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Abstract. In this paper, we work two different problems. First, we investigate a new

class of fractional differential equations involving Caputo sequential derivative with some

(e1, e2, θ)−periodic conditions. The existence and uniqueness of solutions are proven. The

stability of solutions is also discussed. The second part includes studying traveling wave solu-

tions of a conformable fractional Korteweg-de Vries-Burger (KdV Burger) equation through

the Tanh method. Graphs of some of the waves are plotted and discussed, and a conclusion

follows.

1. Introduction

Fractional Differential Equations (FDEs) generalize the classical integer-
order differential equations to non-integer orders, allowing for the modeling of
systems with memory and long-range dependence. FDEs have applications in
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many fields, including physics, engineering, biology, and finance. Analytical
and numerical methods for solving FDEs are an active area of research due
to their complexity and nonlocality, see for instance the papers [4, 5]. In this
sense, scientists are especially interested in the problems with boundary values
of FDEs, see reference [19].

In particular, we mention the periodic affine boundary problem that de-
scribes physical phenomena [31]. Also, the investigation into the existence and
uniqueness of solutions to FDEs is still receiving great attention from mathe-
maticians, through the approach of Caputo and Riemann-Louiville. Readers
may be referred to references [9, 13, 14]. In this aspect, the stability prob-
lems of Ulam Hyers have been given much attention by researchers, and many
stability problems of various FDEs have been investigated, see [11, 30].

In [12], Gouari et al. have studied the following three-sequential fractional
problem of Duffing type:

Dα(Dβ(Dδy(t))) + f(t, y(t), Dpy(t)) + g(t, y(t), Iqy(t)) + h(t, y(t)) = l(t),

y(0) = ξ ∈ R, y(1) =

∫ η

0
y(s)ds, 0 < η < 1,

Iey(θ) = Dδy(1), 0 < u < 1,

0 < α, β, δ, p ≤ 1, q > 0, t ∈ J,

where J = [0, 1], Dα, Dβ, Dδ, Dp are derivatives of Caputo, Iq denotes the
Riemann-Liouville fractional integral of order q, and f, g : J × R2 → R are
two given functions, h : J × R→ R is another given function and l is defined
on J. The authors have proved the existence and uniqueness of solutions by
application of Banach contraction principle. Then, by means of Schaefer fixed
point theorem, they have studied the existence of at least one solution for the
problem.

Also in [29], the authors have been concerned with the following Duffing-
type problem:
DγDβDαz(t)+kf (t,Dαz(t))+g (t, z(t), Dpz(t))+h (t, z(t), Jq(z(t)))=L(t),

z(0) = A1 ∈ R, Dαz(0) = A2 ∈ R, Jαz(1) = A3 ∈ R,
0 ≤ p < α ≤ 1, 0 ≤ β, γ ≤ 1, 1 < α+ β ≤ 2, 1 < β + γ ≤ 2, t ∈ I,

where I := [0, 1], the derivatives of the problem are in the sense of Caputo,
Jq is the Riemann-Liouville integral with q ≥ 0, f : I × R2 → R, g : I × R3 →
R, h : I × R3 → R and L : I → R are four given functions. Then, in [10],
Gao et al. have investigated the following sequential FDE with affine periodic
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boundary conditions:
(
CDβ + λCDα

)
z(t) = g(t, z(t)), t ∈ [0, T ],

z(T ) = az(0),

z
′
(T ) = az

′
(0),

where CDp expresses the Caputo fractional derivative, p ∈ α, β with 0 < α <
1 < β < 2, β = α + 1, λ, a ∈ R with g(t, z) : [0, T ] × C([0, T ];R) → R is a
continuous function.

Also in [24], the author has been concerned with the study of the uniqueness,
Ulam-Hyers stability and Ulam-Hyers-Rassias stability of solutions for the
following sequential fractional pantograph equation:{ [

Dα + kDβ
]
u(t) = φ

(
t, u(t), u(ηt), Dβu(ηt)

)
, t ∈ [0, T ],

u(0) = f(u), u(T ) = θ, θ ∈ R,

where k ∈ R+, 0 < η < 1, 1 < α ≤ 2, 0 < β ≤ 1, Dα, Dβ are the Caputo type
fractional derivatives, φ : [0, T ]×R×R×R→ R and f : C([0, T ],R)→ R are
given continuous functions.

Very recently, Abdelnebi and Dahmani [2] have studied the existence, unique-
ness, and stability of solutions for the following Van der Pol-Duffing (VdPD)
jerk equation:

Dα
(
D2−β+λDα

)
x(t)+k1f1 (t, x(t), Dαx(t))+k2f2 (t, x(t), Jpx(t)) = h(t),

x(1) = 0, D1−(α−β)Dα−βx(1) = A∗ ∈ R, x(T ) = 0,

0 ≤ β < α ≤ 1, 0 ≤ α+ β < 1, 0 < p, t ∈ I,

where Dα, D2−β are the Caputo-Hadamard fractional derivatives, Jp is the
Hadamard fractional integral I = [1, T ], k1, k2 are real constants and the func-
tions f1, f2 and h are continuous.

In [6], the authors have investigated the following problem:

cDα1cDα2cDα3 [cDα4u(t)−λf(t)u(t)]=g(t, u(t),cDα2u(t),cDα3u(t),cDα4u(t)),

u(0)) = 0, u(1) = a1,
cDα4u(0) = a2,
cDα4u(1) = 0,

t ∈ J = [0, 1] ,

where cDαi , are Caputo fractional derivatives, 0 < αi ≤ 1, i = 1, .., 4,
α2 < α4, α3 < α4, λ > 0, f : [0, 1] × R → R and g : [0, 1] × R4 → R are
continuous.

In the present paper, we shall be concerned with two different problems:



1020 I. Jebril, Y. Gouari, M. Rakah and Z. Dahmani

In the first part, we study the following problem:

DαDβDγs(t)+λDαDβs(t)=m(t, s(t),Dδs(t))+n(t, s(t), Ips(t))+r(t, s(t))+l(t),

t ∈ [0, 1],

s(1) = e1s(0),

Dγs(1) = e2D
γs(0),

Dγs(0) + λs(0) = θ,

0 < α, β ≤ 1, 0 < δ < γ ≤ 1, e1, e2, p ∈ R∗+, λ ∈ R,
(1.1)

where J := [0, 1], the functions m,n, r and l will be specified later, the opera-
tors Dα, Dβ, Dγ and Dδ are the derivatives in the sense of Caputo.

In the second part of our paper, we will use the Tanh method to find new
traveling wave solutions for an evolution equation of KdV Burgers type with
time and space conformable fractional derivative. The problem is the follow-
ing:

Tαt u+ ν(uTβxu) + ηT2β
x u+ µT3β

x u = 0, (1.2)

where Tβx,Tαt are the conformable fractional derivative with 0 < α, β ≤ 1 .

To motivate the second part, we note that traveling waves are observed in
many areas of sciences and applications. Many powerful numerical methods
have been implemented to obtain solutions of partial FDFs, such as the exp-
function method [3, 16, 25], the (G’/G) method [34], and the Tanh method.
This method is one of the most effective algebraic methods for finding exact
solutions to nonlinear differential equations. It was presented by Malfliet [20]
and then modified and extended by Wazwaz [32] for the computation of exact
traveling wave solutions.

For the above-motivating method and to cite some of the papers that have
motivated the present part, we begin by the reference [26], where, Rakah et
al. have been concerned with finding traveling wave solutions for the following
evolution problem [18]:

T 2α
t u+ T βx (G(u)T 3β

x u) + T βx (H(u)T βx u) = F (u),

where T βx , Tαt are the conformable fractional derivatives with 0 < α, β ≤ 1
and f,G,H are some given functions.

Also in [21], the authors have investigated the 3D-fractional Wazwaz-Benjam
in-Bona-Mahony equation equations that involve some sequential conformable
fractional derivatives. Several solutions containing hyperbolic and trigono-
metric function solutions have also been obtained by applying the modified
extended Tanh method.
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Very recently in [8], Dahmani et al. have presented an (n+ 1)-dimensional
extended Tanh function method to investigate nonlinear conformable frac-
tional differential equations using Khalil conformable approach; in fact, they
have presented new traveling wave solutions for the (1 + 3)-dimensional con-
formable time and space fractional Burgers equation.

Then, in [28] the authors have obtained new exact solutions to the follow-
ing nonlinear fractional Klein-Gordon equation via extended tanh-function
method with conformable fractional derivative:

D2α
tt u(x, t) +D2α

xxu(x, t) + pu(x, t)− qu2(x, t) = 0.

In [33], the author has been concerned with the ( GG′ ) expansion method to
find the exact solutions of nonlinear fractional partial differential equations
with the modified Riemann-Liouville derivative by Jumarie [17]:

∂αu

∂tα
+ ωu

∂βu

∂xβ
+ η

∂2βu

∂x2β
+ ν

∂3βu

∂x3β
= 0, t > 0, 0 < α, β ≤ 1.

In this sense, the two authors of the paper [15] have presented an implementa-
tion of Petrov-Galerkin technique for solutions of the following time-fractional
KdV Burger equation:

Dα
t u+ εuux − vuxx + µuxxx = 0,

where ε, v and µ are constants and α represents the order of fractional deriva-
tive. In this numerical technique, the fractional derivative has been discretized
by the Grnwald-Letnikov derivative.

One way to connect the two parts of the present paper is by using the exis-
tence and uniqueness result for FDEs involving Caputo derivatives to analyze
the numerical solutions obtained using the Tanh method with the conformable
fractional derivative approach on the KdV Burger equation. Specifically, the
existence and uniqueness result can provide theoretical guarantees for the ac-
curacy and convergence of the numerical solutions obtained using the Tanh
method with conformable derivatives, while the numerical results obtained
from the Tanh method can be used to validate and test the theoretical results
obtained from the existence and uniqueness analysis. Furthermore, the KdV
Burger is a well-known model for wave propagation in nonlinear media, and
studying its solutions with FDEs and numerical methods can provide insights
into the behavior of these waves in realistic physical systems. Therefore, the
two studies can complement each other by providing both theoretical and nu-
merical insights into the behavior of solutions of FDEs on the KdV Burger
equation.

This paper is organized as follows: In the next Section, we review some def-
initions and properties of the Caputo derivatives. In Section 3, we prove the
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main result on the existence and uniqueness of solutions for the proposed class
of FDEs as well as the result of its Ulam Hyers stability. In the fourth section,
we introduce the time and space KdV Burger equation with conformable frac-
tional derivative and we apply the Tanh method to obtain new traveling wave
solutions to “our equation”. Finally, in Section 5, we summarize the outcomes
of this paper in the conclusion section.

2. Caputo derivatives

In this part, we will introduce some definitions of the integral and partial
derivation by Caputo’s approach, with some properties related to it. Using
these tools, we will address the integral solution of the problem, and this will
allow us to discuss the results of the existence of solutions, their uniqueness
and stability.

We need to introduce the Caputo derivatives. For more details, we refer to
the reference [23].

Definition 2.1. Let α > 0 and f : J 7−→ R be a continuous function. The
Riemann-Liouville integral is defined by:

Iαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ.

Definition 2.2. Let us take f ∈ Cn(J,R) and n− 1 < α ≤ n, so the Caputo
derivative is defined by:

Dαf(t) = In−α
dn

dtn
(f(t))

=
1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds.

To study (1.1), we need the following two results [23]:

Lemma 2.3. Let n ∈ N∗, and n − 1 < α < n. Then the general solution of
Dαy(t) = 0; t ∈ J is:

y(t) =

n−1∑
i=0

cit
i,

where ci ∈ R, i = 0, 1, 2, .., n− 1.

Lemma 2.4. If n ∈ N∗, and n− 1 < α < n, then we have

IαDαy(t) = y(t) +
n−1∑
i=0

cit
i, t ∈ J
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and ci ∈ R, i = 0, 1, 2, .., n− 1.

Now, prove the following lemma.

Lemma 2.5. Let G ∈ C(J). Then the problem

DαDβDγs(t) + λDαDβs(t) = F (t), t ∈ J,
s(1) = e1s(0),

Dγs(1) = e2D
γs(0),

Dγs(0) + λs(0) = θ,

0 < α, β ≤ 1, 0 < γ ≤ 1, e1, e2, δ, p ∈ R∗+, λ ∈ R

(2.1)

admits the following expression as the integral solution

s(t) = Iα+β+γF (t)− λIγs(t)

−

[
Iα+βF (1) + θ(1− e2) + λ(e2 − e1)Υ

(
Iα+β+γF (1)

− λIγs(1) +
θ

Γ(γ + 1)
− Γ(β + 1)

Γ(β + γ + 1)

(
Iα+βF (1) + θ(1− e2)

))]

× Γ(β + 1)tβ+γ

Γ(β + γ + 1)
+ θ

tγ

Γ(γ + 1)
+ Υ

(
Iα+β+γF (1)− λIγs(1)

+
θ

Γ(γ + 1)
− Γ(β + 1)

Γ(β + γ + 1)

(
Iα+βF (1) + θ(1− e2)

))
, (2.2)

where

Υ =
Γ(β + γ + 1)

λΓ(β + 1)(e2 − e1) + (e1 − 1)Γ(β + γ + 1)

and

(e2 − e1)(e1 − 1) 6= λΓ(β + γ + 1)Γ(β + 1).

Proof. We use the properties established in Lemma 2.4 to (1.1), so we observe
that

Dγs(t) + λs(t) = Iα+βF (t) + k0
tβ

Γ(β + 1)
+ k1,

s(t) = Iα+β+γF (t)− λIγs(t)− k0
tβ+γ

Γ(β + γ + 1)
+ k1

tγ

Γ(γ + 1)
+ k2.

(2.3)

Taking into account the initial conditions, we can obtain

s(1) = e1s(0),

Dγs(1) = e2D
γs(0),
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Dγs(0) + λs(0) = θ.

So, we get

k0 = Iα+βF (1)+θ(1− e2)+λ(e2 − e1)Υ

(
Iα+β+γF (1)−λIγs(1)+

θ

Γ(γ + 1)

− Γ(β + 1)

Γ(β + γ + 1)

(
Iα+βF (1) + θ(1− e2)

))
,

k1 = θ,

k2 = Υ

(
Iα+β+γF (1)− λIγs(1) +

θ

Γ(γ + 1)

− Γ(β + 1)

Γ(β + γ + 1)
×
(
Iα+βF (1) + θ(1− e2)

))
.

We end the proof of the above lemma. �

In what follows, we apply the theory of fixed point on Banach spaces to
study the problem. So, we shall consider the Banach space

T := {s ∈ C(J,R), Dδs ∈ C(J,R)}
and

‖s‖T = Max{‖s‖∞ , ‖Dδs‖∞},
where

‖s‖∞ = sup
t∈J
|s(t)| , ‖Dδs‖∞ = sup

t∈J
|Dδs(t)|.

Then, we consider the operator Z : T → T ,

Zs(t) = Iα+β+γF ∗s (t)−λIγs(t)−

[
Iα+βF ∗s (1) + θ(1− e2) + λ(e2 − e1)

×Υ

(
Iα+β+γF ∗s (1)−λIγs(1) +

θ

Γ(γ + 1)
− Γ(β + 1)

Γ(β + γ + 1)

(
Iα+βF ∗s (1)

+ θ(1−e2)
))]Γ(β + 1)tβ+γ

Γ(β + γ + 1)
+θ

tγ

Γ(γ + 1)
+Υ

(
Iα+β+γF ∗s (1)−λIγs(1)

+
θ

Γ(γ + 1)
− Γ(β + 1)

Γ(β + γ + 1)

(
Iα+βF ∗s (1) + θ(1− e2)

))
,

where

F ∗s (t) = m(t, s(t), Dδs(t)) + n(t, s(t), Ips(t)) + r(t, s(t)) + l(t).
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3. Main results

The following hypotheses are only sufficient and one can replace them with
other conditions like the notions of Caratheodory functions or the measurable
functions, instead of Lipchitz functions. We impose what follows:

(Q1) The functions m and n defined on J × R2, r defined on J × R and l
defined on J are continuous.

(Q2) There exist nonnegative constants ϑm1, ϑm2, ϑn1, ϑn2, such that for any
t ∈ J , si, s

∗
i ∈ R,

|m(t, s1, s2)−m(t, s1
∗, s2

∗)| ≤
2∑
i=1

ϑmi|si − si∗|,

|n(t, s1, s2)− n(t, s1
∗, s2

∗)| ≤
2∑
i=1

ϑni|si − si∗|.

And for any t ∈ J , s, s
′ ∈ R,

|h(t, s)− h(t, s
′
)| ≤ R|s− s′ |.

It is considered that

M := max(ϑm1, ϑm2), N := max(ϑn1, ϑn2).

Also, we put

Ξ1 =
1

Γ(α+ β + γ + 1)
+

|λ|
Γ(γ + 1)

+
Γ(β + 1)

Γ(β + γ + 1)

×

(
1

Γ(α+ β + 1)
+ |λ(e2 − e1)|∆∗

)
+ ∆∗,

Ξ2 =
1

Γ(α+ β + γ − δ + 1)
+

|λ|
Γ(γ − δ + 1)

+
Γ(β + 1)

Γ(β + γ − δ + 1)

×

(
1

Γ(α+ β + 1)
+ |λ(e2 − e1)|∆∗

)
,

where

∆∗ = |Υ|
(

1

Γ(α+ β + γ + 1)
+

|λ|
Γ(γ + 1)

+
Γ(β + 1)

Γ(β + γ + 1)Γ(α+ β + 1)

)
.

In the following, we prove the existence and uniqueness of solution by ap-
plication of Banach contraction principle. Then, we present an example to
show the applicability of the main result. Also, we investigate the stability of
solutions (the Ulam-Hyers and the generalized Ulam-Hyers stabilities).
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3.1. A unique solution. We prove the following result:

Theorem 3.1. Assume that (Q1) and (Q2) are satisfied. Then, the problem
(1.1) has a unique solution, under the condition that Ξ < χ−1m,n,r such that

Ξ := max {Ξ1,Ξ2} and χm,n,r = R+ 2M +N +
N

Γ(p+ 1)
.

Proof. We proceed to prove that Z is a contraction mapping. For (s, s
′
) ∈ X2,

we can write

‖Zs− Zs′‖∞ ≤ χm,n,r

[
1

Γ(α+ β + γ + 1)
+

|λ|
Γ(γ + 1)

+
Γ(β + 1)

Γ(β + γ + 1)

×

(
1

Γ(α+ β + 1)
+ |λ(e2 − e1)|∆∗

)
+ ∆∗

]
‖s− s′‖T

≤ χm,n,rΞ1‖s− s
′‖T .

On the other hand, we have

DδZs(t) = Iα+β+γ−δF ∗s (t)−λIγ−δs(t)−

[
Iα+βF ∗s (1) + θ(1− e2) + λ(e2 − e1)

×Υ

(
Iα+β+γF ∗s (1)− λIγs(1) +

θ

Γ(γ + 1)
− Γ(β + 1)

Γ(β + γ + 1)

×
(
Iα+βF ∗s (1) + θ(1− e2)

))] Γ(β + 1)tβ+γ−δ

Γ(β + γ − δ + 1)
+ θ

tγ−δ

Γ(γ − δ + 1)

and

‖DδZs−DδZs
′‖∞ ≤ χm,n,r

[
1

Γ(α+ β + γ − δ + 1)
+

|λ|
Γ(γ − δ + 1)

+
Γ(β + 1)

Γ(β + γ − δ + 1)

(
1

Γ(α+ β + 1)
+ |λ(e2 − e1)|∆∗

)]
× ‖s− s′‖T
≤ χm,n,rΞ2‖s− s

′‖T .

Consequently, we observe that

‖Zs− Zs′‖T ≤ χm,n,rΞ‖s− s
′‖T .

�
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3.2. An illustrative example.

Example 3.2. We consider the following problem:

D
9
10D

3
5D

4
5 s(t) + 2D

9
10D

3
5 s(t) =

(
1

14et+3 cos(s(t)) + 1
12D

1
2 s(t) + cos(t+8)

3

)
+
(

2
31s(t) + sin(2+t3)

π(31+t) + 3
40I

1
5 s(t)

)
+
(e2 − 2

30
s(t) + 1

15+t2

)
+ ln(t2 + 1),

s(1) = 1
2s(0),

D
4
5 s(1) = 2

3D
4
5 s(0),

D
4
5 s(0) + 2s(0) = 3,

where we take

m(t, s1, s2) =
1

14et+3
cos(s1) +

1

12
s2 +

cos(t+ 8)

3
,

n(t, s1, s2) =
2

31
s1 +

sin(2 + t3)

π(31 + t)
+

3

40
s2,

r(t, s) =
e2 − 2

30
s+

1

15 + t2
,

l(t) = ln(t2 + 1)

and

Υ1 = 0.1178, Υ2 = 0.1219,

Υ = max {Υ1,Υ2} = 0.1219.

The conditions of Theorem 3.1 hold. Therefore, our example has a unique
solution on [0, 1].

3.3. Ulam type stabilities.

Definition 3.3. The equation (1.1) has the Ulam Hyers stability if there
exists a real number Θ > 0 such that for each ζ > 0, t ∈ J and for each s ∈ T
solution of the inequality∣∣DαDβDγs(t) + λDαDβs(t)−m(t, s(t), Dδs(t))

− n(t, s(t), Ips(t))− r(t, s(t))− l(t)| ≤ ζ, (3.1)

there exists s∗ ∈ T a solution of (1.1) such that

‖s− s∗‖T ≤ Θζ.

Definition 3.4. The equation (1.1) has the Ulam Hyers stability in the gen-
eralized sense if there exists $ ∈ C(R+,R+); $(0) = 0 such that for each
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ζ > 0 and for any s ∈ T solution of (3.1), there exists a solution s∗ ∈ T of
(1.1) such that

‖s− s∗‖T < $(ζ).

Now, we have:

Theorem 3.5. Further, assume that the conditions of Theorem 3.1 are satis-
fied. Then, the problem (1.1) is Hyers-Ulam stable.

Proof. Let s ∈ T be a solution of (3.1) and let, by Theorem 3.1, s∗ ∈ T be the
unique solution of (1.1). By integration of (3.1), we obtain

∣∣∣∣s(t)− Iα+β+γF ∗s (t) + λIγs(t) +

[
Iα+βF ∗s (1) + θ(1− e2) + λ(e2 − e1)

×Υ

(
Iα+β+γF ∗s (1)− λIγs(1) +

θ

Γ(γ + 1)
− Γ(β + 1)

Γ(β + γ + 1)

(
Iα+βF ∗s (1)

+ θ(1− e2)
))]Γ(β + 1)tβ+γ

Γ(β + γ + 1)
− θ tγ

Γ(γ + 1)
−Υ

(
Iα+β+γF ∗s (1)− λIγs(1)

+
θ

Γ(γ + 1)
− Γ(β + 1)

Γ(β + γ + 1)

(
Iα+βF ∗s (1) + θ(1− e2)

))
‖≤ ζ

Γ(α+ β + γ + 1)
.

(3.2)

Using (3.1) and (3.2), we get

‖s− s∗‖∞ ≤
ζ

Γ(α+ β + γ + 1)
+ χm,n,r

[
1

Γ(α+ β + γ + 1)
+

|λ|
Γ(γ + 1)

+
Γ(β + 1)

Γ(β + γ + 1)

(
1

Γ(α+ β + 1)
+ |λ(e2 − e1)|∆∗

)
+ ∆∗

]
× ‖s− s′‖∞. (3.3)

So

‖s− s∗‖∞ ≤
ζ

Γ(α+ β + γ + 1)
+ χm,n,rΞ1‖s− s∗‖∞.

Therefore, we have

‖s− s∗‖∞ ≤
ζ

Γ(α+ β + γ + 1)(1− χm,n,rΞ1)
≤ ζ Θ.

On the other hand, we have

‖Dδ(s− s∗)‖∞ ≤
ζ

Γ(α+ β + γ − δ + 1)(1− χm,n,rΞ2)
≤ ζ Θ∗.
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Thus,

‖s− s∗‖T ≤ ζ
(

Θ + Θ∗
)
.

Hence, (1.1) has the Ulam–Hyers stability. �

Remark 3.6. In the case $(ζ) = ζ
(
Θ+Θ∗

)
, we obtain the generalised Ulam-

Hyers stability for (1.1).

4. Time and space conformable fractional KdV Burger Equation

Let us consider the following problem:

Tαt u+ ν(uTβxu) + ηT2β
x u+ µT3β

x u = 0,

where, Tβx,Tαt are the conformable fractional derivative with 0 < α, β ≤ 1 .

It is to note that when α = β = 1, the above conformable problem is
transformed into the classical nonlinear KdV Burger equation:

ut + ν(uux) + ηuxx + µuxxx = 0. (4.1)

To be able to study the above conformable problem, we need to introduce the
following preliminaries, see [1, 7, 27].

4.1. Conformable fractional derivatives. In this subsection, we recall the
definition of the conformable derivative and its important properties, as es-
tablished by Khalil et al. [18].

Definition 4.1. Let f : (0,∞)→ R. Then, the conformable fractional deriv-
ative of order α is defined by

(Tαf) (t) = ∂αf(t,x)
∂tα = lim

ε→0

(
f(t+εt1−α)−f(t)

ε

)
, t > 0, 0 < α ≤ 1.

It is to note that when α = 1, the above formula is reduced to the standard
derivative or order one.

Definition 4.2. The conformable fractional integral of a function f : (0,∞)→
R of order α is defined as

(Iαf) (t) =
t∫
0

τα−1f (τ) dτ, 0 < α ≤ 1.

The following properties are needed.

IαTαf (t) = f (t)− f (0)

and

(Tαf) (t) = t1−α df(t)dt .
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4.1.1. Tanh method. In this section, we recall the main steps of Tanh method
for the case of Khalil derivatives [8].

Let us consider the general case of the equation:

F
(
u,Tαt u,T

β
xu,T2α

t u,Tαt (Tβxu),T2β
x u, ...

)
= 0, (4.2)

where Tαt u is the conformable fractional derivative of u of order α, 0 < α ≤ 1.
Then, we consider

ξ = k
α t
α + ω

βx
β, (4.3)

where k and ω are constants. So, (4.2) can be easily converted to the following
nonlinear ODE:

G
(
U,U

′
, U
′′
, U
′′′
, ...
)

= 0. (4.4)

We then introduce the variable

ψ = tanh(ξ), (4.5)

so, we get
d
dξ =

(
1− ψ2

)
d
dψ ,

d2

dξ2
= −2ψ

(
1− ψ2

)
d
dψ +

(
1− ψ2

)2 d2

dψ2 ,
d3

dξ3
= 2

(
1− ψ2

) (
3ψ2 − 1

)
d
dψ − 6Y

(
1− ψ2

)2 d2

dψ2 +
(
1− ψ2

)3 d3

dψ3 .

(4.6)

Now, we assume that the solution can be expressed in the form

u(x, t) = U(ξ) = F (ψ) =
∑m

i=0 aiψ
i, (4.7)

where m is a positive integer determined by the balancing procedure in the
resulting nonlinear ODE in F . Thus, we have an algebraic system of equations
from which the constants k, ω, ai(i = 0, · · · ,m) are obtained and determine
the function U , hence we get the exact solutions of (3, 2).

4.2. An example. Consider [22, 35]:

Tαt u+ ν(uTβxu) + ηT2β
x u+ µT3β

x u = 0. (4.8)

Using (4.3), to change (4.8) into the following nonlinear ODE

kUζ + νωUUζ + ηω2Uζζ + µω3Uζζζ = 0.

Integrating the above equation, we have

kU + νω
2 U

2 + ηω2Uζ + µω3Uζζ = 0. (4.9)

Substituting (4.6) and (4.7) into (4.9), we can get
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kF+
νω

2
F 2+ηω2

[(
1−ψ2

) dF
dψ

]
+µω3

[
−2ψ

(
1−ψ2

) dF
dψ

+
(
1−ψ2

)2 d2F
dψ2

]
= 0.

(4.10)

To determine the parameter m we usually balance ψ4 d2F
dψ2 with F 2. This in

turn gives

4 +m− 2 = 2m

so that m = 2. This gives the solution in the form

F (ψ) = a0 + a1ψ + a2ψ
2. (4.11)

Substituting (4.11) into (4.10), we can get

k(a0 + a1ψ + a2ψ
2) +

νω

2
(a0 + a1ψ + a2ψ

2)2 + ηω2(1− ψ2)(a1 + 2a2ψ)

+ µω3
[
− 2ψ

(
1− ψ2

)
(a1 + 2a2ψ) + 2a2

(
1− ψ2

)2 ]
= 0.

(4.12)
Then, we have the system:

ka0 + 1
2νωa

2
0 + ηω2a1 + 2µω3a1 = 0,

−2µω3a1 + 2ηω2a2 + νωa0a1 + ka1 = 0,

ka2 + νωa0a2 + 1
2νωa

2
1 − ηω2a1 − 4µω3a1 − 4µω3a2 = 0,

2µω3a1 − 2ηω2a2 + νωa1a2 = 0,

1
2νωa

2
2 + 2µω3a1 + 4µω3a2 = 0.

We solve the algebraic system with the aid of Maple. We obtain traveling
wave solutions of (4.8) as follows:
Case 1:

a0 = − 4η2

49µν
, a1 = − 8η2

49µν
, a2 = − 4η2

49µν
, k = − 4η3

343µ2
, w = − η

14µ
,

u(x, t) = − 8η2

49µν
− 8η2

49µν
tanh(ξ)− 4η2

49µν
tanh2(ξ). (4.13)

Case 2:

a0 =
12η2

49µν
, a1 = − 8η2

49µν
, a2 = − 4η2

49µν
, k =

4η3

343µ2
, w = − η

14µ
,

u(x, t) =
12η2

49µν
− 8η2

49µν
tanh(ξ)− 4η2

49µν
tanh2(ξ). (4.14)
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(a) ν = 1, µ = 1,
η = 2, α = 9

10 , β = 1
2 .

(b) ν = −2, µ = 9,
η = −12, α = 1

2 , β = 1
2 .

(c) ν = 2, µ = −1,
η = −3, α = 95

100 , β = 9
10

Figure 1. Plots of solution (4.13) with 0 ≤ x ≤ 10 and 0 ≤ t ≤ 30.

(a) ν = 1, µ = 1,
η = 2, α = 9

10 , β = 1
2 .

(b) ν = −2, µ = 9,
η = −12, α = 1

2 , β = 1
2 .

(c) ν = 2, µ = −1,
η = −3, α = 95

100 , β = 9
10

Figure 2. Plots of solution (4.14) with 0 ≤ x ≤ 10 and 0 ≤ t ≤ 30.

5. Conclusion

We have worked on two different problems. First, we have investigated a
class of fractional differential equations involving Caputo sequential derivatives
with some periodic conditions. The existence and uniqueness result has been
discussed via Banach contraction principle and an illustrative example has
been presented to show the applicability of the hypotheses of Theorem 3.1.

The stability of solutions has also been discussed. The second part we have
investigated involves studying traveling wave solutions for the time and space
conformable fractional KdV Burger equation by applying the Tanh method.
The obtained traveling wave solutions have been expressed in terms of hy-
perbolic tangent functions depending on different parameters. it seems that
the applied method is direct, concise and effective; it can be applied to other
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nonlinear evolution equations with conformable fractional derivatives in time
and space. Graphs of the waves are plotted under some particular values of
the data of the conformable fractional KdV Burger equation.

References

[1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279
(2015), 57–66.

[2] A. Abdelnebi and Z. Dahmani, New Van der Pol-Duffing Jerk Fractional Differential
Oscillator of Sequential Type, Mathematics, 10 (2022), 35–46.

[3] A. Anber and Z. Dahmani, The SGEM Method For Solving Some Time and Space-
Conformable Fractional Evolution Problems, Int. J. Open Problems Compt. Math., 16
(2023), 33–44.

[4] I. Batiha, S. Alshorm, I. Jebril and M.A. Hammad, A Brief Review about Fractional
Calculus, Int. J. Open Problems Comput. Math., 15(4) (2022), 39–56.

[5] I. Batiha, S.A. Njadat, R. Batiha, A. Zraiqat, A. Dababneh and S. Momani, Design
fractional-order PID controllers for Single-Joint robot arm model, Int. J. Adv. Soft
Comput. Appl., 14(2) (2022), 96–114.

[6] K. Bensaassa, R. Ibrahim and Z. Dahmani, Existence, Uniqueness and Numerical Sim-
ulation For Solutions of A Class of Fractional Differential Problems, Submitted.

[7] Z. Dahmani, A. Anber, Y. Gouari, M. Kaid and I, Jebril, Extension of a Method for
Solving Nonlinear Evolution Equations Via Conformable Fractional Approach, Int. Con-
ference on Information Tech., (2021), 38–42.

[8] Z. Dahmani, A. Anber and I. Jebril, Solving conformable evolution equations by an
extended numerical method, Jordan J. Math. Statis., 15(2) (2022), 363–380.

[9] Z. Dahmani, M.M. Belhamiti and M.Z. Sarikaya, A Three Fractional Order Jerk Equa-
tion With Anti Periodic Conditions, Facta Universitatis (NIS), 38(2) (2023), 253–271.

[10] S. Gao, R. Wu and C. Li, The Existence and Uniqueness of Solution to Sequential
Fractional Differential Equation with Affine Periodic Boundary Value Conditions, Sym-
metry, 14(7) (2022), 13898.

[11] Y. Gouari and Z. Dahmani, Stability of solutions for two classes of fractional differential
equations of Lane-Emden type, J. Interdisciplinary Math., 24(8) (2021), 2087-2099.

[12] Y. Gouari, Z. Dahmani and I. Jebril, Application of fractional calculus on a new differ-
ential problem of duffing type, Adv. Math. Sci. J., 9(12) (2020), 10989-11002.

[13] Y. Gouari, Z. Dahmani and M.Z. Sarikaya, A non local multi-point singular fractional
integro-differential problem of lane-emden type. Math. Meth. Appl. Sci., 43(11) (2020),
6938–6949.

[14] Y. Gouari, M. Rakah and Z. Dahmani, A sequential differetial problem with caputo and
riemann liouville derivatives involving convergent series, Adv. Theory Nonlinear Anal.
Appl., 7(2) (2023), 319–335.

[15] A.K. Gupta and S.S. Ray, On the solution of time-fractional KdV-Burgers equation
using Petrov-Galerkin method for propagation of long wave in shallow water, Chaos,
Solitons Fractals., 116 (2018), 376–380.

[16] J.H. He, Exp-function method for fractional differential equations, Int. J. Nonlinear Sci.
Numer. Simul, 14(6) (2013), 363–366.

[17] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-
differentiable functions further results, Comput. Math. Appl., 51(9-10) (2006), 1367–
1376.



1034 I. Jebril, Y. Gouari, M. Rakah and Z. Dahmani

[18] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional
derivative, J. Comput. Appl. Math., 264 (2014), 65–70.

[19] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional
Differential Equations, Elsevier B.V., Amsterdam, The Netherlands, 2006.

[20] W. Malfliet, The tanh method: I. Exact solutions of nonlinear evolution and wave equa-
tions, Physica Scripta, 54 (1996), 563–568.

[21] A.A. Mamun, T. An, N.H.M. Shahen, S.N. Ananna, Foyjonnesa, M.F. Hossain and T.
Muazu, Exact and explicit travelling-wave solutions to the family of new 3D fractional
WBBM equations in mathematical physics, Results Phys, 19 (2020).

[22] P. Meng and W. Yin, The Travelling Wave Solutions of KdV-Burgers Equations, In
Proceedings of the International Conference on Management Science and Innovative
Education, Xian, China, (2015).

[23] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional
Differential Equations, Wiley, New York, 1993.

[24] H. Mohamed, Sequential fractional pantograph differential equations with nonlocal
boundary conditions: Uniqueness and Ulam-Hyers-Rassias stability, Results Nonlinear
Anal, 5 (2022), 29–41.

[25] M. Rakah, A. Anber, Z. Dahmani and I. Jebril, An Analytic and Numerical study for two
classes of differential equation of fractional order involving Caputo and Khalil derivative,
An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 69(1) (2023), 29-48.

[26] M. Rakah, Z. Dahmani and A. Senouci, New Uniqueness Results for Fractional Dif-
ferential Equations with a Caputo and Khalil Derivatives, Appl. Math. Inf. Sci., 16(6)
(2022), 943–952.

[27] M. Rakah, Y. Gouari, R.W. Ibrahim, Z. Dahmani and H. Kahtan, Unique solutions,
stability and travelling waves for some generalized fractional differential problems, Appl.
Math. Sci. Eng., 23(1) (2023).

[28] U. Sadiya, M. Inc, M.A. Arefin and M.H. Uddin, Consistent travelling waves solutions to
the non-linear time fractional KleinGordon and Sine-Gordon equations through extended
tanh-function approach, J. Taibah Univ. Sci., 16 (2022), 594–607.

[29] K. Tablennehas and Z. Dahmani, A three sequential fractional differential problem of
duffing type, Appl. Math. E-Notes 21 (2021), 587–598.

[30] P. Umamaheswari, K. Balachandran, N. Annapoorani and Daewook Kim, Existence
and stability results for stochastic fractional neutral differential equations with Gaussian
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