
Fully discrete Galerkin method for a unidimensional

single-phase nonlinear Stefan problem with Neumann

boundary conditions

H. Y. Lee, M. R. Ohm, J. Y. Shin

J. KSIAM Vol.3, No.1, 55-69, 1999

Abstract

In this paper we analyze the error estimates for a single-phase nonlinear Ste-

fan problem with Neumann boundary conditions. We apply the modi�ed Crank-

Nicolson method to get the optimal order of error estimates in the temporal direc-

tion.

1. Introduction

In this paper we consider the �nite element fully discrete approximation to the

following single-phase nonlinear Stefan problem.

Find a pair f(U; S) : U = U(y; �) and S = S(�)g such that U satis�es

(1:1) U� � (a(U)Uy)y = 0 in 
(�)� (0; T0];

with initial and boundary conditions

(1:2) U(y; 0) = g(y) for y 2 I;

(1:3) Uy(0; �) = U(S(�); �) = 0 for 0 < � � T0;

and further, on the free boundary, S satis�es

(1:4) S� = �a(U)Uy for 0 < � � T0

with S(0) = 1, where 
(�) = fy j 0 < y < S(�)g for each � 2 (0; T0] and I = (0; 1).

For a single-phase linear Stefan problem, the study of semidiscrete �nite element error

analysis was initiated with the �xed domain method by Nitsche[9,10] using the �xing

domain method. Das and Pani[3] have extended the error-analysis to nonlinear problem

and derived optimal estimates in H1 and H2 norms for semidiscrete Galerkin approx-

imations . And when the temperature was given at the �xed boundary instead of the
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ux condition, Das and Pani[3,4] obtained error estimates for a semidiscrete Galerkin

approximation. Also error estimates for fully discrete Galerkin approximation, depend-

ing on the backward Euler method in time, were derived in [12]. Lee and Lee[7] adopted

the modi�ed Crank-Nicolson method to improve the rate of convergence in the tem-

poral direction for a single-phase nonlinear Stefan problem with Dirichlet boundary

condition. Lee, Ohm and Shin[8] analyzed the optimal convergence of semi-discrete

approximation in L2 norm for a single-phase nonlinear Stefan problem with Neumann

boundary condition.

In this paper we consider the optimal convergence of fully discrete approximation

for a single-phase nonlinear Stefan problem in one space dimension with Neumann

boundary condition and we achieve the convergence of order 2 in the temporal direction.

For simplicity, we suppress � in 
(�) and write 
(�) as 
 only.

For an integer m � 0, and 1 � p � 1, Wm;p(
) will denote the usual Sobolev

space of measurable functions which, together with their distributional derivatives of

order up to m, are in Lp. For 
 = I and p = 2, we shall use the symbol Hm in place

of Wm;2(I) with norm k � km.
Let Y (�) be a Banach space, for each �xed � � 0 with norm k �kY (�). The following

notation is used :

kvkLp(0;T ;Y (�)) = (

Z
T

0
kv(�)kp

Y (�)
d�)

1

p ; for 1 � p <1
kvkL1(0;T ;Y (�)) = sup

0���T

kv(�)kY (�);

where Y (�) is Wm;p(
).

Throughout this paper, we assume the following regularity conditions on fU; Sg:

Condition I :

(i) The pair fU; Sg is the unique smooth solution to (1.1)-(1.4) with S(�) � � > 0

for all � 2 [0; T0].

(ii) The function a(�) belongs to C4(R) and has bounded derivatives up to order 4,

bounded by a common constant ~K1, further, there exists ~� > 0 such that a(w) � ~� for

all w 2 R.
(iii) The initial function g is su�ciently smooth nonnegative, and satis�es the com-

patibility conditions g(0) = g(1) = 0.

Condition II : For r � 1

U 2 W 3;1(0; T0;H
r+1(
))

S 2 W 3;2(0; T0):

Let ~K2 be a bound for fU; Sg in the spaces appeared in condition II.

Throughout this paper, we frequently use the following inequalities for error esti-

mates.
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Young's inequality : For nonnegative real numbers a and b and a positive number �,

ab � (�a)p

p
+
1

q
(
b

�
)q for

1

p
+
1

q
= 1

with 1 � p � 1:

Sobolev imbedding inequality: For � 2 H2,

sup
0�x�1

(j�(x)j + j�x(x)j) � k�k2;

j�x(1)j � k�xk+
p
2k�xk

1

2 k�xxk
1

2 :

Poincare's inequality: For � 2 H1
0 ; k�k � k�xk:

2. Weak formulation and Galerkin approximations

By the application of the following Landau transformations

(2:1) x = yS�1(�) and t(�) =

Z
�

0
S�2(� 0)d� 0;

the given problem (1.1)-(1.4) can be transformed into the following problem:

Find a pair f(u; s);u(x; t) � U(y; �) and s(t) � S(�)g such that

(2:2) ut � (a(u)ux)x = �a(0)ux(1)xux for (x; t) 2 I � (0; T ];

with

(2:3) u(x; 0) = g(x) for x 2 I

(2:4) ux(0; t) = u(1; t) = 0 for 0 < t � T

(2:5)
ds

dt
= �a(0)ux(1)s for 0 < t � T

with s(0) = 1. Here, t = T corresponds to � = T0 and ux(1) = (@u
@x
)(1; t).

Note that the regularity properties in condition II for fU; Sg are transferred to

fu; sg and call these conditions II with the bounds K2.

And also from (2.1) we can get the following:

d�

dt
= s2(t) for 0 < t � T

�(0) = 0:

Now we introduce a Sobolev space H2
0 = fv 2 H2; vx(0) = v(1) = 0g:
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Multiplying both sides of (2.2) by vxx and integrating by parts the �rst term of the

left-hand side with respect to x, we get

(2:6) (utx; vx) + ((a(u)ux)x; vxx) = a(0)ux(1)(xux; vxx) for v 2 H2
0 :

To get Galerkin approximation of u in the �nite element space, we introduce a family

of �nite dimensional subspaces fS0
h
g of H2

0 , satisfying the following approximation

property and inverse property:

There is a constant K0 independent of h such that

(2:7) inf
�2S0

h

kv � �kj � K0h
m�jkvkm;

for any v 2 Hm \H2
0 for j = 0; 1; 2 and 2 � m � r + 1. And

(2:8) k�k2 � K0h
�1k�k1; for � 2 S0

h
:

Now we de�ne Galerkin approximation as follows. Find uh : [0; T ]! S0
h
such that

(2:9) (uh
tx
; �x) + ((a(uh)uh

x
)x; �xx) = a(0)uh

x
(1)(xuh

x
; �xx); 8� 2 S0

h
;

with

uh(x; 0) = Qhg(x)

where Qh is an appropriate projection onto S
0
h
to be de�ned later in section 4. Moreover

Galerkin approximations sh and �h of s and � , respectively are de�ned by

(2:10)
dsh

dt
= �a(0)uh

x
(1)sh for t � 0

with

sh(0) = 1

and

(2:11)
d�h

dt
= s2

h
(t) for t � 0

with

�h(0) = 0:

Next we de�ne a fully discrete approximation. To avoid having a nonlinear term, we

adopt the modi�ed Crank-Nicolson method which yields second-order accuracy in time.

Let k = T

N
be the step size in time, and tn = nk; n = 0; 1; 2; � � � ; N: The modi�ed

Galerkin Crank-Nicolson approximation fZmgN
m=2 is de�ned as follows :

(2:12) (dtZ
n

x
; �x) + ((a(cZn)Zn

x
)x; �xx) = a(0)cZn

x
(1)(xZn

x
; �xx);

8� 2 S0
h
; 1 � n � N � 1;
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where dtZ
n

x
=

Z
n+1
x �Zn

x

k
; cZn = 3

2
Zn � 1

2
Zn�1, and Zn

x
=

Z
n+1
x +Zn

x

2
.

Now 2 initial approximations Z0, and Z1, needed to apply (2.12), are de�ned in the

following :

(2:13) Z0(x) = Qhg(x) for 0 < x < 1

(2:14) (dtZ
0
x
; �x) + ((a(Z0)Z0

x
)x; �xx) = a(0)Z0

x
(1)(xZ0

x
; �xx):

The approximation W n of s(tn) is de�ned by

(2:15) dtW
n = �a(0)Zn+1

x
(1)W n for 0 � n � N � 1;

W 0 = 1:

And also the approximation �n
h
of �(tn) is

(2:16) dt�
n

h
= (W n)2;

�0
h
= 0:

3. Auxiliary projection and related estimates

For u; v; w 2 H0
2 (I), we de�ne a trilinear form

(3:1) A(u; v; w) = ((a(u)vx + au(u)uxv)x; wxx)� a(0)ux(1)(xvx; wxx):

We can prove that

(3:2) jA(u; v; w)j � K3kvk2kwk2

(3:3) A(u; v; v) � �kvk22 � �kvk21
for u; v and w 2 H2

0 where K3; �; and � are constants depending on kuk2 only.
Let

(3:4) A�(u; v; w) = A(u; v; w) + �(vx; wx):

Let ~u 2 S0
h
be an auxiliary projection of u with respect to the form A� :

(3:5) A�(u;u� ~u; �) = 0 8 � 2 S0
h
:

Theorem 3.1.[3] For su�ciently small h and a given u 2 H2 \H1
0 , there exists a

unique solution ~u 2 S0
h
to (3.5)
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Let � = u � ~u. Then we obtain the following estimates for � and �t whose proofs

are given in [8].

Theorem 3.2. For t 2 [0; T ], there exists a constant K4 = K4(K0;K1;K2;K3;

�; �) such that

k�tkj + k�kj � K4h
m�jkukm;

j�x(1)j � K4h
2(m�2)kukm;

hold for j = 0; 1; 2 and 2 � m � r + 1.

As a corollary to Theorem 3.2, there exists K5 such that

(3:6) k~ukL1(H2) + k~utkL1(H2) � K5:

4. Error estimates for the fully discrete approximation

To get the error estimates for un � Zn and sn �W n, we introduce �n = un � ~un,

�n = Zn � ~un and en = un � Zn. Further let Z0 = ~u(x; 0), i.e.,

A(g; g �Qhg; �) = 0 for � 2 S0
h
:

We assume that there exists a constant K6 such that

(4:1) kZnkW 1;1 � K6 for n = 0; 1; 2; � � � ; N:

The � appearing in the theorems in this section is an arbitrary positive real number.

Especially, we assume that � is su�ciently small whenever it is needed.

In the following theorem we estimate the error bound for �1 .

Theorem 4.1. There exist K7 = K7(K1;K2;K4;K5;K6; �) and h0 such that for

h � h0; k = O(h); 4 � m � r + 1 and ~� > 0,

(4:2) k�1
x
k2 + ~�kk�1

xx
k2 � K7(K1;K2;K4;K5;K6; �)kfh2m + k4g

holds.

Proof. From (3.5) and (2.6) with v = � we have,

(4.3)

(dt~u
0
x
; �x) + ((a(~u

1

2 )~u
1

2
x )x; �xx) = �(dt�0x; �x)� ((

@2u

@t@x
)
1

2 � dtu
0
x
; �x)

+a(0)u
1

2
x (1)(x~u

1

2
x ; �xx) + ((au(u

1

2 )�
1

2u
1

2
x )x; �xx)

�(([a(u 1

2 )� a(~u
1

2 )]~u
1

2
x )x; �xx) + �(�

1

2
x ; �x)

The �fth term on the right-hand side of (4.3) can be rewritten as,
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(4.4)

(([a(u
1

2 )� a(~u
1

2 )]�
1

2
x )x � ([a(u

1

2 )� a(~u
1

2 )]u
1

2
x )x; �xx)

= ((~au�
1

2 �
1

2
x )x; �xx)� ([au(u

1

2 )�
1

2u
1

2
x ]x; �xx) + ([~auu(�

2)
1

2u
1

2
x ]x; �xx)

where

~au =

Z 1

0

@a

@u
(u

1

2 � ��
1

2 )d�;

~auu =

Z 1

0

@2a

@u2
(u

1

2 � ��
1

2 )(1 � �)d�:

Substituting (4.4) in (4.3) and subtracting (4.3) from (2.14), we have

(4.5)

(dt�
0
x
; �x) + ((a(Z0)�0

x
)x; �xx) = �(dt�0 + u

1

2

t
� dtu

0; �xx)

+a(0)[Z0
x
(1)(xZ0

x
; �xx)� u

1

2
x (1)(x~u

1

2
x ; �xx)]

�((a(Z0)~u0
x
)x; �xx) + ((a(~u

1

2 )~u
1

2
x )x; �xx)

�((~au�
1

2 �
1

2
x )x; �xx)� ([~auu(�

2)
1

2u
1

2
x ]x; �xx)

+�(�
1

2
x ; �x)

� I1 + I2 + I3 + I4 + I5:

Now we need to �nd the estimates for I1; I2; I3; I4 and I5. To get the estimates, we

substitute � = �1 in (4.5). First we get the estimation for I1 in the following

jI1j = j(dt�0 + u
1

2

t
� dtu

0; �1
xx
)j

� 1

2�
(kdt�0k2 + kdtu0 � u

1

2

t
k2) + �k�1

xx
k2:

To get an estimation for I2, we separate I2 into four terms in the following way

I2 = a(0)[Z0
x
(1)(x�0

x
; �1
xx
)

+(�0
x
(1)� �0

x
(1))(x~u0

x
; �1
xx
)

+u0
x
(1)(x~u0

x
; �1
xx
)� u

1

2
x (1)(x~u0x; �

1
xx
)

+u
1

2
x (1)(x(~u0x � ~u

1

2
x ); �

1
xx
)]

� I21 + I22 + I23 + I24:

Now we will estimate I2i; 1 � i � 4. Applying condition I, (4.1) and Young's inequality

to the term I21, we have

jI21j � K(�;K1;K6)(k�0k21 + k�1k21) + �k�1
xx
k2:
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And using condition I, the Sobolev inequality, (3.6) and Young's inequality to I22, we

get

jI22j � K(�;K1;K5)(k�0xk2 + j�0
x
(1)j2) + 1

4
�2k�0

xx
k2 + �k�1

xx
k2:

To estimate I23, we consider

u0
x
(1)� u

1

2
x (1) =

1

4
k2u0

xtt
(�1)� 1

8
k2u0

xtt
(�2):

Thus we get

jI23j � K(�;K1;K2;K5)k
4 + �k�1

xx
k2:

Similarly, we obtain

jI24j � K(�;K1;K2;K5)k
4 + �k�1

xx
k2:

Therefore, we have

jI2j � K(�;K1;K2;K5;K6)fk�0k21 + k�1k21 + k�0
x
k2 + j�0

x
(1)j2 + k4g

+4�k�1
xx
k2 + 1

4
�2k�0

xx
k2:

To estimate I3, we can rewrite I3 as follows:

I3 = ((a(~u
1

2 )~u
1

2
x � a(~u0)~u

1

2
x )x; �

1
xx
)

+((a(~u0)~u
1

2
x � a(~u0)~u0

x
)x; �

1
xx
)

+((a(~u0)~u0
x
� a(Z0)~u0

x
)x; �

1
xx
)

� I31 + I32 + I33:

Using (3.6), condition I and Young's inequality, we obtain

jI31j � K(K1;K5; �)k
4 + 3�k�1

xx
k2;

jI32j � K(K1;K5; �)k
4 + 2�k�1

xx
k2;

jI33j � K(K1;K5; �)(k�1k21 + k�0k21) + 3�k�1
xx
k2:

Therefore we have

jI3j � K(�;K1;K5)fk4 + k�0k21 + k�1k21g+ 8�k�1
xx
k2:

By the similar computation as above, we get

jI4j � K(�;K1;K2)fk�
1

2 k2
L1

k�
1

2
xxk2 + k� 1

2 k2
W 1;1k�

1

2
x k2 + k� 1

2 k4
L1

g+ 6�k�1
xx
k2:

And

jI5j � K(�; �)k� 1

2 k2 + �k�1
xx
k2:

Further we note that

(dt�
0
x
; �1
x
) � 1

2k
(k�1

x
k2 � k�0

x
k2):
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And we obtain the following inequality

((a(Z0)�0
x
)x; �

1
xx
) � 1

2
f~�k�1

xx
k2 �K(~�;K1;K6)k�1xk2 �K(~�;K1;K6)k�0xk2

�K(~�;K1)k�0xxk2 �
~�

2
k�1

xx
k2g:

Thus we derive

1

2k
(k�1

x
k2 � k�0

x
k2) + 1

4
~�k�1

xx
k2

� K(�;K1;K2;K5;K6; �)fkdt�0k2 + j�0
x
(1)j2 + k� 1

2 k2
L1

k�
1

2
xxk2 + k� 1

2 k2
W 1;1k�

1

2
x k2

+k� 1

2 k4
L1

+ k� 1

2 k2 + k4g+K(�;K1;K2;K5;K6)k�1k21 + 20�k�1
xx
k2 + 1

4
�2k�0

xx
k2

+K(�)kdtu0 � u
1

2

t
k2:

Therefore,

k�1
x
k2 + 1

2
~�kk�1

xx
k2

� K(�;K1;K2;K4;K5;K6; �)kfkdt�0k2 + j�0
x
(1)j2 + k� 1

2 k2
L1

k�
1

2
xxk2 + k� 1

2 k2

+k� 1

2 k2
W 1;1k�

1

2
x k2 + k� 1

2 k4
L1

+ k4g+ kK(�;K1;K2;K5;K6)k�1k21 + 40�kk�1
xx
k2

+
1

2
�2kk�0

xx
k2 +K(�)kkdtu0 � u

1

2

t
k2:

Since

kdtu0 � u
1

2

t
k2 = k1

6
k2uttt(�1)� 1

8
k2uttt(�2)k2

� K(K2)k
4;

we get

k�1
x
k2 + ~�kk�1

xx
k2 � K(�;K1;K2;K4;K5;K6; �)kfh2m + k4g

for some ~� > 0; k and � su�ciently small.

Now we prove the convergence of �n for 1 � n � N .

Theorem 4.2. There exists K8 = K8(K1;K2;K4;K5;K6; �) and h0 such that for

h � h0; k = O(h); 4 � m � r + 1and~� > 0

sup
1�n�N

k�n
x
k2 + ~�k

NX
j=1

k�j
xx
k2 � K8(K1;K2;K4;K5;K6; �)fh2m + k4g

holds.

Proof. By substituting v = � into (3.5) and (2.7), we derive the following



64 H. Y. Lee, M. R. Ohm, J.Y.Shin

(4.6)

(dt~u
n; �x) + ((a(~un+

1

2 )~u
n+ 1

2
x )x; �xx)

= �(dt�nx ; �x)� ((
@2u

@t@x
)n+

1

2 � dtu
n

x
; �x) + a(0)u

n+ 1

2
x (1)(x~u

n+ 1

2
x ; �xx)

+(au(u
n+ 1

2 )�n+
1

2u
n+ 1

2
x )x; �xx)� (([a(un+

1

2 )� a(~un+
1

2 )]~u
n+ 1

2
x )x; �xx)

+�(�x
n+ 1

2 ; �x):

The �fth term on the right hand side of (4.6) can be rewritten as

(4.7)

�(([a(un+ 1

2 )� a(~un+
1

2 )]~u
n+ 1

2
x )x; �xx)

= ((~au�
n+ 1

2 �
n+ 1

2
x )x; �xx) � ([au(u

n+ 1

2 )�n+
1

2u
n+ 1

2
x ]x; �xx)

+ ([~auu(�
2)
n+ 1

2u
n+ 1

2
x ]x; �xx)

where

~au =

Z 1

0

@a

@u
(un+

1

2 � ��n+
1

2 )d�; ~auu =

Z 1

0

@2a

@u2
(un+

1

2 � ��n+
1

2 )(1� �)d�:

Substituting (4.7) in (4.6), and subtracting (4.6) from (2.12), we get

(dt�
n

x
; �x) + ((a(cZn)�n

x
)x; �xx) = �(dt�n + u

n+ 1

2

t
� dtu

n; �xx)

+a(0)[cZn
x
(1)(xZn

x
; �xx)� u

n+ 1

2
x (1)(x~u

n+ 1

2
x ; �xx)]

�((a(cZn)
~un
x
+ ~un+1

x

2
)x; �xx) + ((a(~un+

1

2 )~u
n+ 1

2
x )x; �xx)

�((~au�n+
1

2 �
n+ 1

2
x )x + [~auu(�

2)n+
1

2u
n+ 1

2
x ]x; �xx)

+�(�
n+ 1

2
x ; �x)

� I1 + I2 + I3 + I4 + I5:

To estimate Ii, 1 � i � 5, we take � = �n+1. Now, we estimate I1,

jI1j � 1

2�
(kdt�nk2 + kdtun � u

n+ 1

2

t
k2) + �k�n+1

xx
k2:

Since I2 can be rewritten as

I2 = a(0)[cZn
x
(1)(x�n

x
; �n+1
xx

) + (c�n
x
(1)� c�n

x
(1))(x~un

x
; �n+1
xx

) + cun
x
(1)(x~un

x
; �n+1
xx

)

�un+
1

2
x (1)(x~un

x
; �n+1
xx

) + u
n+ 1

2
x (1)(x(~un

x
� ~u

n+ 1

2
x ); �n+1

xx
)];

using condition I, (4.1) and Young's inequality, we get

ja(0)[cZn
x
(1)(x�n

x
; �n+1
xx

)]j � K(�;K1;K6)(k�nk21 + k�n+1k21) + �k�n+1
xx

k2:
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And

j(c�n
x
(1)�c�n

x
(1))(x

~un+1
x

+ ~un
x

2
; �n+1
xx

)j � K(�;K5)fkc�nx k2+jc�nx(1)j2g+1

4
�2kd�n

xx
k2+�k�n+1

xx
k2:

From condition II, (3.6) and Young's inequality, we obtain

j(cun
x
(1)� u

n+ 1

2
x (1))(x~un; �n+1

xx
)j � K(�;K2;K5)k

4 + �k�n+1
xx

k2:

Similarly we have

jun+
1

2
x (1)(x(~un

x
� ~u

n+ 1

2
x ); �n+1

xx
)j � K(�;K2;K5)k

4 + �k�n+1
xx

k2:

Therefore,

jI2j � K(�;K1;K2;K5;K6)fk�nk21 + k�n+1k21 + kc�n
x
k2 + jc�n

x
(1)j2 + k4g

+4�k�n+1
xx

k2 + 1

4
�2kd�n

xx
k2:

Since I3 can be rewritten as

((a(~un+
1

2 )~u
n+ 1

2
x � a(cZn)~un

x
)x; �

n+1
xx

)

= ((a(~un+
1

2 )~u
n+ 1

2
x � a(c~un)~un+ 1

2
x + a(c~un)~un+ 1

2
x

�a(c~un)~un
x
+ a(c~un)~un

x
� a(cZn)~un

x
)x; �

n+1
xx

):

Using condition I, Young's inequality and (3.6), we obtain

jI3j � K(�;K1;K5)fk4 + k�nk21 + k�n�1k21g+ 8�k�n+1
xx

k2:

Using condition I, Young's inequality and theorem 3.2, we get the following

jI4j = j((~au�n+
1

2 �
n+ 1

2
x )x; �xx)� ([~auu(�

2)
n+ 1

2u
n+ 1

2
x ]x; �xx)j

� K(�;K1;K2;K4)fk�n+
1

2 k2
L1

k�n+
1

2
xx k2 + k�n+ 1

2 k2
W 1;1k�n+

1

2
x k2 + k�n+ 1

2 k4
L1

g
+6�k�n+1

xx
k2:

And

jI5j � K(�; �)k�n+ 1

2 k2 + �k�n+
1

2
xx k2:

Since

(dt�
n

x
; �n+1
x

) � 1

2k
(k�n+1

x
k2 � k�n

x
k2);

and

((a(cZn)�n
x
)x; �

n+1
xx

) � 1

4
~�k�n+1

xx
k2 �K(~�;K1;K6)fk�n+1

x
k2 + k�n

x
k2 + k�n

xx
k2g;
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we �nally have

1

2k
(k�n+1

x
k2 � k�n

x
k2) + 1

4
~�k�n+1

xx
k2

� K(�;K1;K2;K4;K5;K6; �)fkdt�nk2 + jc�n
x
(1)j2 + k�n+ 1

2 k2
L1

k�n+
1

2
xx k2

+k�n+ 1

2 k2
W 1;1k�n+

1

2
x k2 + k�n+ 1

2 k4
L1

+ k�n+ 1

2 k2 + k4g+ 20�k�n+1
xx

k2 + 1

4
�2kd�n

xx
k2

+K(�)kdtun � u
n+ 1

2

t
k2 +K(�;K1;K2;K5;K6)fk�n�1k21 + k�nk21 + k�n+1k21g:

Multiplying both sides by 2k and using the discrete type Gronwall inequality implies,

sup
2�n�N

k�n
x
k2 + ~�k

NX
j=2

k�j
xx
k2 � Cfk�1

x
k2 + kk�1

xx
k2g

+K(�;K1;K2;K4;K5;K6; �)(h
2m + k4)

for some ~� > 0: By applying the result of theorem 4.1 to the inequality above, we

obtain

sup
1�n�N

k�n
x
k2 + ~�k

NX
j=1

k�j
xx
k2 � K(�;K1;K2;K4;K5;K6;K7)fh2m + k4g:

Since en = �n � �n, by combining the results of theorems 4.1 and 4.2, we get the

optimal convergence of en in the norms k � k and k � k1.
Theorem 4.3. There exists K9 = K9(K1;K2;K4;K5;K6; �) such that for 4 � m �

r + 1; � > 0; k = O(h),

sup
0�n�N

kenk21 � K9(h
2(m�1) + k4);

sup
0�n�N

kenk21 + �k

N�1X
n=0

ken+1k22 � K9(h
2(m�2) + k4);

sup
0�n�N

kenk2 � K9(h
2m + k4)

hold.

Let en1 = sn �W n and en2 = �n � �n
h
. Now we will estimate the errors jen1 j and jen2 j

in the following theorem.

Theorem 4.4. There exists a constant K10 = K10(K1;K2;K4;K5;K6; �) such

that, for 4 � m � r + 1 and k = O(h)

sup
0�n�N

(jen1 j2 + jen2 j2) � K10(h
2m + k4):

Proof. Subtract (2.15) form (2.5) and multiply the result to get by en+1
1
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(4:8) hdten1 ; en+1
1 i = hdtsn�(

ds

dt
)n+

1

2 ; en+1
1 i�ha(0)un+

1

2
x (1)sn+

1

2 �a(0)Zn
x
(1)W n; en+1

1 i

where hf; gi = fg. (4.8) can be splitted into

hdten1 ; en+1
1 i = hdtsn � (

ds

dt
)n+

1

2 ; en+1
1 i � ha(0)Zn

x
(1)en1 ; e

n+1
1 i

+ha(0)(sn � sn+
1

2 )Zn
x
(1); en+1

1 i+ ha(0)sn+ 1

2 (Zn
x
(1)� un

x
(1)); en+1

1 i
+ha(0)sn+ 1

2 (un
x
(1) � u

n+ 1

2
x (1)); en+1

1 i:
Since

hdten1 ; en+1
1 i � 1

2k
(jen+1

1 j2 � jen1 j2);
we have

1

2k
(jen+1

1 j2 � jen1 j2) � jdtsn � (
ds

dt
)n+

1

2 j2 +K(K1;K6)jen+1
1 j2 +K(K1;K6)jen1 j2

+K(K1;K2)jenx(1)j2 +K(K1;K2;K6)k
4; 0 � n � N � 1:

Now, we sum up the terms of the inequality above

1

2k
(jen+1

1 j2) �
nX

m=0

fjdtsm � (
ds

dt
)m+ 1

2 j2 +K(K1;K6)jem+1
1 j2 +K(K1;K6)jem1 j2

+K(K1;K2)(j�nx (1)j2 + j�n
x
(1)j2) +K(K1;K2;K6)k

4g; 0 � n � N � 1:

Because of

k

nX
m=0

jdtsm � (
ds

dt
)m+ 1

2 j2 � K(K2)k
4;

using theorem 3.2 and 4.2, we have

jen+1
1 j2 � K(K1;K2;K4;K5;K6; �)kfh2m + k4g

+K(K1;K6)k
nX

m=0

(jem+1
1 j2 + jem1 j2); 0 � n � N � 1:

By the application of the discrete Gronwall inequality, we obtain

jen+1
1 j2 � K(K1;K2;K4;K5;K6; �)fh2m + k4g; 0 � n � N � 1:

For the estimate for e2, subtract (2.16) from (2.6) and multiply the result to get by

en+1
2 ,

hdten2 ; en+1
2 i = hdt�n � (

d�

dt
)n+

1

2 ; en+1
2 i � hW n; en+1

2 i+ h(sn+ 1

2 )2; en+1
2 i

� jdt�n � (
d�

dt
)n+

1

2 j2 + jen+1
2 j2 � h(W n)2 � (

sn + sn+1

2
)2; en+1

2 i

+h(sn+ 1

2 )2 � (
sn + sn+1

2
)2; en+1

2 i:



68 H. Y. Lee, M. R. Ohm, J.Y.Shin

Since

hdten2 ; en+1
2 i � 1

2k
(jen+1

2 j2 � jen2 j2);
we have

jen+1
2 j2 � kK(K1;K2;K4;K5;K6; �)(n+ 1)fh2m + k4g+ 6k

n+1X
i=1

jei2j2:

Finally we obtain,

jen+1
2 j2 � K(K1;K2;K4;K5;K6; �)fh2m + k4g:

Let Un

h
� Zn and Sn

h
�W n. Now we approximate the errors Un�Un

h
= U(�n

h
)�Zn

and Sn�Sn
h
= S(�n

h
)�W n in k�k. By the similar way as in [7], we obtain the following

theorem.

Theorem 4.5. Suppose that conditions I and II hold for fU; Sg and k = O(h).

Then for 4 � m � r + 1;��h = O(h) and

sup
n

fkUn � Un

h
k
L2(~
n) + jSn � Sn

h
jg = K(�; fK2;K10)(h

m + (��h)
2)

sup kUn � Un

h
k
H1(~
n) = K(�; fK2;K9)(h

m�1 + (��h)
2)
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