• Title/Summary/Keyword: Boundary-Value Problems

Search Result 368, Processing Time 0.027 seconds

On snap-buckling of FG-CNTR curved nanobeams considering surface effects

  • Zhang, Yuan Yuan;Wang, Yu X.;Zhang, Xin;Shen, Huo M.;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.293-304
    • /
    • 2021
  • The aim of this paper is to analyze the nonlinear bending of functionally graded (FG) curved nanobeams reinforced by carbon nanotubes (CNTs) in thermal environment. Chen-Yao's surface elastic theory and geometric nonlinearity are also considered. The nanobeams are subjected to uniform loadings and placed on three-parameter substrates. The Euler-Lagrange equations are employed to deduce the equations of equilibrium. Then, the asymptotic solutions and boundary value problems are analytically determined by utilizing the two-step perturbation technique. Finally, the effects of the surface parameters, geometric factors, foundation stiffness, volume fraction, thermal effects and layout type of CNTs on the nonlinear bending of the nanobeams are discussed.

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

A STUDY OF A WEAK SOLUTION OF A DIFFUSION PROBLEM FOR A TEMPORAL FRACTIONAL DIFFERENTIAL EQUATION

  • Anakira, Nidal;Chebana, Zinouba;Oussaeif, Taki-Eddine;Batiha, Iqbal M.;Ouannas, Adel
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.679-689
    • /
    • 2022
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solution for a class of initial boundary value problems with Dirichlet condition in regard to a category of fractional-order partial differential equations. The results are established by a method based on the theorem of Lax Milligram.

GENERALISED COMMON FIXED POINT THEOREM FOR WEAKLY COMPATIBLE MAPPINGS VIA IMPLICIT CONTRACTIVE RELATION IN QUASI-PARTIAL Sb-METRIC SPACE WITH SOME APPLICATIONS

  • Lucas Wangwe;Santosh Kumar
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.1-24
    • /
    • 2023
  • In the present paper, we prove common fixed point theorems for a pair of weakly compatible mappings under implicit contractive relation in quasi-partial Sb-metric spaces. We also provide an illustrative example to support our results. Furthermore, we will use the results obtained for application to two boundary value problems for the second-order differential equation. Also, we prove a common solution for the nonlinear fractional differential equation.

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

SOLVABILITY FOR A CLASS OF FDES WITH SOME (e1, e2, θ)-NONLOCAL ANTI PERIODIC CONDITIONS AND ANOTHER CLASS OF KDV BURGER EQUATION TYPE

  • Iqbal Jebril;Yazid GOUARI;Mahdi RAKAH;Zoubir DAHMANI
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1017-1034
    • /
    • 2023
  • In this paper, we work two different problems. First, we investigate a new class of fractional differential equations involving Caputo sequential derivative with some (e1, e2, θ)-periodic conditions. The existence and uniqueness of solutions are proven. The stability of solutions is also discussed. The second part includes studying traveling wave solutions of a conformable fractional Korteweg-de Vries-Burger (KdV Burger) equation through the Tanh method. Graphs of some of the waves are plotted and discussed, and a conclusion follows.

An Objective No-Reference Perceptual Quality Assessment Metric based on Temporal Complexity and Disparity for Stereoscopic Video

  • Ha, Kwangsung;Bae, Sung-Ho;Kim, Munchurl
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.255-265
    • /
    • 2013
  • 3DTV is expected to be a promising next-generation broadcasting service. On the other hand, the visual discomfort/fatigue problems caused by viewing 3D videos have become an important issue. This paper proposes a perceptual quality assessment metric for a stereoscopic video (SV-PQAM). To model the SV-PQAM, this paper presents the following features: temporal variance, disparity variation in intra-frames, disparity variation in inter-frames and disparity distribution of frame boundary areas, which affect the human perception of depth and visual discomfort for stereoscopic views. The four features were combined into the SV-PQAM, which then becomes a no-reference stereoscopic video quality perception model, as an objective quality assessment metric. The proposed SV-PQAM does not require a depth map but instead uses the disparity information by a simple estimation. The model parameters were estimated based on linear regression from the mean score opinion values obtained from the subjective perception quality assessments. The experimental results showed that the proposed SV-PQAM exhibits high consistency with subjective perception quality assessment results in terms of the Pearson correlation coefficient value of 0.808, and the prediction performance exhibited good consistency with a zero outlier ratio value.

  • PDF

Numerical Analysis of Anisotropic Soil Deformation by the Nonlinear Anisotropic Model (흙의 변형 거동 예측을 위한 비선형 이방성 모델의 개발과 적용)

  • 정충기;정영훈;윤충구
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.237-249
    • /
    • 2002
  • Nonlinearity and anisotropy of soil should be considered for the exact prediction of deformation before the failure state. In this study, a new constitutive model is developed in which the nonlinearity of soil is formulated by Ramberg-Osgood equation and the soil anisotropy is implemented by the cross-anisotropic elasticity. Nonlinear anisotropic model and other models for comparison are used to analyze the simple boundary value problems and the circular footing problem. In the results, the anisotropic ratio of elastic modulus is a key value for the bulk modulus of soil, the coeffcient of earth pressure at rest, and the slope of effective stress paths. Furthermore, it is found that the nonlinearity of soil considering the in-situ stresses has the great influence on the magnitude of settlements.

Mesh Parameterization based on Mean Value Coordinates (중간값 좌표계에 기초한 메쉬 매개변수화)

  • Kim, Hyoung-Seok B.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1377-1383
    • /
    • 2008
  • Parameterization of a 3D triangular mesh is a fundamental problem in various applications of geometric modeling and computer graphics. There are two major paradigms in mesh parameterization: energy functional minimization and the convex combination approach. In general, the convex combination approach is wifely used because of simple concept and one-to-one mapping. However, the approach has some problems such as high distortion near the boundary and time complexity. Moreover, the stability of the linear system may not be preserved according to the geometric information of the mesh. In this paper, we present an extension of the convex combination approach based on the mean value coordinates, which resolves the drawbacks of the convex combination approach. This may be a more practical solution because it is able to generate a stable linear system in a short time.

Land Category Non-coincidence Measurements Using High Resolution Satellite Images and Digital Topographic Maps (고해상도 위성영상과 수치지형도를 이용한 지목 불부합의 정도 측정)

  • 홍성언;이동헌;박수홍
    • Spatial Information Research
    • /
    • v.12 no.1
    • /
    • pp.43-56
    • /
    • 2004
  • Basically a land parcel consists of a land parcel number, land category, land boundary and area, and land value is mostly determined by the land category. Generally people want to change their land use to increase their land value so that they can expect more benefits from the land. However, changing land use causes several problems with land properties, haphazard urban expansions and land category non-coincidences. Unfortunately, no effective solutions exist for land category non-coincidence problems. In this study, we proposed a methodology that can classify the land category based land covers using high resolution satellite images and digital topographic maps. For this, we obtained a parcel based land use/cover classification map. Using both this classification map and a digital cadastral map, we inspected land category non-coincidences. As a result, land category non-coincidence rates could be statistically measured and interpreted and demonstrate a possibility that we could quantitatively interpretate and measure cadastral non-coincidence automatically.

  • PDF