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H'(Q)-NORM ERROR ANALYSIS UNDER
NUMERICAL QUADRATURE RULES BY THE
P-VERSION OF THE FINITE ELEMENT METHOD

IK-SuNnG KiM, CHANG-GEUN KIM AND MAN-SUK SONG

1. Introduction

Let € be a closed and bounded polygonal domain in R?, or a closed
line segment in R! with boundary T, such that there exists an invertible
mapping T : Q@ — Q with the following correspondence:

(1.1) .”II\EQ(——%.’L‘=T(C’ZJ\)EQ,

and

(1.2) TeUyQ) —t=To T € U,(Q),

where { denotes the corresponding reference elements I= [~1,1] and

IxTin R! and R? respectively,

(13)  Up(Q) R
= {t : t is a polynomial of degree < p in each variable on  },
and

(14)  Up(Q) = {t:T=toTecUy(Q)}.

We consider the following model problem of elliptic equations:
Find u € H}(Q), such that

(1.5) —div(aVu) +bu=f i C R?
d du . 1
(1.6) - E(aa) +bu=f in QCR,
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where the functions a,b and f satisfy a compatibility condition to en-
sure a solution exists, and

(1.7 H'(Q) = {ue H™(Q) : uvanishes onT}.

For sake of simplicity, we assume that

(1.8) 0< A; <a(z)<A; forall z€Q,
(1.9) 0<bz)< B, forall z €92,
and

(1.10) f € La(Q).

In addition, we also assume that there exists a constant M > 1 such
that

(111) |7 1T oq <A for 0<j<M,

j,oo,ﬁ’ Jyo0, 2 =

(1.12) [Tl 08 1 Hljop <A for 0<j<M-—1,

where J and J~! denote the Jacobians of T and T~! respectively.

Then, as seen in theorem 4.3.2 of [1], we obtain the following correspon-
dence: For any a € [1,00], 0< 8 < M,

(113) TeWs () —t=FoT ! e Wi(Q)
with norm equivalence
114)  Gilltligan < Wlgaa < Colltlsae:
Here, using the p-version of the finite element method without subdi-
viding 2 we derive the following discrete variational form of (1.5)-(1.6):

Find u, € S;,0(2) satisfying

(1.15) B(up,vp) = (f, vp)g forall w, € Sp,0(2),

where
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(1.16) B(u,v)z/ aVu-Vvda:—i—/ buv dz,
Q Q

(1.17) (f,v)q =/vada:,

and

(118) Spo(@) = Uy(Q) N ().

In {4] and [5], M. Suri obtained an estimate
(1.19) flu—upll, o < C'p'("‘l)HuHr’Q forall uwe Hj(Q),r>1.

But, its optimal result follows under the assumption that T is a suffi-
ciently smooth mapping and all integrations in (1.15) are performed ex-
actly. In practice, the integrals in (1.15) are seldom computed exactly. In
this paper,when some numerical quadrature rules are used for calculating
the integrations in the stiffness matrix and the load vector of (1.15) we
give its variational form and derive an estimate of [lu — ||, o where U,
is an approximation satisfying (2.5). This paper also treats the case
when T : O = Q may not be smooth enough. In section 2, we consider
a scheme of numerical quadrature rules and give some materials to be
used later. In section 3, we obtain the main results under the influence of
numerical quadrature rules and mappings. Some numerical experiments
are contained in section 4.

2. Numerical quadrature rules and some materials

We consider numerical quadrature rules I defined on the reference
element Q by

n(k)

(21) ) = Yot e~ [ feas,

where k is a positive integer. Let G, = {Ix} be a family of quadrature
rules I with respect to Up(ﬁ), p = 1,2,3,..., satisfying the following
properties : For each I € G,

(K1) @F >0 and z¥eQ for i=1,...,n(k).
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K2) L(F)<Cilflea forall feU,(@).

~ 2 ~2 o~ oA
(K3) C’2||f[|0’(2 SI(f ) forall feUy(Q),
~ A 8f - ~ ~
where Upy(?) = -a—g— : FEeUNQ)} CUp(D).
(K4) I(f) = [ f(8)d&8 forall feUin(@),
where d(k) > d(p) > 0.
We also get a family G, o = {Ix,0} of numerical quadrature rules with
respect to Up(§2), which are defined on 2 by

n(k) n(k)
(22) La(f) = Y wtf(eh) = Y @hF@H(fo TIE) = LT,

Now, we denote by DF the n x n Jacobian matrix of F': R* — R",
and define two discrete inner products

(2.3) (u,v)1q = Lia(uv) on £,
(2.4) (@,9),5 = (@) on Q.

Then, using quadrature rules I, and I; in G, we obtain the following
actual problem of (1.15): Find u, € S;0(2), such that

(2.5) Bma(up,vp) = (f,vp)1q forall v, € 5,0(92),

where

B n (__ ou, O son
(2.6) Bm,ﬂ(upavp) = X ( 3 P) +(']bup’vp)m,§’

A0ij <y 7~
i3=1 197, 0%;
(2.7) (f, vp)z,g = (Jfaap.)z,ﬁ ’
and @;; denote the entries of the matrix
N e . 1
J(DT-Y)(DTY) .
The following Lemma gives the ellipticity of Bm (-, ) in our ap-
proximate problem (2.5).
LEMMA 2.1. There exists a constant C > 0 such that

(2.8) c'||v||iQ < Bna(v,v) forall ve S,o(Q).
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Proof. We easily see that aAA%a’ > (1/||A7? ||2)aat for an)‘f invertible
matrix A and row-vector a. It follows from (1.11) and (1.12) that

~ e —— t
Ima(Vv - Vo) = I,(J(VoDT-1)(V3DT-1) )
> C In(TV%- V9)1/| DT o
> CIn(V0 - V) /1T g oo VITIE o5

Hence, we have from (1.8), (1.9) and (K3) that
B a(v,v) > CIna(Vv- Vo)

> C I,(V5 - V5)
>C |v|f,§,

which completes the proof by the Friedrichs’ inequality.
The following results shall be used for deriving the estimate

”u - ﬂplllyn'

LEMMA 2.2. For each integer | > 0, there exists a sequence of pro-
jections

H;, : Hl(ﬁ) — Up(ﬁ), p=1,2,3,..., such that
(2.9) .5, = 5, forall B, € UyS),

(2.10)
2 -1l 5 < Cpr2al, 5 forall @€ H(R)
with 0<s<I<r

Proof. See [5, Lemma 3.1].
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LEMMA 2.3. There exists a sequence of projections

P}} : Ho(Q) = Sp0(92), p=1,2,3,...,such that

(2.11)
lu ~ Plull, g < CpIull,q forall ue H(@)
with 0<s<1l<r.

Proof. See [5, Theorem 4.2).

Let u € H}(Q) be the solution of (1.5)—(1.6). Then, we easily see

from (1.13) that % = u o T € H}(R2). But, under the case where T is
a non-smooth mapping, u € H"(?) does not always guarantee & €

H’(ﬁ), r > 1. It may be possible to be u € Hk(ﬁ) for k < r. The
following Lemma indicates an estimate for ||lu — uyl|, g, which is slightly
different from that of (1.19).

LEMMA 2.4. Let u, be an apprommatmn of u which satisfies (1 15).

We assume thatu = uoT € H"(Q) under the mapping T :  — Q.
Then, we have

(2.12) [|u —uplll,n < CP—(k—I)”a”k,ﬁ .

Proof. We easily see from Lemma 2.3 that there exists a sequence of
projections

o~

fut
.

(2.13) HY}Q) - U,(nHN(D), p=12,...,

-

such that

(214) |16~ Pl 5 < Cp ), 5 forall @ e HF(E).

Sinceu =uoT € H&(ﬁ), clearly Up(ﬁ) N H(}(ﬁ) contains ﬁ;ﬁ Let
wp = (ﬁl}ﬂ) o T-1. Then, from (1.13) we see that

wy € Up(Q) N Hy () = Spo(0).
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Hence, it follows from (1.14) and (2.14) that

(2.15) [|u “wpnl,n < C||“°T"wp°T”1,§
< cla- P,

< Cp Va5
The Lemma follows from
. — < i — .
(2.16) lu —uplly o < pregfo(ﬂ) [l —wpll; o

Let us now give the following technical Lemma which follows from
Lemma 2.2 .

LEMMA 2.5. For Q C R*, let @€ H’(ﬁ) with s > n. Then the
projection Il7 from Lemma 2.2 satisfies

(2.17) |2 - mpal, 4 <Cp~ " Plfa], 5.

Proof, By interpolation results (see [9, Theorem 3.2] and (11, The-
orem 6.2.4]) we have that

1 . e
(218)  |la-Iral, 4 < Clla- e}, e -z

IR

~
,00,82

5+e,8 —-e,ﬁ
for 0<e< %
We also have from Lemma 2.2 that
(219) |Ju-Tpa)| 5 < Cp |, 5 for 0<r<n<s.

Hence, taking with r = 5+e and r=2—¢ in (2.19) we obtain

i ~ ~ —(s—2 -~ :
|l — H;u”%_*_e’ﬁ[]u — I < Cp ¢ 2)||u||3’§, which

completes the proof from (2.18).

Qs v

~
—~£,0
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3. H!(Q)-norm error estimate under numerical quadrature
rules and mappings

[[u — Uy,  depends on several separate terms. The first dependence
is on the error |lu — up||, o with respect to the mapping T dis-
cussed in previous sect1on 2. Next, the error will depend upon the
smoothness of @, @, b and f with the Jacobian J of T.

LEMMA 3.1. Let u be the exact solution of (1.5)~(1.6) and u, an
approximation of u which satisfies (2.5). Then there exists a constant
C independent of m, l such that

_w <Cl inf -
llu— |l o < [u,elsp,o(n){”“ upll; g

+ sup | B(tp, wp) = Bm a(up, wp)] }
wp €Sp,0() “wp“l Q
|(f, wp)sz - (f, wp)l,s2|
+ sup
wp €Sp,0(R) ”wpnl,n

I

Proof. 1t is similar to the technique in {1, Theorem 4.1.1].

In Lemma 3.1, the third factor that |[lu —,|, , depends upon is

the smoothness of f and J with the mapping 7. In this connection,
we shall use the following Lemma.

LEMMA 3.2. Let I; € G, be a quadrature rule on Q C R™ which
satisfies d(l) —p—1 > 0, and let fe H"(ﬁ) and J € Hé(ﬁ) with
min(y,8) > n. Then, for any w, € Spo(?) we have the following
estimate

[(fywp)q ~ (f’wp)l,ﬂ'
sl
< C{a O DYFIL, (Il co + 1 1l50)
+(dD) = p =0 PN (o ms + 17,5 1

where ¢ is a positive integer with d(l)—p—q >0 and C is inde-
pendent of I, p and q.

(3.2)
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Proof. Since d(l) — p— 1 > 0 there exists a positive integer ¢
such that d(l) —p— ¢ > 0. For arbitrary w; € Ud(l)_p_q(ﬁ) and
Wy € Uy(Q) welet @ = Wy € Ud(l)_p(ﬁ). Then, due to (K4) it
follows that

(33) (ﬁ7{l3p)[’§ - (?Ba {U\P)ﬁ =0.
Since (f,wp)q = (fj?, Wy)g and (f, wp)z,n = (fﬁ fEP)l,ﬁ

(34) | (fswp)q — (£, wp)z,g |

< | fy@p)g — (@, @p)g | + [(@, @) 5 — (J f,Tp), -
By the Schwarz inequality we obtain

(35) (T, D)~ (@, Bp)g| _
(Jf\ J Wa, Wp)g | + | (J Wy — W1Wa, Wp)g |

(TF-
1I(f = @2)llg & 1Bpllo 5 + (T — @1)@2ly & D50 g

—~

(I llo,g If = Ballg, 0,8 + 19 = Dillg 00,8 1D2llg,8 )@l 5 -

A INIA

Taking w; = Hg(,)_p_q(f) and W, = H;‘(f) in Lemma 2.5 we have

(3.6) 1f = B2llg0s < CT " DNfl g,
and
(3.7) 1T = @1l g < CUAD)—p—a) D Tsq -

Moreover, by the triangle inequality and from Lemma 2.2

(3.8) @208 < [Ifllog + If — D2lloa
< C{lifl, o +a7 N, a}
< Clfll,a >

and obviously

(3.9) 17oa < CliTllsa -

Hence, by substituting the above results in (3.5) we have
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(3.10)  |(Jfr@p)g — (B, Bp)g |
LS+ ([dD) - p— ) DAL alTls 8 1Bl 5 -

Similarly, we can estimate the last term of the right side in (3.4), which
can be rewritten as

3.11)  [(J £, @) — (@, 0p), 5
< |(Jf’7:”\p)1,§ - (J'B?"&’\p)l,ﬁ | + [(J@'-’”:‘;p)z,ﬁ - (@1{527&’\?)1,@1

= |(J(F = @), p)y g | + |(B2(T — 1), ), 5 -

Using the Schwarz inequality, we have from (3.6) and (K2) that

o=

~ o~ ~ o~ ~ o~ 1
(312) |((F - @), Bp)ya | < (- @), FF - 2))ia (@ )}
< ClIlg 00,8 1f = D2llg 0,0 1@llo.5

< Cam O DNFIL a1 N0 1Pplloa -

Moreover, from (3.6) and (3.7) we also obtain

(3.13) [ (@] - W1), Wp)y 5 |

< (Wo(J — wy), Wa(J — {51))15,5 ('L";P’&’\P)zﬁ

s

CNT = B1llg oo 1B2llg o0 1 @pllo g

CIIT = B1llg 08 (1llo e + IF = @2llg 00.2) 15llo 3
C{d) —p—a) DN T8 1 fllo oog 1Bslle
+(d() —p—q) DD TN 5 171 a Bplle g }-

IA A

IA

Hence, combining (3.12) and (3.13) we estimate

(3.14) (T f,Bp) g — (@,Dp), 5
< C{ge O DTl 00 171, 5
+(d0) = p— )" DT80 o
+a D) - p— )P T 5 171l 3 1Bpllo g -
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Since the last term of the right side in (3.14) is dominated by the terms
in (3.10) we derive

(3-15) I(f’ wP)Q - (fa wp)l,g I
< C{g O BDFL a (Ml com + 1T l50)
+(dD) —p— )" Tls.8 (IFllo coa + 171, 0 IBplle g -

It is obvious from (1.14) that
(3.16)  @pllog = Cliwpll g < Clliwellyq -
The Lemma follows from dividing with |lwplf; o -

Now, we give the following Lemma which can be used for estimating
the middle term in (3.1).

LEMMA 3.3. Let @, @, € Up(Q)) and f € Loo(Q). Then, for all
vg € Ug(Q), fr e U () with 0<q<p and r=d(m)—p—qg>0

we have

B17)  |(Fip Bp)g — (Fiip, Bp) |

< C{ ”fr”o,oo,ﬁ”ap - i’\qno,ﬁ +1f - fT”O,oo,ﬁ”aPHO,ﬁ } ”{”\p“o,ﬁ )
where C' is independent of p, q and m.

Proof. For any f, € Ur(ﬁ) we have

(318)  |(fpBp)a ~ (F 2 By)ma
< l(f apaﬁ)\p)ﬁ - (frﬁpv{’;p)ﬁ I + |(frap’{5p)ﬁ - (frap’ap)m,ﬁ ‘

+ (frap,ﬂ)\p)m,ﬁ - (fap,{l)\p)m,ﬁ E
Thank to (K4),
(319)  (Fiy, Bp)g — (Frlgr@Bp)n g = 0 for any B, € Uy(f).

Hence,
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(3.20) I(frﬁp’wp)ﬁ - (frap,ﬁ;p)mﬁ |

< |(frap’ap)§ - (fraq’ﬁ’\p)ﬁ | + l(frﬁq’{”\p)m,ﬁ - (frap’ﬁp)m,ﬁ B
By the Schwarz inequality we obtain

(3.21) |(fr'7p’{‘;p)§ - (fraq’ap)ﬁ |
< (Fr(@p = B), Frl(Tp — )3 (wp’wp)é
<C “fr”o,oo,ﬁ”ap - 64”0,5 “ﬁp”o,ﬁ .

Also, from (K2) we have

62) (75 - (Fy)g
= (J?r(ap - 69)7ﬁ‘(ap - ﬁq))i,ﬁ(ﬁp,ﬁp)i’ﬁ
< C”fr”o,oo,ﬁ(ap = Uy, Up = aq)i,ﬁ(ﬁp’ wp)i,ﬁ
< Clifello oo alls = Ballo 5Bl 5

Hence, combining (3.21) and (3.22) we estimate

o~

(3.23) I( rap’{‘;p)ﬁ - (frap’wp)m,ﬁ |

< Cllfrllo,co,allEs — Dllo all@pllo g -
Similarly, since fe Loo(ﬁ) we obtain

(3:24) |(Faiy, Bp)g — (Frtip, Bp)g] 1
< ((F = F)ips (F = Fo)p) (B, )3

< C|f - fr”o,oo,ﬁ”apuo,ﬁ”ﬁ;p”o,ﬁ ’
and

(325) l(fTaP’ {U\P)m,ﬁ - (fap’ lﬁp)m,ﬁl
-~ ~ ~ 1 1
S ((fr - f)up’ (fr - f)up);’ﬁ(wp’ wl’):n’ﬁ
~ -~ ~ N1 ~ 1
<C ”fr - f”o,oo’ﬁ(up’up);’ﬁ(wp’ wp);,ﬁ

< Cllfr = fllo,eo,allEpllo gl @sllo g -
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The Lemma follows from (3.23), (3.24), (3.25) and (3.18).
For any f € H™(Q) with QCR™ and r >n we denote

(3.26) Ko(F) = 112 fllo 0o -

Then, we easily see from Lemma 2.2 that

(3.27) K <C{lfllpsoa+s " Plfl5}
S C{lIfllo 08 +1If1l5 -
Let us define

(3.28) Mp,q = max @iillp,q,0 >

where the subscript ¢ will be omitted when ¢ = 2.

LEMMA 3.4. Let I, € G, be a quadrature rule defined on Qc
R", which satisfies d(m)—p—1> 0. Let @ e H°(Q),a e H¥Q),
be Hﬂ(ﬁ), Je Hé(ﬁ) and a;; € H”(ﬁ) for i,j = 1,...,n, such
that k; = min(a,p) > n and k; = min(B,6) > n. Then, for any
wy € Spo(§2) and an approximation w, which satisfles (1.15) we have

(3.29) | B(tp;wp) = Bim(up, wp) |
||wp”1,9
S C{mln (917Q2)—(U_1)“"7“a,§

—(k1—=3) 1~ Sk =) By 17 -
+(r T Al g Mo+ s a0l 0) NEl g )

where ¢1, g2 are two positive integers such that 0 < ¢; < p and
ri=dm)—p—¢; >0 for i=1,2.

Proof. For arbitrary w, € Sp,0(2) we have
(3.30) | B(up, wp) — Bm’guw w}\,) | . .
< C{max|(aai-§“—'1 —aﬂ) _(aa.-,-a—zi”, a—"i”’) I
z /& 0z’ 07; ) . 5
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+1(T By, @p)g — (J Biip, Bp) |}

We begin by estimating the last term in the right side of (3.30). It is
obvious from (1.9) and (1.12) that Jbe L oo(8). Since d(m)—p—1>
0 it allows us to take g2 such that r; = d(m )—-p ~ g2 >0 and
0< g < p- Hence, usmg Lemma 3.3 with 7, = II} @, € qu(Q) and

fr=T7 (J B) € U,,(Q) we obtain

(331) (T By, Bp)g — (4 b, w»mgl
s<7{m1<1bmow9w@ I3, 35ll, 5

+ T8 =T (T B)lly o0 alBpllo 0} 1Bplle -

Since J b€ H™(Q)) and from (3.27), clearly Krz(jvl;) is bounded by a
fixed constant for all r; = d(m) — p— g2 > 0. We see from (1.14) that

(3.32) & —upll; 5 < Cliw—uplly g

and from Lemma 2.2 with r = s =1 the boundedness of the projection
I}, follows:

(3.33) I, (@ = Bp)ll, 5 < Clla—pll, 5

Thus, using the triangle inequality and from Lemma 2.4 and Lemma
2.2 we have

(3-34) ”ap _Hgluap”o,ﬁ < C”l’i, Hl ap]llg
< Cllla -1l g + llu~ ull + 10, (@ = 8p)ll, 5}

SC{llu—-wll, 5 + llu- q,ullm}
—— —-(o—1 ~

< C{p "V + ¢ " VY al,q
—(oc—1) |~

< Co; "V, g -

Moreover, since J b € H"’(ﬁ) with k; =min(f8,0) 2 n it follows
from Lemma 2.5 that

(835) T b-Tp,(T D)y
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—(k2=2) 55 (ko—2), = ~
S Cry I b]l, e S Oyt P s allbllgg
and clearly

(3:36)  ldpllos < el g < Cllull o < Cliall g -

Hence, the above results yields from (3.31) that

(3.37) (T by Bp)g — (J b, Bp) ]
< C{ay NN, a8+ s Pl TN aliol 5 gliE, 6} 1@l 8 -

We finally estimate the first term in (3.30). For any @;; 4,5 =1,...,n
we let ¢, be any integer such that 0 < ¢ < p and r; = d(m)—

p—q1 > 0. Then, since aa;; € Loo(ﬁ), due to Lemma 3.3 with
Vg = %(H;lﬁp) and f. = II? (@@;;), we have

oy Ou, Ow,\ =5 Ou, B,
99z ax, a8 ']6 3:1:] m,0

o ou.
< oy, aau)HOwQII A = —A( up)llOQ

(3.38)

aup ”

+ll@ai; — 7, (@335)|ly o, n“ } I 6"1) “

Using Lemma 2.2 and Lemma 2.4 we easily see from the boundedness
of I} that

6u,,

(339) 52 %(Héﬁp)ﬂo

~ ~ —~(oc—1 ~
s C i, ~ T Tl 5 < Car Nl

©)

Also, clearly

du ~
(3.40) I3 pll S Cllupll; 5 < Cllullya >
and
(3.41) I aAp I < Clwpll, g -

JOQ
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Moreover, since da;; € H* (ﬁ) with k; = min(a,p) > n we obtain
from Lemma 2.5 that

(342) @@y — I @3l g < Cri ™ PYal, 50, -

is bounded, we con-

So, from (3.39)-(3.42) and since ||II} (aa;;)
clude that

”0,00,5

~n Ou, OW ... Ou, Oow

(3.43) max aa,-j——:’i, == - aa,-j———-—f, —F
ij 0z;’ 0z /4 0z;" 975 ) 5

—-(g—1 ~ —(ky=2) -~ ~
< C{ar Pl g +ri® PN, 0 MollEl g } ISl a -

Since ||[wplly g < Cll@pll; g < Cllwpll; o, the Lemma follows from sub-
stituting (3.37) and (3.43) in (3.30) and dividing by [[wsl, -

By a direct application of Lemma 2.4, 3.2 and 3.4 to Lemma 3.1 we
obtain the following main Theorem which gives an asymptotic, H(Q)-
norm estimate for the rate of convergence with using numerical quadra-
ture rules and the mapping T : Q- QCR".

THEOREM 3.5. For any numerical quadrature rules I, I € G,
and for any mapping T : § — Q C R" which satisfies (1.11)-
(1.12), we assume that @ € H°(Q),d € H*(Q),b € HFQ), T ¢
HY®), f € H*(Q) and a;j € H?(Q) for each i,j =1,...,n, with
min(a, $,4, 6, p) > n. Then, for any positive integers ¢,q1,q2 such that
0<g¢<dll)-p—-1 and 0<¢; <min(d(m)—-p-1,p)i=1,2, we
have

~ . -_— —1 o~
(344)  [u—1pll, o < C{min(q,e) " VN, 5
~(k1=3%) g~ ~(2=8) Fi 17 ~
+(ry T @l g M, +ry P T Bl 8) 1 6
+¢ DAL & (1T llg o8 + 1T5.8)

+r7 DTNl 4 (1l 0a + 171,00}

where ki = min(a,p), k2 = min(6,8),r = d(l) —p—-qgand r; =
dm)—p—gqi for i=1,2.
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We see from Theorem 3.5 that the rate of convergence is essentially
given by

(345)  O(min(g1,g2)” """ . .
+{(dm) ~p— )" "H + (d(m) - p— ¢) "7}
+{g D 4 (dl)~-p-q) P},

If m, | and ¢ are large enough with min(q1, g2) = p,then the rate of
convergence is asymptotically O(p~(?~1)), which coincides with that
of (2.12). Moreover, when the mapping T is sufficiently smooth the rate
is in proportion to that of (1.19). In the case where @,a; 1,3, f and

J are sufficiently smooth,i.e., k1, k; and v are large enough, even when
dim) = 2p+1 with ¢1 = ¢ = pand d(I) = p+ 2 with ¢ = 1 the
first term in (3.45) may dominate, so that the rate of convergence is
asymptotically O(p~(?~")) which is the same that of [|u — upl|; o-

More precisely, in G-L quadrature rules, using I, and I; with (p + 1)-
point and p-point G-L rules respectively we would obtain an asymptotic
rate O(p~ (7~ V).

When one of aa;j, Jband J f is not smooth enough, either be-
cause one of them is not smooth in the original problem or because
a non-smooth mapping T is used, the first term min(ql,qg)_(a_l) may
be dominated by one of the other terms. In this situation, using an
overintegration with a sufficient number of m or [ we may reduce the er-
ror |lu — @y, o until the first term dominates again. In practice, when
@aijor J b is not smooth we may increase the value of d(m) with ¢ =

g2 ~ p. When J f is not sufficiently smooth we also increase both of
d(l) and q. The next section contains some numerical experiments with
using G-L quadrature rules.

4. Numerical experiments

We consider the following one-dimensional problem:
d  du
“%(a%)zf on Q=[071]

with u(0) = u(1) = 0.
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Here, a and f are chosen in such a way that the exact solution is u(z) =
e® sin(z) — €' sin(1)z. Of course, the simulations have no need for the
knowledge of the exact solution u.

EXAMPLE 4.1. We choose a(z) = cos(z),then a, f and u are suf-
ficiently smooth functions. Hence we expect that under the smooth
mapping T, the rate of convergence nearly follows the best fit of w.
Moreover, even when we use p-point G-L rules L, = L; = L, with
no overintegrations we would obtain the optimal results. But, if we take
the mapping 7'(Z) = ((2+¢e)* — (1-Z+¢)*)/((2+¢)” — &%) with
a = 25and ¢ = 0.001,then this mapping is not smooth enough.
It causes the non-smoothness of @;;. In fact, a;; = 1/ J has a pole
at T = —1.001 which is very close to Z = —1. In order to recover
optimal results, an overintegration L,,(m > p) must be used for cal-
culating all integrals in the stiffness matrix. Figure 4.1 represents the
results when overintegrations L,, are used for computing integrals in
the stiffness matrix and all integrations in the load vector are nearly
exact (L;, | = 1000). On the other hand, Jf has no poles under the
mapping T'. Hence we expect that there is no use for an overintegration
L; to calculate all integrations in the load vector. Figure 4.2 shows this
phenomenon in the case where overintegrations L;({ > p) are used and

Lo (m = 1000).

EXAMPLE 4.2. We choose a(z) =1/(z+w)* for w >0 and a > 1,
and take the mapping T(Z) as the same that of example 4.1. If w
is near to zero, then a(z) and f(z) have poles near to z = 0 in the
original problem. Hence we need the overintegrations L,, and L; in
both of the stiffness matrix and the load vector. Moreover, @a;; is more
singular than that of @ under the influence of the mapping T. When
w = 0.001 and a =1, Figure 4.3 shows the results in the case where we
use an overintegration scheme of L,,(m > p) and L;(I = 1000). When
we choose o = 2 and w = 0.1, the results in Figure 4.4 follows under
the case where L,(m = 1000) and L;({ > p). We consider the following
two-dimensional problem :

—div(aVu)=f on 9,
with u(z) =0 on I.
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EXAMPLE 4.3. In the case where the domain € is the trapezoid
with vertices A = (0,0),B = (2,0),C = (0,1),D = (1,1), we consider
mapping T : (Z1, T2) € & — (z1,22) €  given by

1 = (Z:+1)(3-7%7) /4,

We choose a(z1,z2), f(z1,z2) in such a way that
u’(:‘clawZ) = TiI2 (1}1 + 19 — 2) (6(12—1) _ 1)

In particular, we take a(zi,z2) = 1/(z1 + w) withw > 0. Ifwis
near to zero, then a(z1,z7) has a singularity near to the z,-axis, and
also f is smgular Hence, even if the mapping T is smooth enough,
aa;; and J f are not sufficiently smooth, which is caused by the orig-
inal problem. To obtain optimal results we may use overintegrations L,
and L;. Figure4.5 gives the results when overintegrations L,,(m > p +
1) and L;(I = 100) are used for w = 0.025. When w = 0.1, Figure 4.6
shows the results in the case where L, (m = 50) and L;(I>p+1) are
used.
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