• Title/Summary/Keyword: Boundary Problem

Search Result 2,230, Processing Time 0.028 seconds

Comparison of Potential and Viscous Codes for Water Entry Problem

  • Kwon, Sun-Hong;Park, Chang-Woo;Shin, Jae-Young
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.32-36
    • /
    • 2012
  • This paper presents a comparison of potential and viscous computational codes for the water entry problem. A po-tential code was developed which adopted the boundary element method to solve the problem. A nonlinear free surface boundary condition was integrated to find new locations of free surface. The dynamic boundary condition was simplified by taking constant potential values for every time steps. The simplified dynamic boundary condition was applied in the new position of the free surface not at the mean level, which is the usual practice for linearized theory. The commercial code FLUENT was used to solve the water entry problem from the viscosity point of view. The movement of the air-liquid interface is traced by distribution of the volume fraction of water in a computational cell. The pressure coefficients were compared with each other, while experimental results published by other researchers were also examined. The characteristics of each method were discussed to clarify merits and limitations when they were applied to the water entry problems.

A FINITE DIFFERENCE APPROXIMATION OF A SINGULAR BOUNDARY VALUE PROBLEM

  • Lee, H.Y.;Ohm, M.R.;Shin, J.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.473-484
    • /
    • 1998
  • We consider a finite difference approximation to a singular boundary value problem arising in the study of a nonlinear circular membrane under normal pressure. It is proved that the rate of convergence is $O(h^2)$. To obtain the solution of the finite difference equation, an iterative scheme converging monotonically to the solution of the finite difference equation is introduced. And the numerical experiment of this method is given.

  • PDF

THIRD ORDER THREE POINT FUZZY BOUNDARY VALUE PROBLEM UNDER GENERALIZED DIFFERENTIABILITY

  • Prakash, P.;Uthirasamy, N.;Priya, G. Sudha
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.791-805
    • /
    • 2014
  • In this article, we investigate third order three-point fuzzy boundary value problem to using a generalized differentiability concept. We present the new concept of solution of third order three-point fuzzy boundary value problem. Some illustrative examples are provided.

SUPERCONVERGENT GRADIENT RECOVERY FOR THE PARABOLIC INITIAL BOUNDARY VALUE PROBLEM

  • LAKHANY, AM;WHITEMAN, JR
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • Gradient recovery techniques for the second order elliptic boundary value problem are well known. In particular, the Midpoint and the Vertex Recovery Operator have been studied by various authors and under suitable assumptions on the regularity of the unknown solution superconvergence property of these recovered gradients have been proved. In this paper we extend these results to the recovered gradient of the finite element approximation to a model initial-boundary value problem, and go on to prove superconvergence result for this recovered gradient in a discrete (in time) error norm.

  • PDF

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

AN APPLICATION OF LINKING THEOREM TO FOURTH ORDER ELLIPTIC BOUNDARY VALUE PROBLEM WITH FULLY NONLINEAR TERM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.355-365
    • /
    • 2014
  • We show the existence of nontrivial solutions for some fourth order elliptic boundary value problem with fully nonlinear term. We obtain this result by approaching the variational method and using a linking theorem. We also get a uniqueness result.

A singular nonlinear boundary value problem in the nonlinear circular membrane under normal pressure

  • Shin, Jun-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.761-773
    • /
    • 1995
  • The nonlinear boundary value problem $$ y" = f(x, y, y') = -\frac{x}{3}y' - \frac{y^2}{g(x)}, 0 < x < 1, $$ $$ (1.1) y'(0) = 0, and either (H) : y(1) = \lambda > 0 $$ $$ or (S) : y'(1) + (1 - \upsilon)y(1) = 0, 1 - \upsilon > 0, $$ $$g \in C[0, 1], k \leq g(x) \leq K on [0, 1] for some k, K > 0 $$ arises in the nonlinear circular membrane under normal pressure [2, 3]., 3].

  • PDF

EXISTENCE OF n POSITIVE SOLUTIONS TO SECOND-ORDER MULTI-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

  • Wang, Feng;Zhang, Fang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.815-827
    • /
    • 2012
  • The existence of $n$ positive solutions is established for second order multi-point boundary value problem at resonance where $n$ is an arbitrary natural number. The proof is based on a theory of fixed point index for A-proper semilinear operators defined on cones due to Cremins.

REDUCTION METHOD APPLIED TO THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • We consider the semilinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the semilinear biharmonic boundary value problem. We show this result by using the critical point theory, the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.