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Fully discrete Galerkin method for a unidimensional
single-phase nonlinear Stefan problem with Neumann
boundary conditions

H. Y. Lee, M. R. Ohm, J. Y. Shin

Abstract

In this paper we analyze the error estimates for a single-phase nonlinear Ste-
fan problem with Neumann boundary conditions. We apply the modified Crank-
Nicolson method to get the optimal order of error estimates in the temporal direc-
tion.

1. Introduction

In this paper we consider the finite element fully discrete approximation to the
following single-phase nonlinear Stefan problem.
Find a pair {(U,S) : U =U(y,7) and S = S(7)} such that U satisfies

(1.1) Ur = (a(U)Uy)y =0 in (1) x (0,To],
with initial and boundary conditions

(1.2) Uy,0)=g(y) for yel,

(1.3) Uy(0,7) =U(S(r),7) =0 for 0 <7 <Tp,
and further, on the free boundary, S satisfies
(1.4) S; = —a(U)Uy for 0<7<1T)

with S(0) =1, where Q(7) = {y | 0 <y < S(7)} for each 7 € (0,Tp] and I = (0,1).

For a single-phase linear Stefan problem, the study of semidiscrete finite element error
analysis was initiated with the fixed domain method by Nitsche[9,10] using the fixing
domain method. Das and Pani[3] have extended the error-analysis to nonlinear problem
and derived optimal estimates in H' and H? norms for semidiscrete Galerkin approx-
imations . And when the temperature was given at the fixed boundary instead of the
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flux condition, Das and Pani[3,4] obtained error estimates for a semidiscrete Galerkin
approximation. Also error estimates for fully discrete Galerkin approximation, depend-
ing on the backward Euler method in time, were derived in [12]. Lee and Lee[7] adopted
the modified Crank-Nicolson method to improve the rate of convergence in the tem-
poral direction for a single-phase nonlinear Stefan problem with Dirichlet boundary
condition. Lee, Ohm and Shin[8] analyzed the optimal convergence of semi-discrete
approximation in Ly norm for a single-phase nonlinear Stefan problem with Neumann
boundary condition.

In this paper we consider the optimal convergence of fully discrete approximation
for a single-phase nonlinear Stefan problem in one space dimension with Neumann
boundary condition and we achieve the convergence of order 2 in the temporal direction.

For simplicity, we suppress 7 in Q(7) and write (7) as Q only.

For an integer m > 0, and 1 < p < oo, W™P(Q) will denote the usual Sobolev
space of measurable functions which, together with their distributional derivatives of
order up to m, are in LP. For 2 = I and p = 2, we shall use the symbol H™ in place
of W™2(I) with norm || - || .

Let Y(7) be a Banach space, for each fixed 7 > 0 with norm || -[|y-(). The following
notation is used :

T 1
vl oo,y (z)) = (/0 ||v(7)||’1’/(7)d7)p, for 1<p< oo
V|| poorviey = sup ||lv(r s
[vll Lo (0,75 (7)) ogTET” (M) ly ()

where Y (1) is W™P(Q).
Throughout this paper, we assume the following regularity conditions on {U, S}:

Condition I :

(i) The pair {U, S} is the unique smooth solution to (1.1)-(1.4) with S(7) >v >0
for all 7 € [0, Tp).

(ii) The function a(-) belongs to C*(R) and has bounded derivatives up to order 4,
bounded by a common constant K, further, there exists & > 0 such that a(w) > & for
all w € R.

(iii) The initial function g is sufficiently smooth nonnegative, and satisfies the com-
patibility conditions g(0) = ¢g(1) = 0.

Condition II : For r > 1

U € W»®(0,Ty; H ()
S € WS’Z(O,TO).

Let K5 be a bound for {U, S} in the spaces appeared in condition II.

Throughout this paper, we frequently use the following inequalities for error esti-
mates.
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Young’s inequality : For nonnegative real numbers ¢ and b and a positive number e,

1.0 1 1
+ (=) for —+-=1
p q € p q

ab <

with 1 < p < o0.
Sobolev imbedding inequality: For ¢ € H?,

sup ([p(z)] + [¢=(z)]) < [I¢ll2,

0<z<1

1 1
[#2 (D] < llball + V2162l ldaal>-
Poincare’s inequality: For ¢ € HS, [|¢]] < [|¢z |-

2. Weak formulation and Galerkin approximations
By the application of the following Landau transformations
T
(2.1) r=yS i (r) and t(r) = / S2(r"\dr,
0

the given problem (1.1)-(1.4) can be transformed into the following problem:
Find a pair {(u, s);u(z,t) = U(y,7) and s(t) = S(7)} such that

(2.2) u — (a(u)ug)y = —a(0)ug(1)zu, for (z,t) € I x (0,71,
with
(2.3) u(z,0) =g(z) for zel
(2.4) ug(0,8) =u(l,£) =0 for 0<t<T
ds
(2.5) —a(0)ug(l)s for 0<t<T

%:

with s(0) = 1. Here, ¢t = T corresponds to 7 = Ty and u,(1) = (%)(1,75).

Note that the regularity properties in condition II for {U, S} are transferred to
{u, s} and call these conditions II with the bounds K.
And also from (2.1) we can get the following:

d
d_; = s%(t) for 0<t<T
7(0) = 0.

Now we introduce a Sobolev space HZ = {v € H?;v,(0) = v(1) = 0}.
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Multiplying both sides of (2.2) by v,, and integrating by parts the first term of the
left-hand side with respect to x, we get

(2.6) (Utz, v2) + ((a(w)ug) e, voz) = a(0)uy (1) (Tug, v2e) for v € }13'

To get Galerkin approximation of u in the finite element space, we introduce a family
of finite dimensional subspaces {Sp)} of H{, satisfying the following approximation
property and inverse property:

There is a constant Ky independent of A such that

(2.7) inf flo = x| < Koh™7|[]|m,
x€SY

for any v € H™ N HZ for j =0,1,2 and 2 <m < r+ 1. And

(2.8) Ixll2 < Koh™Hlxll1, for x € Sp.

Now we define Galerkin approximation as follows. Find u” : [0,7] — S such that
(2.9) (utes Xa) + ((a(u")ug)a, Xas) = a(0)uy (1) (2uf, Xon),  Vx € Sp,

with
u"(2,0) = Qng(z)

where (), is an appropriate projection onto ,5’2 to be defined later in section 4. Moreover
Galerkin approximations sp and 73, of s and 7, respectively are defined by

d
(2.10) % = —a(0)ul(1)s, for t>0
with
sp(0) =1
and
(2.11) %" =s2(t) for t>0
with

7(0) = 0.

Next we define a fully discrete approximation. To avoid having a nonlinear term, we
adopt the modified Crank-Nicolson method which yields second-order accuracy in time.
Let k = % be the step size in time, and t" = nk, n = 0,1,2,---, N. The modified
Galerkin Crank-Nicolson approximation {Z™}Y _, is defined as follows :

—

(2'12) (dtZ:Tch XI) + ((a(ﬁ)@)m, wa) = a(O)Zg(l)(]:Z_:Tch wa)v

Vx€eS), 1<n<N-1,
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Zn+17Zn —~ o _ Zn+1 zn
where d;, 7} = =+——=, Zn:%Zn_%Zn L and 77 = % 2+ ‘

Now 2 initial approximations Z°, and Z!, needed to apply (2.12), are defined in the
following :

(2.13) Z%z) = Qug(z) for 0<z<1

(2.14) (diZ9, xz) + ((a(Z°) 29) s, Xua) = a(0) Z(1) (222, Xa)-
The approximation W of s(t") is defined by

(2.15) dW" = —a(0)ZMTH ()W for 0<n <N —1,

w0 =1.

And also the approximation 7;* of 7(¢") is
(2.16) drt = (Wn)?,

) =0.

3. Auxiliary projection and related estimates

For u,v,w € HY(I), we define a trilinear form
(3.1) A(u;v,w) = ((a(w)ve + au(u)ug?)z, Wez) — a(0)ug (1) (20g, Way).
We can prove that

(3.2) | A(u; v, w)| < Ksllvll2[|w]]2

(3.3) A(u;v,0) 2 allvll — pllv}

for u,v and w € H3 where K3, , and p are constants depending on [|u||2 only.
Let

(3.4) A0, 0) = A(us v, w) + plvg, wy).
Let u € ,5’2 be an auxiliary projection of v with respect to the form A, :

(3.5) Ay(wsu—1,x) =0 ¥ x €S).

Theorem 3.1.[3] For sufficiently small b and a given u € H? N H}, there exists a
unique solution @ € S} to (3.5)
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Let n = u — @. Then we obtain the following estimates for n and r; whose proofs
are given in [8].

Theorem 3.2. For ¢t € [0,T], there exists a constant Ky = Ky(Ko, K1, Ko, K3,
a, p) such that

E4h™ 7 |ullm,
K> |[ulln,

lImell5 + [Imll 5
|7l:v(1)|

hold for y =0,1,2 and 2 < m < r + 1.
As a corollary to Theorem 3.2, there exists K5 such that

(3.6) ]| oo (£r2y + it oo (12 < K.

4. Error estimates for the fully discrete approximation

To get the error estimates for v — Z" and s" — W", we introduce n" = u™ — a"
("= 2" — 4" and e" = u" — Z". Further let Z° = i(z,0), i.e.,

A(g;9 — Qng,x) =0 for XES;?.
We assume that there exists a constant Kg such that
(41) ||Zn||W1,oo S K6 fOI' ’[’L:O’I,Q’...’N.

The € appearing in the theorems in this section is an arbitrary positive real number.
Especially, we assume that e is sufficiently small whenever it is needed.

In the following theorem we estimate the error bound for ¢! .
Theorem 4.1. There exist K7 = K7(K1, Ka, K4, K5, K, p) and hg such that for
h <hyp,k=0(h),4<m<r+1and >0,

(4.2) ICall? + Bk Canl* < K7(K1, K2, Ku, K5, Ko, p)k{h*™ + k*}
holds.
Proof. From (3.5) and (2.6) with v = x we have,
(4.3)
0 RS 0 O%*u |1
(ditig, Xz) + ((@(02)8z )z, Xaz) = —(dings Xe) — (5772)7 — ditig, Xa)
otox
1 1 1
+a(0)ud (1) (2, Xoo) + ((@u(u?)73u2)g, Xax)
L

The fifth term on the right-hand side of (4.3) can be rewritten as,
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(4.4)
(fa(u?) — a(@)nd)e — ([a(d) — a(@)]ud)e, Xaz)
= (@112 )as Xaw) — (au (w202 ud o, Xow) + ([Gun (1) ud oy Xaw)
where
. Lda, 1 1
Ay = 0 %(UQ _5772)(167
N L 9%a 1 1
Quy, o (9’[1,2(,“2 En2)(1 —&)d¢

Substituting (4.4) in (4.3) and subtracting (4.3) from (2.14), we have
(4.5)

(A%, xe) + (@@ D)ar xes) = —(din® +uf — dia, Xaa)
+a(0)[Z0(1) (570, xae) — ud (1) (502, Xaa)]

—((ZOYa0) 0, Xaw) + (a(2)2 ), xa)

1

_((&u"? é)an:vx) - ([&uu("?Q) Ua]anmc)

1
+o(n7 , Xa)
= Il+[2+[3+[4+[5.

Now we need to find the estimates for Iy, Is, I3, 14 and I5. To get the estimates, we
substitute y = ¢! in (4.5). First we get the estimation for I; in the following

1
L] = |(dm°+uf dtuO,cz%x)l
< (Ildm 12 4 [ld® — uF |2) + ellCL 1%

To get an estimation for I, we separate Is into four terms in the following way

+(C2(1) (1 ))(qu,Cm)
+@(1)(IEUU, wa) - uw( )(:B’U,U, wa)
+u93 (1)(51;('“’0 —ﬂg;) C:v:v)]

= Iy + Iog + Io3 + Io4.

Now we will estimate I5;, 1 <4 < 4. Applying condition I, (4.1) and Young’s inequality
to the term I5;, we have

| Ia1| < K (e, K1, Ko) (IC°NF + 1€ 117) + €ll a1
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And using condition I, the Sobolev inequality, (3.6) and Young’s inequality to o9, we
get

_ _ 1 . —
|Toa| < K (e, K1, K5) (1217 + [n2(1)?) + ZEQIIGE’QEII2 + €| G |1
To estimate I3, we consider

1

1 1 1
Ug(l) —uz (1) = Zk2ugtt(91) - §k2ugtt(02)'
Thus we get
|Is| < K(e, K1, Ko, K5)k* + €| G, 1%

Similarly, we obtain
|IQ4| S K(E’Kla K23K5)k4 + 6||C:}Jx“2

Therefore, we have
L] < K(e, K1, Kz, K5, Ke){[IC°IF + ICHIIF + IC2I + [n2 (D) + £}
1, —
e[ G [1? + ZGZHCBIIIZ-
To estimate I3, we can rewrite I3 as follows:

L = ((a(d*)a2 —af

= 131 + I32 + 133.
Using (3.6), condition I and Young’s inequality, we obtain

I31] < K(Ki, Ks,e)k* + 3¢, |17,
I3a] < K(Ki, Ks,e)k* + 2¢||2, 17,
I3 < K(K1,Ks,e)(IC' 17+ 1€°13) + 3ell ol

Therefore we have
5] < K (e, K1, K5){k* + [IC°17 + [ICMIT} + 8ell .

By the similar computation as above, we get

1 L 1 1 14
L] < K (e, K1, K2){[In2 [0 In2: 17 + 02 5y 100 1n2 17 + 172|700 } + 6€llCa 1.
And )
1I5| < K(p, e)[In7|1” + €ll o>

Further we note that |
(di2,C) > ﬂ(lléﬁ%!l? — I¢211%).
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And we obtain the following inequality
_ 1. N .
((a(Z2)C)z Cap) = 5{04HC$95||2 — K (&, K1, Ko) |G, 1> — K(&, K1, Ko) |G|
~ a
—K (&, K1)|1¢, 1* = §||C$x!|2}-
Thus we derive
1 1.
S (IGHP — IG2IP) + g alck, P
< K(e, K1, K2, Ks, Ko, p){[|din®||> + [n2(D)” + 192 |7 Iz > + 02 5y1.00 10 |12
1 1 1 5 =
0z 7 + 0717 + K'Y + K (e, K1, Ko, K5, Ko) |17 + 20€| G 1” + ZGQIIC;S;);,;H2

Therefore,
L.
1617 + @kl Caq |
— 1 i 1
< K(e, K1, K2, Ku, Kz, Ko, p)k{[ldin® |I* + 02 (D)* + |02 [ L Indel|” + 1% ||”

1 L 1
2y ollng 12 + In2 |7 + &'} + kK (e, K1, Ko, K5, Ke)||C1 |7 + 40€k|(,. 17

1 _ 1
+5ERICLI + K (@) klldu® - uf 1%
Since

1 1 1
ldeu® —uZ|® = ||€k2uttt(91) - g’f%ttt(92)“2
< K(Ky)kY,

we get
||C:L‘1“2 +18k||C:L‘1:L‘“2 S K(67 K17K27K47K57K67p)k{h2m + k4}

for some B > 0,k and € sufficiently small.
Now we prove the convergence of (" for 1 <n < N.

Theorem 4.2. There exists Kg = Kg(Kq, K9, Ky, K5, K¢, p) and hg such that for
h <hp,k=0(h),4 <m <r+land8 >0

N
sup (G2 1% + Bk D 1I¢E, |17 < Ks(K1, Ka, Ku, Ks, Ko, p){*™ + &'}
1<n<N i

holds.
Proof. By substituting v = x into (3.5) and (2.7), we derive the following
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(4.6)

ot L
(i, xo) + ((a(@F )it ), Xaa)
82’[1, 1 n 1 -n 1
= —(ding, Xe) — ((m)wr2 — dyuy, Xz) + a(O)uer? (1)(90U:v+2,Xm)
1 L ontd nal gl antg
(W™ ) Sy ) xaw) — ([(u3) = a(@5)]is 2)e, Xax)

1
+p(n:""2, xz).-

The fifth term on the right hand side of (4.6) can be rewritten as

(4.7)
1
—((Ja(u™3) = a(@™* )]s *)es Xax)
1 1
= (@1 ey xer) — (@@ )0 30y 2], Xan)
1 o,.1
+ (B 2 un 2y Xox)
where
_ 1 da 1 1 . L 9%q 1 1
Ay = ; %(un—'_? _577”+2)d§7 Q= | W(un-l-Q _fﬂn+2)(1 —f)df.

Substituting (4.7) in (4.6), and subtracting (4.6) from (2.12), we get

o~ +l
(€2, xa) + (@(Z0) )0 Xaz) = —(din™ +up " 2 — dyu”, Xaz)
o~ S ntlt n+i
+a(0)[Z7(1) (2 27, Xaz) — up 2 (1) (2l %, Xaa)]

Py an+an+1 ~ 1 _|_l
M)maX&:m) + ((a(un+2)uz 2)$7Xmm)

(a7 T
- L ntd - L on+d
—((Gunn+277; 2):0 + [auu(n2)"+2uz 2]

41
+o(nz %, Xa)
= Il+IQ+Ig+I4—|-I5.

:vaXxx)

To estimate I;, 1 <14 < 5, we take x = ("t!. Now, we estimate I,
1 n—|—l
1| < 2—6(||alm"||2 +[ldeu™ =y 7 |7) el G
Since I3 can be rewritten as
L = a(0)Zp(1)(C, Gt + (Cr(1) —mp (V) (i, G ) + ai (1) (zag, ()
+3 — +3 —  _nti
—ug *()(wi, ) + e 2 (D) (@@ —az 2), G,

using condition I, (4.1) and Young’s inequality, we get

|a(0)[Z3 (1) (G, G DI < K (e, K, Ko) (111 + 1™ 1) + ell G 1P
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And

~ antt+al 2 2 2 nt1)2
(G = (D)o ———=, G < K (e, Ks){IICE P+ nz (D) }+ &1 C P +ell a1

From condition II, (3.6) and Young’s inequality, we obtain

+3 =—
(B (1) —ug 2 (1)) (@@, CH)| < K(e, Ko, Ks)k + €| ¢ 2.
Similarly we have

1 1

2 ()@@ — ), )| < K (e, Ko, Ks)k* + €l 2

Therefore,
L] < K(e Ky, Ko, Ks, Ke){|IC"]2 + 1" 12 + G212 + 2 (V)2 + k)
1 5 —
el I + 2 NIC I

Since I3 can be rewritten as
(a(@*5)ant® — a(Zr)am),, ““)

1 — 1
= (@™ 3yl — @)y 7 + @iy
a(u”)u” + a(u”)u” — a(Z”)u”)I, nl,
Using condition I, Young’s inequality and (3.6), we obtain

13| < K (e, Ky, Ks){K" + IC"I1F + 1<"7HITY + 8ell o1

Using condition I, Young’s inequality and theorem 3.2, we get the following

- 1 n+ti ~ +1 n+i
|I4| = |((aunn+2772 Q)anmc)_([a'uu(HQ)n ? ;‘L 2]:1:ach)|
n+ n+
< K(e KlaKQvK4){||77n+2||L°°||77II2||2+||77n+2||W100||77I 2||2+||77n+2||L°°}
+6el| I
And
n+ip2 n+3 2
15| < K(p, e)lln" 2|7 + €llCaa *||°
Since )
(deC, ¢t > —k(IIC"“IIz—IICQII?),
and

(@(ZM) ) G ) = ZEICE P = K (& Ko, Ke){ICE 17 + 16217 + 11651},

=] =
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we finally have

1 1.
ﬁ(llé“:l?“ll2 —IE21%) + ZCVHCEIIIIZ
— 1 n+i
< K (¢, K1, Ko, Ka, Kz, Ko, ) {|den® ||” + 02 (D + 10" 72 |7 oe 1902 * ||
+3 1 1 1o —
1P N2 e + (™27 + B} 4 206l + ZGQHC&II2

1 n
S [/ aied | e

41 .
K (e)|dpu" —ug 27+ K (e, K, Kz, Ko, Ko){IC" I+ 1€ + ¢ 13-

Multiplying both sides by 2k and using the discrete type Gronwall inequality implies,

N
sup [CEI1P+ Bk Y lIck ) < ClIG I + Kl G l?}

+K (e, K1, Ky, Ky, K5, Ko, p) (h*™ + E*)

for some 3 > 0. By applying the result of theorem 4.1 to the inequality above, we
obtain

N
sup ||C:?||2 + /Bk Z ||C%ZL‘||2 < K(E, Ky, K2, K4, K5, K, K?){h2m + k4}

Since e” = n™ — (", by combining the results of theorems 4.1 and 4.2, we get the
optimal convergence of e in the norms || - || and || - ||1.

Theorem 4.3. There exists K9 = K9(K1, K2, K4, K5, K¢, p) such that for 4 <m <
r+1,6>0,k=0(h),

sup le"|[F < Ko(h*™ D 1 k),
0<n<N
N-1
sup " |IF + gk Y [l 3 < Ko(7" ) 4 kY,

sup ||e"||2 < Kg(th + k4)
0<n<N

hold.

Let ef = s" — W™ and ef = 7" — 77'. Now we will estimate the errors |e]'| and |e5|
in the following theorem.

Theorem 4.4. There exists a constant K9 = Ky9(K1, Ko, K4, K5, Kg, p) such
that, for 4 <m <r+1and k = O(h)

sup_(lef|* + [e5|*) < Kig(h*™ + k*).
0<n<N

: 1
Proof. Subtract (2.15) form (2.5) and multiply the result to get by e} ™"
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(48) {dief ™) = (dos” — (S5 ) (a0l (1) — a0 ZF W, )

where (f,g) = fg. (4.8) can be splitted into
(deel, ety = (dys" — (%W%,e?ﬂ — (a(0)ZE(1)e}, ef )
+Ha(0) (5™ — ") ZE(1), ef ) + (a(0)s™F 3 (Z2 (1) — B (1)), ef )
Ha(0)s™E (L) — T2 (1)), et

Since )
(deel, el ™) > —k(le’fﬂl2 — et ),
we have

1 ds
st P = et?) < ldis” - (dt)”+ 2” + K (K1, Ko) el ° + K (K1, Kg)lef]”

+K (K1, Ko)[en (1) + K(Ky, Ko, Kg)k*, 0<n<N —1.

Now, we sum up the terms of the inequality above

1

2k(l et Z{Idts SYmE3|? 4 K (K Ke) e 4 K (K K| e 2
K(Kth)(I??x( )+ [C2(D))?) + K (K, K2, Ke)k'}, 0<n<N-—1.

Because of

k Z |dys™ yte 2 < K (Ko)kY,

using theorem 3.2 and 4.2, we have
|€711+1|2 S K(K17K27K47K57K67 )k{h2m+k4}

+K (K1, Kk Z (e ™2+ 1e?), 0<n<N-1.

m=0

By the application of the discrete Gronwall inequality, we obtain
|6?+1|2 S K(K17K27K47K57K67p){h2m + k4}7 0 S n S N -1

For the estimate for ey, subtract (2.16) from (2.6) and multiply the result to get by
ehtt

)

n dT 1 n n 1 n
(e, e ™) = (d™ = (T et = (e ) 4 (72, et
d _ n n+1
< i = (GOmHEE e — () - () e
1 s" 4 st

(") = ()% e ).
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Since )
(dief, e5h) = —(les 1 * = |es]?),
2k
we have
n+1
|€g+1|2 < kK(K17K27 K47K57 K67p)(n + 1){h’2m + k4} + 6k Z |622|2‘
=1

Finally we obtain,

|€g+1|2 < K(KlﬂKQa Ky, K, Kﬁap){th + k4}

Let U} = Z™ and S} = W". Now we approximate the errors U" —UJ} = U(1)') — Z"
and S —Sp = S(73)) —W"™ in ||-||. By the similar way as in [7], we obtain the following
theorem.

Theorem 4.5. Suppose that conditions I and II hold for {U, S} and k& = O(h).
Then for 4 <m <r+1,A7, = O(h) and

sup{[|U" = Up l2(any +15" = Sl = K (v, K, Kio) (0" + (A74)?)

sup [|[U™ — UiTzL“Hl(Qn) = K(v, E,KQ)(hmfl + (ATh)2)
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