-DP with the optimal
Dirichlet preconditioner, it was proved in [10, 14] that the condition number of
the resulting dual problem grows at most as O(1 + ln(H/h))2, where H is the
subdomain size and h is the mesh size.

On the other hand, the proposed method by the authors is based on the
augmented Lagrangian method, which introduces a penalty term in addition to
Lagrange multipliers in order to strengthen the continuity across the interface.
The penalty term consists of a positive penalty parameter η and a measure
of the jump across the interface. Let us look over what effect the choice of
the penalty parameter has on two aforementioned properties for iterative DD
solvers. Firstly, based on the fact that the addition of the penalty term to the
saddle-point problem in the FETI-DP method makes no change in its primal
finite element solution, it was shown in [12] that, for any choice of the penalty
parameter, the finite element solution computed from the proposed method
converges to the exact weak solution. Secondly, the added penalty term plays
a major role in a faster convergence of the resulting iteration than that in the
FETI-DP method.

The previous works in [12, 13] show that, for any fixed η > 0, the condition
number of the dual problem is bounded above by (1 + (C/η))C∗, where C

and C∗ are constants independent of H and h. This estimate suggests us to
choose a sufficiently large η for an optimal case. However the numerical results
in [12, 13] show that there is a relatively small η that can be regarded as an
optimal one in terms of condition number of the dual system. The study in
this paper is motivated by such numerical observations.

This paper is devoted to enhancement of our previous work by a further
study focusing on the case of small penalty parameters in terms of convergence
analysis. We first take a careful look at the relationship between the standard
FETI-DP operator and the proposed dual operator in algebraic form. Based
on this observation, we provide an improved estimate of the condition number
which shows the relationship between the condition number and η as well as a
close spectral connection of the proposed method with the FETI-DP method.
As a result, a choice of a moderately small penalty parameter is guaranteed.

This paper is organized as follows. In Sect. 2, we review a dual iterative
substructuring method with a penalty term. Sect. 3 is devoted to analyzing the
condition number of the resulting dual problem. Finally, we present numerical
results in Sect. 4.
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Throughout the paper, we denote by λA
min and λA

max the minimum eigen-
value and the maximum eigenvalue of a matrix A, respectively. To avoid the
proliferation of constants, throughout the paper we will use A . B and A & B

to represent the statements that A ≤ (constant)B and A ≥ (constant)B, re-
spectively, where the positive constant is independent of the mesh size, the
subdomain size, and the number of subdomains. The statement A ≈ B is
equivalent to A . B and A & B.

2. Dual iterative substructuring with a penalty parameter

In this section, we first review a dual iterative substructuring method with a
penalty term in our previous works. Then, we state how we can enhance these
methods based on a better choice of a penalty parameter.

We consider the following Poisson model problem with the homogeneous
Dirichlet boundary condition

−∆u = f in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω ⊂ Rd, d = 2 or 3, is a bounded polygonal or polyhedral domain and
f is a given function in L2(Ω). Let Th denote a quasi-uniform triangulation on
Ω. We are concerned with a discretized variational problem of (2.1) as follows:

find uh ∈ X̂h such that

(2.2) a(uh, vh) = (f, vh) ∀vh ∈ X̂h,

where

a(uh, vh) =

∫

Ω

∇uh · ∇vh dx, (f, vh) =

∫

Ω

fvh dx.

Here, the finite element space X̂h is composed of the conforming P1 elements
in R2 (Q1 elements in R3).

We start with recalling an iterative solver of (2.2) in [12, 13], which is a
non-overlapping domain decomposition algorithm based on an augmented La-
grangian. We decompose Ω into non-overlapping subdomains {Ωj}Ns

j=1 as open
sets, where the boundary ∂Ωj is aligned with Th and the diameter of Ωj is Hj .
On each subdomain, the triangulation Tj is the triangulation of Ωj inherited
from Th and matching grids are taken on the boundaries of neighboring subdo-
mains across the interface Γ. Here the interface Γ is the union of the common
interfaces among all subdomains, i.e., Γ =

⋃

j<k Γjk, where Γjk denotes the
common interface of two adjacent subdomains Ωj and Ωk.

Based on the non-overlapping subdomain decomposition, a partitioned prob-
lem is obtained as follows:

min
v∈

∏Ns
j=1 X

j

h





1

2

Ns
∑

j=1

∫

Ωj

|∇v|2 dx− (f, v)



(2.3a)

subject to v(j) = v(k) on Γjk for j < k,(2.3b)
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where X
j
h is the restriction of X̂h on a subdomain Ωj and v|Ωj

is denoted by

v(j) for v ∈ ∏Ns

j=1 X
j
h. To make a localized minimization problem recover the

original solution of (2.2), the continuity constraint (2.3b) needs to be satisfied
on the interface Γ in an appropriate manner (e.g. [4, 5, 6, 7]).

We impose the continuity differently at vertices and the remaining interface
nodes except vertices in terms of the choice of finite elements. The continu-
ity at vertices is enforced strongly in a manner that subdomains sharing a
vertex have the common value at the vertex. Let Xc

h denote the subspace of
∏Ns

j=1 X
j
h obtained by enforcing the vertex continuity. On the other hand, ad-

jacent subdomains are allowed to have different values on the interface nodes
except vertices. The continuity on the interface except vertices remains as
a constraint which requires the pointwise matching of finite elements on the
interface. Then, the problem (2.3) is rewritten as a constrained minimization

min
v∈Xc

h





1

2

Ns
∑

j=1

∫

Ωj

|∇v|2 dx− (f, v)



 subject to Bv = 0,

where B is a signed Boolean matrix which plays a role in making values defined
individually on the interface pointwise-matched.

The FETI-DP method, one of the most advanced non-overlapping DD al-
gorithms, enforces the pointwise matching constraints weakly by introducing
Lagrange multipliers, that is, the FETI-DP method starts with the saddle-point
problem

(2.4) L(uh, λh) = max
µh∈RM

min
vh∈Xc

h

L(vh, µh),

where a Lagrangian functional L is defined on Xc
h × RM as

L(v, µ) = 1

2

Ns
∑

j=1

∫

Ωj

|∇v|2 dx− (f, v) + 〈Bv, µ〉.

Here, M represents the number of constraints used for imposing the pointwise
matching on the interface and 〈·, ·〉 is the Euclidean inner product in RM .

In the convergence studies [10, 14] for the FETI-DP method where the coarse
problem is related to vertex continuity constraint at the subdomain corners,
it is well-known that the condition number of the resulting dual problem from
(2.4) grows asymptotically as O(1 + ln(H/h))2 in two dimensions (2D) and
O((H/h)(1 + ln(H/h))2) in three dimensions (3D) if it is accompanied by the
Dirichlet preconditioner. In addition, a stronger coupling across the interface
results in a better scalability in 3D in the sense that the condition number is
estimated as O(1 + ln(H/h))2, where the extra degrees of freedom in a coarse
problem are introduced in terms of the average continuity constraints over edges
and/or faces in addition to the vertex continuity constraint. In a similar view,
the authors [12, 13] introduced a stronger coupling than the continuity at the
subdomain corners by the addition of a penalty term. The added penalty term
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results in enhancing the convergence to the extent of the constant condition
number bound independent of both the subdomain size H and the mesh size h.

A penalty term ηJ is considered, which consists of a positive penalty param-
eter η and a measure of the jump on the interface. The addition of a penalty
term ηJ to the Lagrangian L yields a saddle-point problem for an augmented
Lagrangian functional Lη such as

(2.5) Lη(uh, λh) = max
µh∈RM

min
vh∈Xc

h

Lη(vh, µh),

where

Lη(v, µ) = L(v, µ) + 1

2
ηJ (v, v).

In two dimensions, the penalty term J is a bilinear form on Xc
h×Xc

h defined
as

J (u, v) =
1

h

∑

j<k

∫

Γjk

(u(j) − u(k))(v(j) − v(k)) ds,

where h = maxj=1,...,Ns
hj with the mesh size hj of Tj . For three dimensional

problems, in order to increase its practical efficiency, a modified penalty term
was proposed in [13] by considering the interface except vertices as a union of
two separate objects, faces and edges:

J (u, v) = JF(u, v) + JE(u, v),

where

JF (u, v) =
1

h

∑

j<k

∫

Fjk

(u
(j)
Fjk

− u
(k)
Fjk

)(v
(j)
Fjk

− v
(k)
Fjk

) dx

and

JE(u, v) =
∑

El

∑

(m,n)∈IEl

∫

El

(u(m) − u(n))(v(m) − v(n)) ds.

Here, Fjk denotes the common face of Ωj and Ωk, El an edge shared by neigh-
boring subdomains where l is an index of an edge, and IEl

the set of indices of

subdomain pairs which share an edge El. In the face part JF , u
(j)
Fjk

is a part of

u, which is related to the contribution to u(j) on Fjk only from the face nodal
basis functions except the edge nodal basis functions.

The problem (2.5) is expressed in the algebraic form

(2.6)

[

Aη BT

B 0

] [

u

λ

]

=

[

f

0

]

,

where

(2.7) Aη = A+

[

0 0
0 ηJ

]

with A =

[

AΠΠ AΠ∆

AT
Π∆ A∆∆

]

,

(2.8) BT =

[

0
BT

∆

]

, u =

[

uΠ

u∆

]

, f =

[

fΠ
f∆

]

, uΠ =

[

uI

uc

]

.
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Here λ indicates the Lagrange multipliers introduced for imposing the conti-
nuity constraint across the interface, Π the degrees of freedom associated with
both the interior nodes (I) and the subdomain corners (c), and ∆ the remaining
part of the degrees of freedom on the interface: those related to the edge nodes
in 2D and those associated with the face nodes and the edge nodes in 3D. The
matrix J results from the penalty term J , which is written as

(2.9) J = BT
∆DMB∆,

where a block diagonal matrix DM will be detailed in Sect. 3. Eliminating uΠ

and u∆ successively, we have a dual system

(2.10) Fηλ = dη,

where

Fη = B∆S
−1
η BT

∆, dη = B∆S
−1
η (f∆ −AT

Π∆A
−1
ΠΠfΠ)

with

(2.11) Sη = S + ηJ = (A∆∆ −AT
Π∆A

−1
ΠΠAΠ∆) + ηJ.

For the proposed dual iterative substructuring method which results in the
dual problem (2.10), we are concerned with two key properties: one is the
convergence of the primal solution uh of the saddle-point problem (2.5) from
which (2.10) is originated, to the exact weak solution of (2.1) and the other is
the condition number of Fη which determines the convergence rate of iterations
on (2.10). In this context, we now discuss the choice of a penalty parameter in
the proposed dual iterative substructuring method.

Let us first look over what effect the choice of the penalty parameter has on
the convergence of the finite element solution to the weak solution of (2.1). In
finite element formulations based on penalty methods for (2.3) (cf. [1, 4, 15]),
the choice of a sufficiently large penalty parameter is required for the stability of
a concerning finite element formulation, which is necessary for the convergence
of the finite element solution to the exact weak solution of (2.1). On the other
hand, the penalty parameter η plays a different role in the saddle-point formu-
lation (2.5) based on an augmented Lagrangian functional because Lagrange
multipliers as well as a penalty term are introduced to enforce the continuity
across the interface. More precisely, such a role difference was confirmed in [12]
by the fact that the primal solution uh of the saddle-point problem (2.5) is ex-
actly equal to the finite element solution of (2.2) regardless of the choice of
η. Hence there is no need to consider a right choice of η in the aspect of the
convergence of a finite element solution to the solution of (2.1).

Let us next discuss the choice of the penalty parameter in terms of the
condition number of Fη. The convergence study in [12, 13] shows that the dual
system (2.10) has a constant condition number bound independent of H and h

where a sufficiently large penalty parameter is taken. On the contrary, we have
observed through numerical results that there might be an estimated parameter
η∗ < 10 with which the proposed dual iterative algorithm is almost optimal in
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terms of its condition number. Based on such observation, we shall focus on
the case of small penalty parameters throughout the following sections.

3. Estimate of condition number

In this section, we find the relationship between the standard FETI-DP
operator and the proposed dual operator in algebraic form. Based on the rela-
tionship, we carry out convergence analysis in terms of the condition number
of the dual system Fη. As results, it is confirmed why a fast convergence of the
iteration is attained even if a moderately small η is taken.

Let us denote by D(A) a block diagonal matrix such that

D(A) =







A

. . .

A






.

In 2D, the matrix J = BT
∆DMB∆ in (2.9) is detailed as

(3.1) J = BT
∆D

( 1

h
Me

)

B∆,

where B∆ is in a block form as

B∆ = [Be1 , . . . , BeNE
]

for a block Bel related to subdomains sharing an edge El and Me is the one-
dimensional mass matrix on each edge. In 3D, the pointwise matching operator
B∆ is divided into two parts related to face nodes and edge nodes

B∆ =

[

B∆,f 0
0 B∆,e

]

,

where B∆,f is in a block form as

B∆,f = [Bf1 , . . . , BfNF
]

for a block Bfl related to subdomains sharing a face Fl and B∆,e is defined in
a similar manner to B∆ in 2D. Then, the matrix J is expressed in the form

(3.2) J =

[

BT
∆,f 0

0 BT
∆,e

]

[

D
(

1
h
Mf

)

0

0 D(Me)

]

[

B∆,f 0
0 B∆,e

]

,

where Mf stands for the 2D mass matrix on each face.
We have the following condition number estimate of the concerned dual

system based on a key relationship between two matrices Fη and F , where F

is the standard FETI-DP operator as F = B∆S
−1BT

∆.

Theorem 1. For any η > 0, we have

κ(Fη) ≤
CF,DM

η + CF,DM

κ(F ) +
η

η + CF,DM

κ(DM ),

where CF,DM
= (λF

maxλ
DM

min )
−1.
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Proof. For matrices A and B, we first note an inverse property in [8] as follows

(3.3) (A+B)−1 = A−1 −A−1B(A+B)−1.

Using (2.11) and (3.3), we have that

Fη − F = B∆(S
−1
η − S−1)BT

∆

= B∆(−S−1ηJS−1
η )BT

∆

= −ηFDMFη.

The last equality is obtained by (2.9). Thus, the proposed dual operator Fη is
associated with the standard FETI-DP operator F as

F−1
η = F−1(I + ηFDM )

= F−1 + ηDM .
(3.4)

Let λFη be an arbitrary eigenvalue of Fη. Since Fη is invertible, (λFη )−1 is
also an eigenvalue of F−1

η . Then from the fact that Fη is symmetric positive
definite (cf. [12, 13]), it follows that

κ(Fη) =
(λ

Fη

min)
−1

(λ
Fη

max)−1
=

λ
F−1

η
max

λ
F

−1
η

min

= κ(F−1
η ).

Consequently, (3.4) yields

κ(Fη) = κ(F−1
η )

≤ (λF
min)

−1 + ηλDM
max

(λF
max)

−1 + ηλDM

min

=
CF,DM

η + CF,DM

κ(F ) +
η

η + CF,DM

κ(DM ),(3.5)

where CF,DM
= (λF

maxλ
DM

min )
−1. �

Remark 1. Theorem 1 shows the relationship between κ(Fη) and η as well as the
connection of κ(Fη) with κ(F ). In particular, κ(Fη) becomes close to κ(F ) as
η decreases to zero, while the convergence studies in the previous works [12, 13]
rule out the case with decreasing η to 0. In addition, it follows from (3.5) that

(3.6) κ(Fη) ≤ κ(DM ) +
CF,DM

(κ(F )− κ(DM ))

η + CF,DM

,

which implies that the result shown in Figure 1 in [12] is in agreement with
(3.6) when κ(F ) > κ(DM ).

To derive a more precise estimate of κ(Fη) from (3.6), we will find bounds
of the extreme eigenvalues of matrices F and DM . First, keeping in mind that
DM is a block diagonal matrix whose main diagonal blocks are mass matrices
on edges or faces as shown in (3.1) and (3.2), we get the following estimate for
the extreme eigenvalues of DM by a scaling argument (cf. Lemma B.31 in [16]).
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Proposition 2. For the matrix DM , we have that

λDM

min & hd−2, λDM

max . hd−2 for d = 2, 3.

Next, the following proposition is obtained by using the specific type of
Poincaré inequality in Lemma 5.1 of [3] and the trace theorem in H1/2(∂Ωj)-
norm (cf. Lemma 4.6 of [16]).

Proposition 3. For any vj ∈ X
j
h such that vj = 0 at vertices of a subdomain

Ωj ⊂ Rd, we have

|vj |2H1(Ωj)
&











(

Hj

(

1 + ln
Hj

hj

))−1

‖vj‖2L2(∂Ωj)
for d = 2

(

Hj

(

1 +
Hj

hj

))−1

‖vj‖2L2(∂Ωj)
for d = 3.

Next, we are concerned with the Schur complement matrix S to estimate
the extreme eigenvalues of F .

Lemma 4. For S = A∆∆ −AT
Π∆A

−1
ΠΠAΠ∆, we have

Cv
T
∆v∆ . v

T
∆Sv∆ . Cv

T
∆v∆,

where

C =











minj=1,...,Ns

(

Hj

hj

(

1 + ln
Hj

hj

))−1

for d = 2

minj=1,...,Ns

(

Hj

h2
j

(

1 +
Hj

hj

))−1

for d = 3

and

C = hd−2 for d = 2, 3.

Proof. Let us denote by ã(·, ·) the localized bilinear form defined as

ã(u, v) =

Ns
∑

j=1

∫

Ωj

∇u · ∇v dx, ∀(u, v) ∈ Xc
h ×Xc

h.

For an arbitrary v ∈ Xc
h, we can write by three functions in Xc

h as

v = vI + vc + v∆,

where vI vanishes at all the nodes except for the interior nodes to subdomains,
and similarly vc and v∆ are defined in terms of the subdomain corners and the
remaining nodes on the interface, respectively. Let us express v in a vector
form as

v = [vI ,vc,v∆]
T .

First, it is noted that for any v∆,

v
T
∆Sv∆ = min

{

w
TAw : w∆ = v∆, ∀w = [wI ,wc,w∆]

T
}

≤ min
{

w
TAw : w∆ = v∆, ∀w = [wI ,0,w∆]

T
}

=

Ns
∑

j=1

∫

Ωj

|∇Hjv∆|2 dx,
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where Hjv∆ is the discrete harmonic extension of v∆|∂Ωj
into Ωj .

We now consider a lower bound. For vΠ = [vI ,vc]
T satisfying

AΠΠvΠ +AΠ∆v∆ = 0,

we have

(3.7) v
T
∆Sv∆ = ã(vI + v∆, vI + v∆) + 2ã(vI + v∆, vc) + ã(vc, vc).

By deriving a strengthened Cauchy-Schwarz inequality in a similar way to
Lemma 4.3 in [13], it is shown that there exist a constant γ such that

(3.8) 2ã(vI + v∆, vc) ≥ −γ(ã(vI + v∆, vI + v∆) + ã(vc, vc)),

where 0 < γ < 1 is independent of H and h. Combination of (3.7) and (3.8)
gives

v
T
∆Sv∆ ≥ (1− γ)ã(vI + v∆, vI + v∆) + (1− γ)ã(vc, vc)

≥ (1− γ)ã(vI + v∆, vI + v∆)

= (1− γ)

Ns
∑

j=1

∫

Ωj

|∇vj |2 dx,

where vj = (vI+v∆)|Ωj
vanishes at subdomain vertices. Then, the lower bound

is completed by Proposition 3 and the following property

(3.9) ‖v∆|Ωj
‖2L2(∂Ωj)

≈ hd−1
j v

T
∆j

v∆j
,

where v∆j
is the vector of coefficients of the finite element function v∆|Ωj

in

X
j
h.

We next estimate an upper bound by using the H1−H1/2 norms relationship
for the discrete harmonic extension (Lemma 4.10 in [16]), the inverse inequality,
and (3.9). As a result, we have that

v
T
∆Sv∆ ≤

Ns
∑

j=1

∫

Ωj

|∇Hjv∆|2 dx

.

Ns
∑

j=1

|v∆|Ωj
|2H1/2(∂Ωj)

.

Ns
∑

j=1

h−1
j ‖v∆|Ωj

‖2L2(∂Ωj)

. hd−2
v
T
∆v∆. �

Lemma 5. For F = B∆S
−1BT

∆, we have

C
−1〈λ, λ〉 . 〈Fλ, λ〉 . C−1〈λ, λ〉 ∀ λ ∈ RM ,

where the constants C and C are given in Lemma 4.
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Proof. Let B denote B∆B
T
∆. Based on the fact that F = B∆S

−1BT
∆, it follows

from Lemma 4 that for any λ ∈ RM ,

λS−1

min λ
B
min〈λ, λ〉 ≤ 〈Fλ, λ〉 ≤ λS−1

maxλ
B
max〈λ, λ〉,

that is,

C
−1

λB
min〈λ, λ〉 ≤ 〈Fλ, λ〉 ≤ C−1λB

max〈λ, λ〉.
Hence, it is sufficient to estimate the extreme eigenvalues of B. In 2D, noting

that B = B∆B
T
∆ = 2I, it is obvious that λB

min = λB
max = 2. Similarly, B∆,f

in 3D satisfies the same relationship, that is, B∆,fB
T
∆,f = 2I. To estimate the

extreme eigenvalues of B∆,eB
T
∆,e, we take a close look at the structure of B∆,e.

Recall that B∆,e is in a block form as

B∆,e = [Be1 , . . . , BeNE
],

where Bel is a block related to subdomains sharing an edge El. Thus, we have

λB
min = min{λB1

min, . . . , λ
BNE

min , 2}, λB
max = max{λB1

max, . . . , λ
BNE
max , 2},

where Bl = BelB
T
el
. Assuming that an edge El is shared by Nel subdomains,

the Bl is an (Nel − 1)× (Nel − 1) block matrix in the form



















2I −I 0 · · · 0

−I 2I −I
. . .

...

0
. . .

. . .
. . . 0

...
. . . −I 2I −I

0 · · · 0 −I 2I



















.

Then, it is clear that λB
max < 4. On the other hand, using the well-known

property of eigenvalues of tridiagonal Toeplitz matrix in [9], we have

λBl

min = 2− 2 cos

(

π

Nel

)

∀ l = 1, . . . , NE .

Moreover, due to the shape-regularity of a partition {Ωj}j of Ω, there exists a
constant Nmax such that

(3.10) Nel ≤ Nmax ∀ l = 1, . . . , NE

so that

λB
min = 2− 2 cos

(

π

Nmax

)

.

Consequently, the proof is completed by the fact that extreme eigenvalues of
B∆B

T
∆ have constant bounds independent of H and h. �
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Remark 2. Proposition 2 implies that

κ(DM ) . 1 in Rd(d = 2, 3).

On the other hand, it follows from Lemmas 4 and 5 that

κ(F ) .







maxj=1,...,Ns

(

Hj

hj

(

1 + ln
Hj

hj

))

in R2

maxj=1,...,Ns

(

Hj

hj

(

1 +
Hj

hj

))

in R3.

Then it is noted that either κ(F ) ≤ κ(DM ) or κ(F ) > κ(DM ) holds according
to the size of H/h. In the case of small H/h such that

κ(F ) ≤ κ(DM ),

it follows from Theorem 1 that, for any η > 0,

(3.11) κ(Fη) ≤ κ(DM ) . 1.

In the case of large H/h such that

κ(F ) > κ(DM ),

see the following theorem.

Using the estimated extreme eigenvalues of DM and F , we can characterize
bounds of the condition number of the concerned dual system as follows.

Theorem 6. For any H/h such that

κ(F ) > κ(DM ),

there is a constant Copt independent of H and h such that

κ(Fη) < κ(DM ) + Copt for any η ≥ Copt.

Proof. Let us denote by F(η) the upper bound of κ(Fη) in (3.6):

F(η) = κ(DM ) +
CF,DM

(κ(F )− κ(DM ))

η + CF,DM

.

For any H/h such that κ(F ) > κ(DM ), we have that

(i) F(η) is a strictly decreasing function over (−CF,DM
,∞),

(ii) for η∗ = −CF,DM
+
√

CF,DM
(κ(F )− κ(DM )),

F(η∗) = κ(DM ) +
√

CF,DM
(κ(F )− κ(DM )).

Since CF,DM
=

(

λF
maxλ

DM

min

)−1

, we have

CF,DM
κ(F ) =

(

λF
minλ

DM

min

)−1

.

Proposition 2 and Lemma 5 imply that there are constants C1 and C2 inde-
pendent of H and h such that

(3.12) λF
min ≥ C1h

2−d, λDM

min ≥ C2h
d−2.
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Then using (3.12), we have that

CF,DM
(κ(F )− κ(DM )) < CF,DM

κ(F ) =
1

λDM

minλ
F
min

≤ 1

C1C2

which implies that there exists a constant Copt independent of H and h such
that

(3.13)
√

CF,DM
(κ(F )− κ(DM )) < Copt.

Then combining (3.13) with (i) and (ii), we have that

η∗ < Copt,

F(Copt) < F(η∗) < κ(DM ) + Copt.

Therefore, for any η > Copt, it holds that

κ(Fη) < κ(DM ) + Copt. �

Remark 3. For the case of uniform triangulations in 2D, the constants C1 and
C2 in (3.12) can be estimated as

C1 =
1

3
, C2 = 2

and then Copt can be chosen to be
√

3
2 ≈ 1.2247.

Remark 4. The subdomain problem for a large η is ill-conditioned with respect
to η, which requires an extra inner preconditioner (cf. [12, 13]). On the other
hand, a choice of moderately small η is guaranteed due to Theorem 6 so that
the resultant dual problem can be solved without such preconditioners.

4. Numerical results

In this section, computational results are presented, which verify the theo-
retical bounds estimated in previous sections. We consider the model problem
with the exact solution

u(x, y) =

{

y(1− y) sin(πx) in 2D
sin(πx) sin(πy)z(1− z) in 3D

as follows

−∆u = f in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1)d, d = 2, 3.
Let us point out that the dual problem in (2.6) is formulated for the condition

number estimate. The problem (2.6) is reformulated for the implementation as
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follows. By rearranging u in (2.8) in order u = [ur,uc]
T where uI and u∆ are

assembled into ur, (2.6) is represented as

(4.1)





Arr,η Arc BT
r

AT
rc Acc 0

Br 0 0









ur

uc

λ



 =





fr

f c

0



 ,

where

(4.2) Arr,η = Arr +

[

0 0
0 ηJ

]

with

[

AII AI∆

AT
I∆ A∆∆

]

and
Br =

[

0 B∆

]

.

Then by eliminating ur and uc in order in (4.1), we get that

(4.3) Fηλ = dη,

where

(4.4) Fη = Frr + FrcF
−1
cc FT

rc, dη = dr − FrcF
−1
cc dc,

Frr = Br(Arr,η)
−1BT

r , Frc = Br(Arr,η)
−1Arc, Fcc = Acc −AT

rc(Arr,η)
−1Arc,

and
dr = BT

r (Arr,η)
−1

fr, dc = f c −AT
rc(Arr,η)

−1
fr.

Remark 5. The dual operator (4.4) is different from that of the FETI-DP
algorithm in types of subdomain problems. The proposed method needs to
solve the coupled subdomain problems Arr,η due to the penalty term while the
FETI-DP method solves Arr as the localized subdomain problems. In addition,
let us point out that the condition number of Arr,η grows as O((H

h
)d), not

O(h−d). In [13], the computational costs of the proposed method and the
FETI-DP method are compared in terms of operation counts by considering
differences in both their condition numbers and types of subdomain problems.

We solve the dual problem in (4.3) by the conjugate gradient method (CGM)
with a constant initial guess (λ0 ≡ 1). The stop criterion is the relative reduc-
tion of the initial residual by a chosen TOL

‖rk‖2
‖r0‖2

≤ TOL,

where rk is the dual residual error on the kth CG iteration and TOL = 10−8.
The coupled subdomain problems Arr,η as part of the dual problem is also
solved by CGM. Let us recall that subdomain problems need to be solved
exactly. This means that the CG iteration for subdomain problems should be
solved up to the level of finite element discretization error. In this view, the CG
iteration is stopped when the relative primal residual error is less than 10−13.
Through numerical tests, Ω in 2D is decomposed into Ns square subdomains
with Ns = 1/H × 1/H . Each subdomain is partitioned into 2 × H/h × H/h

uniform triangular elements. In 3D, Ω is decomposed into Ns cubic subdomains
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Table 1. Condition number of Fη for a small η where Ns =
4× 4 in 2D

η
H
h
= 4 H

h
= 8 H

h
= 16 H

h
= 32

κ(Fη) iter. # κ(Fη) iter. # κ(Fη) iter. # κ(Fη) iter. #

0 7.2033 14 2.2901e+1 23 5.9558e+1 33 1.4707e+2 48

0.2 3.7811 12 5.6829 15 6.4744 18 6.7436 19
0.4 2.6637 10 3.3617 13 3.5166 13 3.6410 14
0.6 2.0733 9 2.3969 10 2.5127 11 2.5753 12
0.8 1.6990 8 1.9367 9 1.9974 10 2.0247 10
1 1.5030 7 1.6468 8 1.6801 9 1.6957 9
2 1.1304 5 1.1067 5 1.1053 5 1.1050 5
4 1.3353 6 1.4469 7 1.4625 8 1.4477 8
6 1.5050 7 1.7008 9 1.7470 9 1.7378 9
8 1.6130 7 1.8691 9 1.9404 10 1.9387 10
10 1.6875 7 1.9945 10 2.0799 11 2.0868 11

106 2.0938 3 2.7170 7 2.9243 13 2.9771 14

with Ns = 1/H × 1/H × 1/H while each subdomain is partitioned into H/h×
H/h×H/h uniform cubic elements.

In Table 1 for the two-dimensional problem, the condition numbers of the
dual system are presented in the cases with η in [0, 10]. In addition, for com-
parison with the case of a larger η, the result for η = 106 is presented. For
each η > 0, the condition number κ(Fη) is bounded by a constant even if H/h

increases. In Table 1, any penalty parameter chosen in (1/2, 10) improves the
condition number regardless of the increase of H/h. In addition, the condition
numbers for the case with η ∈ (1/2, 10) are less than that for the case with a
large η. According to the condition number and the iteration count, η = 2 is
regarded as an optimal one. Table 2 for 3D shows similar results to 2D; η = 1
seems to be optimal as H/h increases.

5. Concluding remarks

In this paper we analyzed a dual iterative substructuring method with a
penalty term in terms of condition number. Compared with the standard
FETI-DP method for the Poisson model, the proposed method has the unique
feature that (i) the condition number of the resultant dual problem is bounded
by a constant independent of the mesh size and the subdomain size without any
preconditioner and (ii) in both 2D and 3D problems, only the vertex continuity
is introduced at the primal constraint associated with the coarse problem. As
future works, we consider the extension of our result to the elliptic problems
with variable coefficients and/or discontinuous coefficients.
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Table 2. Condition number of Fη for a small η where Ns =
4× 4× 4 in 3D

η
H
h
= 4 H

h
= 8 H

h
= 16 H

h
= 32

κ(Fη) iter. # κ(Fη) iter. # κ(Fη) iter. # κ(Fη) iter. #

0 8.1805e+1 73 3.0183e+2 107 1.1892e+3 153 4.6946e+3 218
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6 3.8905 15 5.4275 17 5.9726 19 6.1152 20
8 4.0564 15 5.7842 18 6.4011 20 6.5659 21
10 4.1740 15 6.0390 19 6.7099 21 6.8890 21

106 4.8585 7 7.5658 14 8.5609 16 8.8699 18
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