Fully discrete Galerkin method for a unidimensional single-phase nonlinear Stefan problem with Neumann boundary conditions

H. Y. Lee, M. R. Ohm, J. Y. Shin

Abstract

In this paper we analyze the error estimates for a single-phase nonlinear Stefan problem with Neumann boundary conditions. We apply the modified CrankNicolson method to get the optimal order of error estimates in the temporal direction.

1. Introduction

In this paper we consider the finite element fully discrete approximation to the following single-phase nonlinear Stefan problem.

Find a pair $\{(U, S): U=U(y, \tau)$ and $S=S(\tau)\}$ such that U satisfies

$$
\begin{equation*}
U_{\tau}-\left(a(U) U_{y}\right)_{y}=0 \quad \text { in } \quad \Omega(\tau) \times\left(0, T_{0}\right], \tag{1.1}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{gather*}
U(y, 0)=g(y) \quad \text { for } \quad y \in I \tag{1.2}\\
U_{y}(0, \tau)=U(S(\tau), \tau)=0 \quad \text { for } \quad 0<\tau \leq T_{0} \tag{1.3}
\end{gather*}
$$

and further, on the free boundary, S satisfies

$$
\begin{equation*}
S_{\tau}=-a(U) U_{y} \quad \text { for } \quad 0<\tau \leq T_{0} \tag{1.4}
\end{equation*}
$$

with $S(0)=1$, where $\Omega(\tau)=\{y \mid 0<y<S(\tau)\}$ for each $\tau \in\left(0, T_{0}\right]$ and $I=(0,1)$.
For a single-phase linear Stefan problem, the study of semidiscrete finite element error analysis was initiated with the fixed domain method by Nitsche $[9,10]$ using the fixing domain method. Das and Pani[3] have extended the error-analysis to nonlinear problem and derived optimal estimates in H^{1} and H^{2} norms for semidiscrete Galerkin approximations. And when the temperature was given at the fixed boundary instead of the

[^0]flux condition, Das and Pani[3,4] obtained error estimates for a semidiscrete Galerkin approximation. Also error estimates for fully discrete Galerkin approximation, depending on the backward Euler method in time, were derived in [12]. Lee and Lee[7] adopted the modified Crank-Nicolson method to improve the rate of convergence in the temporal direction for a single-phase nonlinear Stefan problem with Dirichlet boundary condition. Lee, Ohm and Shin[8] analyzed the optimal convergence of semi-discrete approximation in L_{2} norm for a single-phase nonlinear Stefan problem with Neumann boundary condition.

In this paper we consider the optimal convergence of fully discrete approximation for a single-phase nonlinear Stefan problem in one space dimension with Neumann boundary condition and we achieve the convergence of order 2 in the temporal direction.

For simplicity, we suppress τ in $\Omega(\tau)$ and write $\Omega(\tau)$ as Ω only.
For an integer $m \geq 0$, and $1 \leq p \leq \infty, W^{m, p}(\Omega)$ will denote the usual Sobolev space of measurable functions which, together with their distributional derivatives of order up to m, are in L^{p}. For $\Omega=I$ and $p=2$, we shall use the symbol H^{m} in place of $W^{m, 2}(I)$ with norm $\|\cdot\|_{m}$.

Let $Y(\tau)$ be a Banach space, for each fixed $\tau \geq 0$ with norm $\|\cdot\|_{Y(\tau)}$. The following notation is used :

$$
\begin{aligned}
\|v\|_{L^{p}(0, T ; Y(\tau))} & =\left(\int_{0}^{T}\|v(\tau)\|_{Y(\tau)}^{p} d \tau\right)^{\frac{1}{p}}, \quad \text { for } \quad 1 \leq p<\infty \\
\|v\|_{L^{\infty}(0, T ; Y(\tau))} & =\sup _{0 \leq \tau \leq T}\|v(\tau)\|_{Y(\tau)}
\end{aligned}
$$

where $Y(\tau)$ is $W^{m, p}(\Omega)$.
Throughout this paper, we assume the following regularity conditions on $\{U, S\}$:
Condition I:
(i) The pair $\{U, S\}$ is the unique smooth solution to (1.1)-(1.4) with $S(\tau) \geq \nu>0$ for all $\tau \in\left[0, T_{0}\right]$.
(ii) The function $a(\cdot)$ belongs to $C^{4}(\mathbf{R})$ and has bounded derivatives up to order 4, bounded by a common constant \tilde{K}_{1}, further, there exists $\tilde{\alpha}>0$ such that $a(w) \geq \tilde{\alpha}$ for all $w \in \mathbf{R}$.
(iii) The initial function g is sufficiently smooth nonnegative, and satisfies the compatibility conditions $g(0)=g(1)=0$.

Condition II : For $r \geq 1$

$$
\begin{aligned}
U & \in W^{3, \infty}\left(0, T_{0} ; H^{r+1}(\Omega)\right) \\
S & \in W^{3,2}\left(0, T_{0}\right)
\end{aligned}
$$

Let \tilde{K}_{2} be a bound for $\{U, S\}$ in the spaces appeared in condition II.
Throughout this paper, we frequently use the following inequalities for error estimates.

Young's inequality : For nonnegative real numbers a and b and a positive number ϵ,

$$
a b \leq \frac{(\epsilon a)^{p}}{p}+\frac{1}{q}\left(\frac{b}{\epsilon}\right)^{q} \quad \text { for } \quad \frac{1}{p}+\frac{1}{q}=1
$$

with $1 \leq p \leq \infty$.
Sobolev imbedding inequality: For $\phi \in H^{2}$,

$$
\begin{gathered}
\sup _{0 \leq x \leq 1}\left(|\phi(x)|+\left|\phi_{x}(x)\right|\right) \leq\|\phi\|_{2}, \\
\left|\phi_{x}(1)\right| \leq\left\|\phi_{x}\right\|+\sqrt{2}\left\|\phi_{x}\right\|^{\frac{1}{2}}\left\|\phi_{x x}\right\|^{\frac{1}{2}} .
\end{gathered}
$$

Poincare's inequality: For $\phi \in H_{0}^{1}, \quad\|\phi\| \leq\left\|\phi_{x}\right\|$.

2. Weak formulation and Galerkin approximations

By the application of the following Landau transformations

$$
\begin{equation*}
x=y S^{-1}(\tau) \quad \text { and } \quad t(\tau)=\int_{0}^{\tau} S^{-2}\left(\tau^{\prime}\right) d \tau^{\prime} \tag{2.1}
\end{equation*}
$$

the given problem (1.1)-(1.4) can be transformed into the following problem:
Find a pair $\{(u, s) ; u(x, t) \equiv U(y, \tau)$ and $s(t) \equiv S(\tau)\}$ such that

$$
\begin{equation*}
u_{t}-\left(a(u) u_{x}\right)_{x}=-a(0) u_{x}(1) x u_{x} \quad \text { for } \quad(x, t) \in I \times(0, T], \tag{2.2}
\end{equation*}
$$

with

$$
\begin{gather*}
u(x, 0)=g(x) \quad \text { for } \quad x \in I \tag{2.3}\\
u_{x}(0, t)=u(1, t)=0 \quad \text { for } \quad 0<t \leq T \tag{2.4}\\
\frac{d s}{d t}=-a(0) u_{x}(1) s \quad \text { for } \quad 0<t \leq T \tag{2.5}
\end{gather*}
$$

with $s(0)=1$. Here, $t=T$ corresponds to $\tau=T_{0}$ and $u_{x}(1)=\left(\frac{\partial u}{\partial x}\right)(1, t)$.
Note that the regularity properties in condition II for $\{U, S\}$ are transferred to $\{u, s\}$ and call these conditions II with the bounds K_{2}.
And also from (2.1) we can get the following:

$$
\begin{aligned}
\frac{d \tau}{d t} & =s^{2}(t) \quad \text { for } \quad 0<t \leq T \\
\tau(0) & =0
\end{aligned}
$$

Now we introduce a Sobolev space $H_{0}^{2}=\left\{v \in H^{2} ; v_{x}(0)=v(1)=0\right\}$.

Multiplying both sides of (2.2) by $v_{x x}$ and integrating by parts the first term of the left-hand side with respect to x, we get

$$
\begin{equation*}
\left(u_{t x}, v_{x}\right)+\left(\left(a(u) u_{x}\right)_{x}, v_{x x}\right)=a(0) u_{x}(1)\left(x u_{x}, v_{x x}\right) \quad \text { for } \quad v \in H_{0}^{2} . \tag{2.6}
\end{equation*}
$$

To get Galerkin approximation of u in the finite element space, we introduce a family of finite dimensional subspaces $\left\{S_{h}^{0}\right\}$ of H_{0}^{2}, satisfying the following approximation property and inverse property:

There is a constant K_{0} independent of h such that

$$
\begin{equation*}
\inf _{\chi \in S_{h}^{0}}\|v-\chi\|_{j} \leq K_{0} h^{m-j}\|v\|_{m} \tag{2.7}
\end{equation*}
$$

for any $v \in H^{m} \cap H_{0}^{2}$ for $j=0,1,2$ and $2 \leq m \leq r+1$. And

$$
\begin{equation*}
\|\chi\|_{2} \leq K_{0} h^{-1}\|\chi\|_{1}, \quad \text { for } \quad \chi \in S_{h}^{0} \tag{2.8}
\end{equation*}
$$

Now we define Galerkin approximation as follows. Find $u^{h}:[0, T] \rightarrow S_{h}^{0}$ such that

$$
\begin{equation*}
\left(u_{t x}^{h}, \chi_{x}\right)+\left(\left(a\left(u^{h}\right) u_{x}^{h}\right)_{x}, \chi_{x x}\right)=a(0) u_{x}^{h}(1)\left(x u_{x}^{h}, \chi_{x x}\right), \quad \forall \chi \in S_{h}^{0} \tag{2.9}
\end{equation*}
$$

with

$$
u^{h}(x, 0)=Q_{h} g(x)
$$

where Q_{h} is an appropriate projection onto S_{h}^{0} to be defined later in section 4. Moreover Galerkin approximations s_{h} and τ_{h} of s and τ, respectively are defined by

$$
\begin{equation*}
\frac{d s_{h}}{d t}=-a(0) u_{x}^{h}(1) s_{h} \quad \text { for } \quad t \geq 0 \tag{2.10}
\end{equation*}
$$

with

$$
s_{h}(0)=1
$$

and

$$
\begin{equation*}
\frac{d \tau_{h}}{d t}=s_{h}^{2}(t) \quad \text { for } \quad t \geq 0 \tag{2.11}
\end{equation*}
$$

with

$$
\tau_{h}(0)=0
$$

Next we define a fully discrete approximation. To avoid having a nonlinear term, we adopt the modified Crank-Nicolson method which yields second-order accuracy in time. Let $k=\frac{T}{N}$ be the step size in time, and $t^{n}=n k, \quad n=0,1,2, \cdots, N$. The modified Galerkin Crank-Nicolson approximation $\left\{Z^{m}\right\}_{m=2}^{N}$ is defined as follows :

$$
\begin{gather*}
\left(d_{t} Z_{x}^{n}, \chi_{x}\right)+\left(\left(a\left(\widehat{Z^{n}}\right) \overline{Z_{x}^{n}}\right)_{x}, \chi_{x x}\right)=a(0) \widehat{Z_{x}^{n}}(1)\left(x \overline{Z_{x}^{n}}, \chi_{x x}\right), \tag{2.12}\\
\forall \chi \in S_{h}^{0}, \quad 1 \leq n \leq N-1
\end{gather*}
$$

where $d_{t} Z_{x}^{n}=\frac{Z_{x}^{n+1}-Z_{x}^{n}}{k}, \quad \widehat{Z^{n}}=\frac{3}{2} Z^{n}-\frac{1}{2} Z^{n-1}$, and $\overline{Z_{x}^{n}}=\frac{Z_{x}^{n+1}+Z_{x}^{n}}{2}$.
Now 2 initial approximations Z^{0}, and Z^{1}, needed to apply (2.12), are defined in the following :

$$
\begin{gather*}
Z^{0}(x)=Q_{h} g(x) \text { for } 0<x<1 \tag{2.13}\\
\left(d_{t} Z_{x}^{0}, \chi_{x}\right)+\left(\left(a\left(\overline{Z^{0}}\right) \overline{Z_{x}^{0}}\right)_{x}, \chi_{x x}\right)=a(0) \overline{Z_{x}^{0}}(1)\left(x \overline{Z_{x}^{0}}, \chi_{x x}\right) . \tag{2.14}
\end{gather*}
$$

The approximation W^{n} of $s\left(t^{n}\right)$ is defined by

$$
\begin{gather*}
d_{t} W^{n}=-a(0) Z_{x}^{n+1}(1) \overline{W^{n}} \text { for } 0 \leq n \leq N-1, \tag{2.15}\\
W^{0}=1
\end{gather*}
$$

And also the approximation τ_{h}^{n} of $\tau\left(t^{n}\right)$ is

$$
\begin{gather*}
d_{t} \tau_{h}^{n}=\left(\overline{W^{n}}\right)^{2}, \tag{2.16}\\
\tau_{h}^{0}=0 .
\end{gather*}
$$

3. Auxiliary projection and related estimates

For $u, v, w \in H_{2}^{0}(I)$, we define a trilinear form

$$
\begin{equation*}
A(u ; v, w)=\left(\left(a(u) v_{x}+a_{u}(u) u_{x} v\right)_{x}, w_{x x}\right)-a(0) u_{x}(1)\left(x v_{x}, w_{x x}\right) . \tag{3.1}
\end{equation*}
$$

We can prove that

$$
\begin{align*}
& |A(u ; v, w)| \leq K_{3}\|v\|_{2}\|w\|_{2} \tag{3.2}\\
& A(u ; v, v) \geq \alpha\|v\|_{2}^{2}-\rho\|v\|_{1}^{2} \tag{3.3}
\end{align*}
$$

for u, v and $w \in H_{0}^{2}$ where K_{3}, α, and ρ are constants depending on $\|u\|_{2}$ only.
Let

$$
\begin{equation*}
A_{\rho}(u ; v, w)=A(u ; v, w)+\rho\left(v_{x}, w_{x}\right) . \tag{3.4}
\end{equation*}
$$

Let $\tilde{u} \in S_{h}^{0}$ be an auxiliary projection of u with respect to the form A_{ρ} :

$$
\begin{equation*}
A_{\rho}(u ; u-\tilde{u}, \chi)=0 \quad \forall \chi \in S_{h}^{0} \tag{3.5}
\end{equation*}
$$

Theorem 3.1.[3] For sufficiently small h and a given $u \in H^{2} \cap H_{0}^{1}$, there exists a unique solution $\tilde{u} \in S_{h}^{0}$ to (3.5)

Let $\eta=u-\tilde{u}$. Then we obtain the following estimates for η and η_{t} whose proofs are given in [8].

Theorem 3.2. For $t \in[0, T]$, there exists a constant $K_{4}=K_{4}\left(K_{0}, K_{1}, K_{2}, K_{3}\right.$, α, ρ) such that

$$
\begin{aligned}
\left\|\eta_{t}\right\|_{j}+\|\eta\|_{j} & \leq K_{4} h^{m-j}\|u\|_{m} \\
\left|\eta_{x}(1)\right| & \leq K_{4} h^{2(m-2)}\|u\|_{m}
\end{aligned}
$$

hold for $j=0,1,2$ and $2 \leq m \leq r+1$.
As a corollary to Theorem 3.2, there exists K_{5} such that

$$
\begin{equation*}
\|\tilde{u}\|_{L^{\infty}\left(H^{2}\right)}+\left\|\tilde{u}_{t}\right\|_{L^{\infty}\left(H^{2}\right)} \leq K_{5} . \tag{3.6}
\end{equation*}
$$

4. Error estimates for the fully discrete approximation

To get the error estimates for $u^{n}-Z^{n}$ and $s^{n}-W^{n}$, we introduce $\eta^{n}=u^{n}-\tilde{u}^{n}$, $\zeta^{n}=Z^{n}-\tilde{u}^{n}$ and $e^{n}=u^{n}-Z^{n}$. Further let $Z^{0}=\tilde{u}(x, 0)$, i.e.,

$$
A\left(g ; g-Q_{h} g, \chi\right)=0 \quad \text { for } \quad \chi \in S_{h}^{0}
$$

We assume that there exists a constant K_{6} such that

$$
\begin{equation*}
\left\|Z^{n}\right\|_{W^{1, \infty}} \leq K_{6} \quad \text { for } \quad n=0,1,2, \cdots, N \tag{4.1}
\end{equation*}
$$

The ϵ appearing in the theorems in this section is an arbitrary positive real number. Especially, we assume that ϵ is sufficiently small whenever it is needed.

In the following theorem we estimate the error bound for ζ^{1}.
Theorem 4.1. There exist $K_{7}=K_{7}\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)$ and h_{0} such that for $h \leq h_{0}, k=O(h), 4 \leq m \leq r+1$ and $\tilde{\beta}>0$,

$$
\begin{equation*}
\left\|\zeta_{x}^{1}\right\|^{2}+\tilde{\beta} k\left\|\zeta_{x x}^{1}\right\|^{2} \leq K_{7}\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right) k\left\{h^{2 m}+k^{4}\right\} \tag{4.2}
\end{equation*}
$$

holds.
Proof. From (3.5) and (2.6) with $v=\chi$ we have,

$$
\begin{align*}
\left(d_{t} \tilde{u}_{x}^{0}, \chi_{x}\right)+\left(\left(a\left(\tilde{u}^{\frac{1}{2}}\right) \tilde{u}_{x}^{\frac{1}{2}}\right)_{x}, \chi_{x x}\right)= & -\left(d_{t} \eta_{x}^{0}, \chi_{x}\right)-\left(\left(\frac{\partial^{2} u}{\partial t \partial x}\right)^{\frac{1}{2}}-d_{t} u_{x}^{0}, \chi_{x}\right) \tag{4.3}\\
& +a(0) u_{x}^{\frac{1}{2}}(1)\left(x \tilde{u}_{x}^{\frac{1}{2}}, \chi_{x x}\right)+\left(\left(a_{u}\left(u^{\frac{1}{2}}\right) \eta^{\frac{1}{2}} u_{x}^{\frac{1}{2}}\right)_{x}, \chi_{x x}\right) \\
& -\left(\left(\left[a\left(u^{\frac{1}{2}}\right)-a\left(\tilde{u}^{\frac{1}{2}}\right)\right] \tilde{u}_{x}^{\frac{1}{2}}\right)_{x}, \chi_{x x}\right)+\rho\left(\eta_{x}^{\frac{1}{2}}, \chi_{x}\right)
\end{align*}
$$

The fifth term on the right-hand side of (4.3) can be rewritten as,

$$
\begin{align*}
& \left(\left(\left[a\left(u^{\frac{1}{2}}\right)-a\left(\tilde{u}^{\frac{1}{2}}\right)\right] \eta_{x}^{\frac{1}{2}}\right)_{x}-\left(\left[a\left(u^{\frac{1}{2}}\right)-a\left(\tilde{u}^{\frac{1}{2}}\right)\right] u_{x}^{\frac{1}{2}}\right)_{x}, \chi_{x x}\right) \tag{4.4}\\
& =\left(\left(\tilde{a}_{u} \eta^{\frac{1}{2}} \eta_{x}^{\frac{1}{2}}\right)_{x}, \chi_{x x}\right)-\left(\left[a_{u}\left(u^{\frac{1}{2}}\right) \eta^{\frac{1}{2}} u_{x}^{\frac{1}{2}}\right]_{x}, \chi_{x x}\right)+\left(\left[\tilde{a}_{u u}\left(\eta^{2}\right)^{\frac{1}{2}} u_{x}^{\frac{1}{2}}\right]_{x}, \chi_{x x}\right)
\end{align*}
$$

where

$$
\begin{aligned}
\tilde{a}_{u} & =\int_{0}^{1} \frac{\partial a}{\partial u}\left(u^{\frac{1}{2}}-\xi \eta^{\frac{1}{2}}\right) d \xi \\
\tilde{a}_{u u} & =\int_{0}^{1} \frac{\partial^{2} a}{\partial u^{2}}\left(u^{\frac{1}{2}}-\xi \eta^{\frac{1}{2}}\right)(1-\xi) d \xi
\end{aligned}
$$

Substituting (4.4) in (4.3) and subtracting (4.3) from (2.14), we have

$$
\begin{align*}
\left(d_{t} \zeta_{x}^{0}, \chi_{x}\right)+\left(\left(a\left(\overline{Z^{0}}\right) \overline{\zeta_{x}^{0}}\right)_{x}, \chi_{x x}\right)= & -\left(d_{t} \eta^{0}+u_{t}^{\frac{1}{2}}-d_{t} u^{0}, \chi_{x x}\right) \tag{4.5}\\
& +a(0)\left[\overline{Z_{x}^{0}}(1)\left(x \overline{Z_{x}^{0}}, \chi_{x x}\right)-u_{x}^{\frac{1}{2}}(1)\left(x \tilde{u}_{x}^{\frac{1}{2}}, \chi_{x x}\right)\right] \\
& -\left(\left(a\left(\overline{Z^{0}}\right) \overline{\tilde{u}_{x}^{0}}\right)_{x}, \chi_{x x}\right)+\left(\left(a\left(\tilde{u}^{\frac{1}{2}}\right) \tilde{u}_{x}^{\frac{1}{2}}\right)_{x}, \chi_{x x}\right) \\
& -\left(\left(\tilde{a}_{u} \eta^{\frac{1}{2}} \eta_{x}^{\frac{1}{2}}\right)_{x}, \chi_{x x}\right)-\left(\left[\tilde{a}_{u u}\left(\eta^{2}\right)^{\frac{1}{2}} u_{x}^{\frac{1}{2}}\right]_{x}, \chi_{x x}\right) \\
& +\rho\left(\eta_{x}^{\frac{1}{2}}, \chi_{x}\right) \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}+I_{5} .
\end{align*}
$$

Now we need to find the estimates for $I_{1}, I_{2}, I_{3}, I_{4}$ and I_{5}. To get the estimates, we substitute $\chi=\zeta^{1}$ in (4.5). First we get the estimation for I_{1} in the following

$$
\begin{aligned}
\left|I_{1}\right| & =\left|\left(d_{t} \eta^{0}+u_{t}^{\frac{1}{2}}-d_{t} u^{0}, \zeta_{x x}^{1}\right)\right| \\
& \leq \frac{1}{2 \epsilon}\left(\left\|d_{t} \eta^{0}\right\|^{2}+\left\|d_{t} u^{0}-u_{t}^{\frac{1}{2}}\right\|^{2}\right)+\epsilon\left\|\zeta_{x x}^{1}\right\|^{2} .
\end{aligned}
$$

To get an estimation for I_{2}, we separate I_{2} into four terms in the following way

$$
\begin{aligned}
I_{2}= & a(0) \overline{\left(\overline{Z_{x}^{0}}\right.}(1)\left(x \overline{\zeta_{x}^{0}}, \zeta_{x x}^{1}\right) \\
& +\left(\overline{\zeta_{x}^{0}}(1)-\overline{\eta_{x}^{0}}(1)\right)\left(x x \tilde{u}_{x}^{0}, \zeta_{x x}^{1}\right) \\
& +\overline{u_{x}^{0}}(1)\left(x \overline{\tilde{u}_{x}^{0}}, \zeta_{x x}^{1}\right)-u_{x}^{\frac{1}{2}}(1)\left(x \overline{\tilde{u}_{x}^{0}}, \zeta_{x x}^{1}\right) \\
& \left.+u_{x}^{\frac{1}{x}}(1)\left(x\left(\overline{\tilde{u}_{x}^{0}}-\tilde{u}_{x}^{\frac{1}{2}}\right), \zeta_{x x}^{1}\right)\right] \\
\equiv & I_{21}+I_{22}+I_{23}+I_{24} .
\end{aligned}
$$

Now we will estimate $I_{2 i}, 1 \leq i \leq 4$. Applying condition I, (4.1) and Young's inequality to the term I_{21}, we have

$$
\left|I_{21}\right| \leq K\left(\epsilon, K_{1}, K_{6}\right)\left(\left\|\zeta^{0}\right\|_{1}^{2}+\left\|\zeta^{1}\right\|_{1}^{2}\right)+\epsilon\left\|\zeta_{x x}^{1}\right\|^{2} .
$$

And using condition I, the Sobolev inequality, (3.6) and Young's inequality to I_{22}, we get

$$
\left|I_{22}\right| \leq K\left(\epsilon, K_{1}, K_{5}\right)\left(\left\|\overline{\zeta_{x}^{0}}\right\|^{2}+\left|\overline{\eta_{x}^{0}}(1)\right|^{2}\right)+\frac{1}{4} \epsilon^{2}\left\|\overline{\zeta_{x x}^{0}}\right\|^{2}+\epsilon\left\|\zeta_{x x}^{1}\right\|^{2}
$$

To estimate I_{23}, we consider

$$
\overline{u_{x}^{0}}(1)-u_{x}^{\frac{1}{2}}(1)=\frac{1}{4} k^{2} u_{x t t}^{0}\left(\theta_{1}\right)-\frac{1}{8} k^{2} u_{x t t}^{0}\left(\theta_{2}\right) .
$$

Thus we get

$$
\left|I_{23}\right| \leq K\left(\epsilon, K_{1}, K_{2}, K_{5}\right) k^{4}+\epsilon\left\|\zeta_{x x}^{1}\right\|^{2} .
$$

Similarly, we obtain

$$
\left|I_{24}\right| \leq K\left(\epsilon, K_{1}, K_{2}, K_{5}\right) k^{4}+\epsilon\left\|\zeta_{x x}^{1}\right\|^{2} .
$$

Therefore, we have

$$
\begin{aligned}
\left|I_{2}\right| \leq & K\left(\epsilon, K_{1}, K_{2}, K_{5}, K_{6}\right)\left\{\left\|\zeta^{0}\right\|_{1}^{2}+\left\|\zeta^{1}\right\|_{1}^{2}+\left\|\overline{\zeta_{x}^{0}}\right\|^{2}+\left|\overline{\eta_{x}^{0}}(1)\right|^{2}+k^{4}\right\} \\
& +4 \epsilon\left\|\zeta_{x x}^{1}\right\|^{2}+\frac{1}{4} \epsilon^{2}\left\|\overline{\zeta_{x x}^{0}}\right\|^{2} .
\end{aligned}
$$

To estimate I_{3}, we can rewrite I_{3} as follows:

$$
\left.\left.\left.\begin{array}{rl}
I_{3}= & \left(\left(a\left(\tilde{u}^{\frac{1}{2}}\right)_{x}^{\frac{1}{2}}-a\left(\overline{\tilde{u}^{0}}\right) \tilde{u}_{x}^{\frac{1}{2}}\right)_{x}, \zeta_{x x}^{1}\right) \\
& +\left(\left(a\left(\overline{\tilde{u}^{0}}\right)^{\tilde{u}_{x}^{2}}-a\left(\overline{\tilde{u}^{0}}\right) \bar{u}_{x}^{0}\right)_{x}, \zeta_{x x}^{1}\right) \\
& +\left(\left(a\left(\tilde{\tilde{u}}^{0}\right)_{x}^{\tilde{u}_{x}^{0}}-a\left(Z^{0}\right.\right.\right.
\end{array}\right) \tilde{\tilde{u}}_{x}^{0}\right)_{x}, \zeta_{x x}^{1}\right), I_{32}+I_{33} .
$$

Using (3.6), condition I and Young's inequality, we obtain

$$
\begin{aligned}
\left|I_{31}\right| & \leq K\left(K_{1}, K_{5}, \epsilon\right) k^{4}+3 \epsilon\left\|\zeta_{x x}^{1}\right\|^{2} \\
\left|I_{32}\right| & \leq K\left(K_{1}, K_{5}, \epsilon\right) k^{4}+2 \epsilon\left\|\zeta_{x x}^{1}\right\|^{2} \\
\left|I_{33}\right| & \leq K\left(K_{1}, K_{5}, \epsilon\right)\left(\left\|\zeta^{1}\right\|_{1}^{2}+\left\|\zeta^{0}\right\|_{1}^{2}\right)+3 \epsilon\left\|\zeta_{x x}^{1}\right\|^{2}
\end{aligned}
$$

Therefore we have

$$
\left|I_{3}\right| \leq K\left(\epsilon, K_{1}, K_{5}\right)\left\{k^{4}+\left\|\zeta^{0}\right\|_{1}^{2}+\left\|\zeta^{1}\right\|_{1}^{2}\right\}+8 \epsilon\left\|\zeta_{x x}^{1}\right\|^{2}
$$

By the similar computation as above, we get

$$
\left|I_{4}\right| \leq K\left(\epsilon, K_{1}, K_{2}\right)\left\{\left\|\eta^{\frac{1}{2}}\right\|_{L^{\infty}}^{2}\left\|\eta_{x x}^{\frac{1}{2}}\right\|^{2}+\left\|\eta^{\frac{1}{2}}\right\|_{W^{1, \infty}}^{2}\left\|\eta_{x}^{\frac{1}{2}}\right\|^{2}+\left\|\eta^{\frac{1}{2}}\right\|_{L^{\infty}}^{4}\right\}+6 \epsilon\left\|\zeta_{x x}^{1}\right\|^{2}
$$

And

$$
\left|I_{5}\right| \leq K(\rho, \epsilon)\left\|\eta^{\frac{1}{2}}\right\|^{2}+\epsilon\left\|\zeta_{x x}^{1}\right\|^{2} .
$$

Further we note that

$$
\left(d_{t} \zeta_{x}^{0}, \zeta_{x}^{1}\right) \geq \frac{1}{2 k}\left(\left\|\zeta_{x}^{1}\right\|^{2}-\left\|\zeta_{x}^{0}\right\|^{2}\right)
$$

And we obtain the following inequality

$$
\begin{aligned}
\left(\left(a\left(\overline{Z^{0}}\right) \overline{\zeta_{x}^{0}}\right)_{x}, \zeta_{x x}^{1}\right) \geq & \frac{1}{2}\left\{\tilde{\alpha}\left\|\zeta_{x x}^{1}\right\|^{2}-K\left(\tilde{\alpha}, K_{1}, K_{6}\right)\left\|\zeta_{x}^{1}\right\|^{2}-K\left(\tilde{\alpha}, K_{1}, K_{6}\right)\left\|\zeta_{x}^{0}\right\|^{2}\right. \\
& \left.-K\left(\tilde{\alpha}, K_{1}\right)\left\|\zeta_{x x}^{0}\right\|^{2}-\frac{\tilde{\alpha}}{2}\left\|\zeta_{x x}^{1}\right\|^{2}\right\}
\end{aligned}
$$

Thus we derive

$$
\begin{aligned}
& \frac{1}{2 k}\left(\left\|\zeta_{x}^{1}\right\|^{2}-\left\|\zeta_{x}^{0}\right\|^{2}\right)+\frac{1}{4} \tilde{\alpha}\left\|\zeta_{x x}^{1}\right\|^{2} \\
& \leq K\left(\epsilon, K_{1}, K_{2}, K_{5}, K_{6}, \rho\right)\left\{\left\|d_{t} \eta^{0}\right\|^{2}+\left|\overline{\eta_{x}^{0}}(1)\right|^{2}+\left\|\eta^{\frac{1}{2}}\right\|_{L^{\infty}}^{2}\left\|\eta_{x x}^{\frac{1}{2}}\right\|^{2}+\left\|\eta^{\frac{1}{2}}\right\|_{W^{1, \infty}}^{2}\left\|\eta_{x}^{\frac{1}{2}}\right\|^{2}\right. \\
& \left.+\left\|\eta^{\frac{1}{2}}\right\|_{L^{\infty}}^{4}+\left\|\eta^{\frac{1}{2}}\right\|^{2}+k^{4}\right\}+K\left(\epsilon, K_{1}, K_{2}, K_{5}, K_{6}\right)\left\|\zeta^{1}\right\|_{1}^{2}+20 \epsilon\left\|\zeta_{x x}^{1}\right\|^{2}+\frac{1}{4} \epsilon^{2}\left\|\overline{\zeta_{x x}^{0}}\right\|^{2} \\
& +K(\epsilon)\left\|d_{t} u^{0}-u_{t}^{\frac{1}{2}}\right\|^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left\|\zeta_{x}^{1}\right\|^{2}+\frac{1}{2} \tilde{\alpha} k\left\|\zeta_{x x}^{1}\right\|^{2} \\
& \leq K\left(\epsilon, K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right) k\left\{\left\|d_{t} \eta^{0}\right\|^{2}+\left|\overline{\eta_{x}^{0}}(1)\right|^{2}+\left\|\eta^{\frac{1}{2}}\right\|_{L^{\infty}}^{2}\left\|\eta_{x x}^{\frac{1}{2}}\right\|^{2}+\left\|\eta^{\frac{1}{2}}\right\|^{2}\right. \\
& \left.+\left\|\eta^{\frac{1}{2}}\right\|_{W^{1, \infty}}^{2}\left\|\eta_{x}^{\frac{1}{2}}\right\|^{2}+\left\|\eta^{\frac{1}{2}}\right\|_{L^{\infty}}^{4}+k^{4}\right\}+k K\left(\epsilon, K_{1}, K_{2}, K_{5}, K_{6}\right)\left\|\zeta^{1}\right\|_{1}^{2}+40 \epsilon k\left\|\zeta_{x x}^{1}\right\|^{2} \\
& +\frac{1}{2} \epsilon^{2} k\left\|\overline{\zeta_{x x}^{0}}\right\|^{2}+K(\epsilon) k\left\|d_{t} u^{0}-u_{t}^{\frac{1}{2}}\right\|^{2}
\end{aligned}
$$

Since

$$
\begin{aligned}
\left\|d_{t} u^{0}-u_{t}^{\frac{1}{2}}\right\|^{2} & =\left\|\frac{1}{6} k^{2} u_{t t t}\left(\theta_{1}\right)-\frac{1}{8} k^{2} u_{t t t}\left(\theta_{2}\right)\right\|^{2} \\
& \leq K\left(K_{2}\right) k^{4}
\end{aligned}
$$

we get

$$
\left\|\zeta_{x}^{1}\right\|^{2}+\tilde{\beta} k\left\|\zeta_{x x}^{1}\right\|^{2} \leq K\left(\epsilon, K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right) k\left\{h^{2 m}+k^{4}\right\}
$$

for some $\tilde{\beta}>0, k$ and ϵ sufficiently small.

Now we prove the convergence of ζ^{n} for $1 \leq n \leq N$.
Theorem 4.2. There exists $K_{8}=K_{8}\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)$ and h_{0} such that for $h \leq h_{0}, k=O(h), 4 \leq m \leq r+1 \operatorname{and} \tilde{\beta}>0$

$$
\sup _{1 \leq n \leq N}\left\|\zeta_{x}^{n}\right\|^{2}+\tilde{\beta} k \sum_{j=1}^{N}\left\|\zeta_{x x}^{j}\right\|^{2} \leq K_{8}\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)\left\{h^{2 m}+k^{4}\right\}
$$

holds.
Proof. By substituting $v=\chi$ into (3.5) and (2.7), we derive the following

$$
\begin{align*}
& \left(d_{t} \tilde{u}^{n}, \chi_{x}\right)+\left(\left(a\left(\tilde{u}^{n+\frac{1}{2}}\right) \tilde{u}_{x}^{n+\frac{1}{2}}\right)_{x}, \chi_{x x}\right) \tag{4.6}\\
& =-\left(d_{t} \eta_{x}^{n}, \chi_{x}\right)-\left(\left(\frac{\partial^{2} u}{\partial t \partial x}\right)^{n+\frac{1}{2}}-d_{t} u_{x}^{n}, \chi_{x}\right)+a(0) u_{x}^{n+\frac{1}{2}}(1)\left(x \tilde{u}_{x}^{n+\frac{1}{2}}, \chi_{x x}\right) \\
& \left.+\left(a_{u}\left(u^{n+\frac{1}{2}}\right) \eta^{n+\frac{1}{2}} u_{x}^{n+\frac{1}{2}}\right)_{x}, \chi_{x x}\right)-\left(\left(\left[a\left(u^{n+\frac{1}{2}}\right)-a\left(\tilde{u}^{n+\frac{1}{2}}\right)\right] \tilde{u}_{x}^{n+\frac{1}{2}}\right)_{x}, \chi_{x x}\right) \\
& +\rho\left(\eta_{x}^{n+\frac{1}{2}}, \chi_{x}\right) .
\end{align*}
$$

The fifth term on the right hand side of (4.6) can be rewritten as

$$
\begin{align*}
-\left(\left(\left[a\left(u^{n+\frac{1}{2}}\right)-a\left(\tilde{u}^{n+\frac{1}{2}}\right)\right] \tilde{u}_{x}^{n+\frac{1}{2}}\right)_{x}, \chi_{x x}\right) & \tag{4.7}\\
=\left(\left(\tilde{a}_{u} \eta^{n+\frac{1}{2}} \eta_{x}^{n+\frac{1}{2}}\right)_{x}, \chi_{x x}\right) & -\left(\left[a_{u}\left(u^{n+\frac{1}{2}}\right) \eta^{n+\frac{1}{2}} u_{x}^{n+\frac{1}{2}}\right]_{x}, \chi_{x x}\right) \\
& +\left(\left[\tilde{a}_{u u}\left(\eta^{2}\right)^{n+\frac{1}{2}} u_{x}^{n+\frac{1}{2}}\right]_{x}, \chi_{x x}\right)
\end{align*}
$$

where

$$
\tilde{a}_{u}=\int_{0}^{1} \frac{\partial a}{\partial u}\left(u^{n+\frac{1}{2}}-\xi \eta^{n+\frac{1}{2}}\right) d \xi, \quad \tilde{a}_{u u}=\int_{0}^{1} \frac{\partial^{2} a}{\partial u^{2}}\left(u^{n+\frac{1}{2}}-\xi \eta^{n+\frac{1}{2}}\right)(1-\xi) d \xi .
$$

Substituting (4.7) in (4.6), and subtracting (4.6) from (2.12), we get

$$
\begin{aligned}
\left(d_{t} \zeta_{x}^{n}, \chi_{x}\right)+\left(\left(a\left(\widehat{Z^{n}}\right) \overline{\zeta_{x}^{n}}\right)_{x}, \chi_{x x}\right)= & -\left(d_{t} \eta^{n}+u_{t}^{n+\frac{1}{2}}-d_{t} u^{n}, \chi_{x x}\right) \\
& +a(0)\left[\widehat{Z Z}_{x}^{n}(1)\left(x \bar{Z}_{x}^{n}, \chi_{x x}\right)-u_{x}^{n+\frac{1}{2}}(1)\left(x \tilde{u}_{x}^{n+\frac{1}{2}}, \chi_{x x}\right)\right] \\
& -\left(\left(a\left(\widehat{Z^{n}}\right) \frac{\tilde{u}_{x}^{n}+\tilde{u}_{x}^{n+1}}{2}\right)_{x}, \chi_{x x}\right)+\left(\left(a\left(\tilde{u}^{n+\frac{1}{2}}\right) \tilde{u}_{x}^{n+\frac{1}{2}}\right)_{x}, \chi_{x x}\right) \\
& -\left(\left(\tilde{a}_{u} \eta^{n+\frac{1}{2}} \eta_{x}^{n+\frac{1}{2}}\right)_{x}+\left[\tilde{a}_{u u}\left(\eta^{2}\right)^{n+\frac{1}{2}} u_{x}^{n+\frac{1}{2}}\right]_{x}, \chi_{x x}\right) \\
& +\rho\left(\eta_{x}^{n+\frac{1}{2}}, \chi_{x}\right) \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}+I_{5} .
\end{aligned}
$$

To estimate $I_{i}, 1 \leq i \leq 5$, we take $\chi=\zeta^{n+1}$. Now, we estimate I_{1},

$$
\left|I_{1}\right| \leq \frac{1}{2 \epsilon}\left(\left\|d_{t} \eta^{n}\right\|^{2}+\left\|d_{t} u^{n}-u_{t}^{n+\frac{1}{2}}\right\|^{2}\right)+\epsilon\left\|\zeta_{x x}^{n+1}\right\|^{2} .
$$

Since I_{2} can be rewritten as

$$
\begin{aligned}
I_{2}= & a(0)\left[\widehat{Z_{x}^{n}}(1)\left(x \overline{\zeta_{x}^{n}}, \zeta_{x x}^{n+1}\right)+\left(\widehat{\zeta_{x}^{n}}(1)-\widehat{\eta_{x}^{n}}(1)\right)\left(x \bar{u}_{x}^{n} \zeta_{x x}^{n+1}\right)+\widehat{u_{x}^{n}}(1)\left(x \overline{\tilde{u}}_{x}^{n}, \zeta_{x x}^{n+1}\right)\right. \\
& \left.-u_{x}^{n+\frac{1}{2}}(1)\left(x \widetilde{u}_{x}^{n}, \zeta_{x x}^{n+1}\right)+u_{x}^{n+\frac{1}{2}}(1)\left(x\left(\overline{\tilde{u}_{x}^{n}}-\tilde{u}_{x}^{n+\frac{1}{2}}\right), \zeta_{x x}^{n+1}\right)\right],
\end{aligned}
$$

using condition I, (4.1) and Young's inequality, we get

$$
\left|a(0)\left[\widehat{Z_{x}^{n}}(1)\left(x \overline{\zeta_{x}^{n}}, \zeta_{x x}^{n+1}\right)\right]\right| \leq K\left(\epsilon, K_{1}, K_{6}\right)\left(\left\|\zeta^{n}\right\|_{1}^{2}+\left\|\zeta^{n+1}\right\|_{1}^{2}\right)+\epsilon\left\|\zeta_{x x}^{n+1}\right\|^{2} .
$$

And
$\left|\left(\widehat{\zeta_{x}^{n}}(1)-\widehat{\eta_{x}^{n}}(1)\right)\left(x \frac{\tilde{u}_{x}^{n+1}+\tilde{u}_{x}^{n}}{2}, \zeta_{x x}^{n+1}\right)\right| \leq K\left(\epsilon, K_{5}\right)\left\{\left\|\widehat{\zeta_{x}^{n}}\right\|^{2}+\left|\widehat{\eta_{x}^{n}}(1)\right|^{2}\right\}+\frac{1}{4} \epsilon^{2}\left\|\widehat{\zeta_{x x}^{n}}\right\|^{2}+\epsilon\left\|\zeta_{x x}^{n+1}\right\|^{2}$.
From condition II, (3.6) and Young's inequality, we obtain

$$
\left|\left(\widehat{u_{x}^{n}}(1)-u_{x}^{n+\frac{1}{2}}(1)\right)\left(x \overline{\tilde{u}^{n}}, \zeta_{x x}^{n+1}\right)\right| \leq K\left(\epsilon, K_{2}, K_{5}\right) k^{4}+\epsilon\left\|\zeta_{x x}^{n+1}\right\|^{2} .
$$

Similarly we have

$$
\left|u_{x}^{n+\frac{1}{2}}(1)\left(x\left(\overline{\bar{u}_{x}^{n}}-\tilde{u}_{x}^{n+\frac{1}{2}}\right), \zeta_{x x}^{n+1}\right)\right| \leq K\left(\epsilon, K_{2}, K_{5}\right) k^{4}+\epsilon\left\|\zeta_{x x}^{n+1}\right\|^{2} .
$$

Therefore,

$$
\begin{aligned}
\left|I_{2}\right| \leq & K\left(\epsilon, K_{1}, K_{2}, K_{5}, K_{6}\right)\left\{\left\|\zeta^{n}\right\|_{1}^{2}+\left\|\zeta^{n+1}\right\|_{1}^{2}+\left\|\widehat{\zeta_{x}^{n}}\right\|^{2}+\left|\widehat{\eta_{x}^{n}}(1)\right|^{2}+k^{4}\right\} \\
& +4 \epsilon\left\|\zeta_{x x}^{n+1}\right\|^{2}+\frac{1}{4} \epsilon^{2}\left\|\widehat{\zeta_{x x}}\right\|^{2} .
\end{aligned}
$$

Since I_{3} can be rewritten as

$$
\begin{aligned}
& \left(\left(a\left(\tilde{u}^{n+\frac{1}{2}}\right) \tilde{u}_{x}^{n+\frac{1}{2}}-a\left(\widehat{Z^{n}}\right) \bar{u}_{x}^{n}\right)_{x}, \zeta_{x x}^{n+1}\right) \\
& =\left(\left(a\left(\tilde{u}^{n+\frac{1}{2}}\right) \tilde{u}_{x}^{n+\frac{1}{2}}-a\left(\widehat{\tilde{u}^{n}} \tilde{u}_{x}^{n+\frac{1}{2}}+a\left(\widehat{\tilde{u}^{n}}\right) \tilde{u}_{x}^{n+\frac{1}{2}}\right.\right.\right. \\
& \left.\left.-a\left(\widehat{\widetilde{u}}^{n}\right) \widetilde{u}_{x}^{n}+a\left(\widehat{u}^{n}\right) \widetilde{u}_{x}^{n}-a\left(\widehat{Z^{n}}\right) \bar{u}_{x}^{n}\right)_{x}, \zeta_{x x}^{n+1}\right) .
\end{aligned}
$$

Using condition I, Young's inequality and (3.6), we obtain

$$
\left|I_{3}\right| \leq K\left(\epsilon, K_{1}, K_{5}\right)\left\{k^{4}+\left\|\zeta^{n}\right\|_{1}^{2}+\left\|\zeta^{n-1}\right\|_{1}^{2}\right\}+8 \epsilon\left\|\zeta_{x x}^{n+1}\right\|^{2} .
$$

Using condition I, Young's inequality and theorem 3.2, we get the following

$$
\begin{aligned}
\left|I_{4}\right|= & \left|\left(\left(\tilde{a}_{u} \eta^{n+\frac{1}{2}} \eta_{x}^{n+\frac{1}{2}}\right)_{x}, \chi_{x x}\right)-\left(\left[\tilde{a}_{u u}\left(\eta^{2}\right)^{n+\frac{1}{2}} u_{x}^{n+\frac{1}{2}}\right]_{x}, \chi_{x x}\right)\right| \\
\leq & K\left(\epsilon, K_{1}, K_{2}, K_{4}\right)\left\{\left\|\eta^{n+\frac{1}{2}}\right\|_{L^{\infty}}^{2}\left\|\eta_{x x}^{n+\frac{1}{2}}\right\|^{2}+\left\|\eta^{n+\frac{1}{2}}\right\|_{W^{1, \infty}}^{2}\left\|\eta_{x}^{n+\frac{1}{2}}\right\|^{2}+\left\|\eta^{n+\frac{1}{2}}\right\|_{L^{\infty}}^{4}\right\} \\
& +6 \epsilon\left\|\zeta_{x x}^{n+1}\right\|^{2} .
\end{aligned}
$$

And

$$
\left|I_{5}\right| \leq K(\rho, \epsilon)\left\|\eta^{n+\frac{1}{2}}\right\|^{2}+\epsilon\left\|\zeta_{x x}^{n+\frac{1}{2}}\right\|^{2}
$$

Since

$$
\left(d_{t} \zeta_{x}^{n}, \zeta_{x}^{n+1}\right) \geq \frac{1}{2 k}\left(\left\|\zeta_{x}^{n+1}\right\|^{2}-\left\|\zeta_{x}^{n}\right\|^{2}\right),
$$

and

$$
\left(\left(a\left(\widehat{Z^{n}}\right) \overline{\zeta_{x}^{n}}\right)_{x}, \zeta_{x x}^{n+1}\right) \geq \frac{1}{4} \tilde{\alpha}\left\|\zeta_{x x}^{n+1}\right\|^{2}-K\left(\tilde{\alpha}, K_{1}, K_{6}\right)\left\{\left\|\zeta_{x}^{n+1}\right\|^{2}+\left\|\zeta_{x}^{n}\right\|^{2}+\left\|\zeta_{x x}^{n}\right\|^{2}\right\}
$$

we finally have

$$
\begin{aligned}
& \frac{1}{2 k}\left(\left\|\zeta_{x}^{n+1}\right\|^{2}-\left\|\zeta_{x}^{n}\right\|^{2}\right)+\frac{1}{4} \tilde{\alpha}\left\|\zeta_{x x}^{n+1}\right\|^{2} \\
& \leq K\left(\epsilon, K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)\left\{\left\|d_{t} \eta^{n}\right\|^{2}+\left|\widehat{\eta_{x}^{n}}(1)\right|^{2}+\left\|\eta^{n+\frac{1}{2}}\right\|_{L^{\infty}}^{2}\left\|\eta_{x x}^{n+\frac{1}{2}}\right\|^{2}\right. \\
& \left.+\left\|\eta^{n+\frac{1}{2}}\right\|_{W^{1, \infty}}^{2}\left\|\eta_{x}^{n+\frac{1}{2}}\right\|^{2}+\left\|\eta^{n+\frac{1}{2}}\right\|_{L^{\infty}}^{4}+\left\|\eta^{n+\frac{1}{2}}\right\|^{2}+k^{4}\right\}+20 \epsilon\left\|\zeta_{x x}^{n+1}\right\|^{2}+\frac{1}{4} \epsilon^{2}\left\|\widehat{\zeta_{x x}^{n}}\right\|^{2} \\
& +K(\epsilon)\left\|d_{t} u^{n}-u_{t}^{n+\frac{1}{2}}\right\|^{2}+K\left(\epsilon, K_{1}, K_{2}, K_{5}, K_{6}\right)\left\{\left\|\zeta^{n-1}\right\|_{1}^{2}+\left\|\zeta^{n}\right\|_{1}^{2}+\left\|\zeta^{n+1}\right\|_{1}^{2}\right\} .
\end{aligned}
$$

Multiplying both sides by $2 k$ and using the discrete type Gronwall inequality implies,

$$
\begin{aligned}
\sup _{2 \leq n \leq N}\left\|\zeta_{x}^{n}\right\|^{2}+\tilde{\beta} k \sum_{j=2}^{N}\left\|\zeta_{x x}^{j}\right\|^{2} \leq & C\left\{\left\|\zeta_{x}^{1}\right\|^{2}+k\left\|\zeta_{x x}^{1}\right\|^{2}\right\} \\
& +K\left(\epsilon, K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)\left(h^{2 m}+k^{4}\right)
\end{aligned}
$$

for some $\tilde{\beta}>0$. By applying the result of theorem 4.1 to the inequality above, we obtain

$$
\sup _{1 \leq n \leq N}\left\|\zeta_{x}^{n}\right\|^{2}+\tilde{\beta} k \sum_{j=1}^{N}\left\|\zeta_{x x}^{j}\right\|^{2} \leq K\left(\epsilon, K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, K_{7}\right)\left\{h^{2 m}+k^{4}\right\} .
$$

Since $e^{n}=\eta^{n}-\zeta^{n}$, by combining the results of theorems 4.1 and 4.2 , we get the optimal convergence of e^{n} in the norms $\|\cdot\|$ and $\|\cdot\|_{1}$.

Theorem 4.3. There exists $K_{9}=K_{9}\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)$ such that for $4 \leq m \leq$ $r+1, \beta>0, k=O(h)$,

$$
\begin{aligned}
& \sup _{0 \leq n \leq N}\left\|e^{n}\right\|_{1}^{2} \leq K_{9}\left(h^{2(m-1)}+k^{4}\right) \\
& \sup _{0 \leq n \leq N}\left\|e^{n}\right\|_{1}^{2}+\beta k \sum_{n=0}^{N-1}\left\|e^{n+1}\right\|_{2}^{2} \leq K_{9}\left(h^{2(m-2)}+k^{4}\right) \\
& \sup _{0 \leq n \leq N}\left\|e^{n}\right\|^{2} \leq K_{9}\left(h^{2 m}+k^{4}\right)
\end{aligned}
$$

hold.
Let $e_{1}^{n}=s^{n}-W^{n}$ and $e_{2}^{n}=\tau^{n}-\tau_{h}^{n}$. Now we will estimate the errors $\left|e_{1}^{n}\right|$ and $\left|e_{2}^{n}\right|$ in the following theorem.

Theorem 4.4. There exists a constant $K_{10}=K_{10}\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)$ such that, for $4 \leq m \leq r+1$ and $k=O(h)$

$$
\sup _{0 \leq n \leq N}\left(\left|e_{1}^{n}\right|^{2}+\left|e_{2}^{n}\right|^{2}\right) \leq K_{10}\left(h^{2 m}+k^{4}\right) .
$$

Proof. Subtract (2.15) form (2.5) and multiply the result to get by e_{1}^{n+1}

$$
\begin{equation*}
\left\langle d_{t} e_{1}^{n}, e_{1}^{n+1}\right\rangle=\left\langle d_{t} s^{n}-\left(\frac{d s}{d t}\right)^{n+\frac{1}{2}}, e_{1}^{n+1}\right\rangle-\left\langle a(0) u_{x}^{n+\frac{1}{2}}(1) s^{n+\frac{1}{2}}-a(0) \overline{Z_{x}^{n}}(1) \overline{W^{n}}, e_{1}^{n+1}\right\rangle \tag{4.8}
\end{equation*}
$$

where $\langle f, g\rangle=f g$. (4.8) can be splitted into

$$
\begin{aligned}
\left\langle d_{t} e_{1}^{n}, e_{1}^{n+1}\right\rangle= & \left\langle d_{t} s^{n}-\left(\frac{d s}{d t}\right)^{n+\frac{1}{2}}, e_{1}^{n+1}\right\rangle-\left\langle a(0) \overline{Z_{x}^{n}}(1) \overline{e_{1}^{n}}, e_{1}^{n+1}\right\rangle \\
& \left.+\left\langle a(0)\left(\overline{s^{n}}-s^{n+\frac{1}{2}}\right) \overline{Z_{x}^{n}}(1), e_{1}^{n+1}\right\rangle+\left\langle a(0) s^{n+\frac{1}{2}} \overline{Z_{x}^{n}}(1)-\overline{u_{x}^{n}}(1)\right), e_{1}^{n+1}\right\rangle \\
& \left.+\left\langle a(0) s^{n+\frac{1}{2}} \overline{u_{x}^{n}}(1)-u_{x}^{n+\frac{1}{2}}(1)\right), e_{1}^{n+1}\right\rangle .
\end{aligned}
$$

Since

$$
\left\langle d_{t} e_{1}^{n}, e_{1}^{n+1}\right\rangle \geq \frac{1}{2 k}\left(\left|e_{1}^{n+1}\right|^{2}-\left|e_{1}^{n}\right|^{2}\right)
$$

we have

$$
\begin{aligned}
\frac{1}{2 k}\left(\left|e_{1}^{n+1}\right|^{2}-\left|e_{1}^{n}\right|^{2}\right) \leq & \left|d_{t} s^{n}-\left(\frac{d s}{d t}\right)^{n+\frac{1}{2}}\right|^{2}+K\left(K_{1}, K_{6}\right)\left|e_{1}^{n+1}\right|^{2}+K\left(K_{1}, K_{6}\right)\left|e_{1}^{n}\right|^{2} \\
& +K\left(K_{1}, K_{2}\right)\left|\overline{e_{x}^{n}}(1)\right|^{2}+K\left(K_{1}, K_{2}, K_{6}\right) k^{4}, \quad 0 \leq n \leq N-1 .
\end{aligned}
$$

Now, we sum up the terms of the inequality above

$$
\begin{aligned}
\frac{1}{2 k}\left(\left|e_{1}^{n+1}\right|^{2}\right) \leq & \sum_{m=0}^{n}\left\{\left|d_{t} s^{m}-\left(\frac{d s}{d t}\right)^{m+\frac{1}{2}}\right|^{2}+K\left(K_{1}, K_{6}\right)\left|e_{1}^{m+1}\right|^{2}+K\left(K_{1}, K_{6}\right)\left|e_{1}^{m}\right|^{2}\right. \\
& \left.+K\left(K_{1}, K_{2}\right)\left(\left|\overline{\eta_{x}^{n}}(1)\right|^{2}+\left|\overline{\zeta_{x}^{n}}(1)\right|^{2}\right)+K\left(K_{1}, K_{2}, K_{6}\right) k^{4}\right\}, \quad 0 \leq n \leq N-1 .
\end{aligned}
$$

Because of

$$
k \sum_{m=0}^{n}\left|d_{t} s^{m}-\left(\frac{d s}{d t}\right)^{m+\frac{1}{2}}\right|^{2} \leq K\left(K_{2}\right) k^{4}
$$

using theorem 3.2 and 4.2 , we have

$$
\begin{aligned}
\left|e_{1}^{n+1}\right|^{2} \leq & K\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right) k\left\{h^{2 m}+k^{4}\right\} \\
& +K\left(K_{1}, K_{6}\right) k \sum_{m=0}^{n}\left(\left|e_{1}^{m+1}\right|^{2}+\left|e_{1}^{m}\right|^{2}\right), \quad 0 \leq n \leq N-1 .
\end{aligned}
$$

By the application of the discrete Gronwall inequality, we obtain

$$
\left|e_{1}^{n+1}\right|^{2} \leq K\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)\left\{h^{2 m}+k^{4}\right\}, \quad 0 \leq n \leq N-1 .
$$

For the estimate for e_{2}, subtract (2.16) from (2.6) and multiply the result to get by e_{2}^{n+1},

$$
\begin{aligned}
\left\langle d_{t} e_{2}^{n}, e_{2}^{n+1}\right\rangle= & \left\langle d_{t} \tau^{n}-\left(\frac{d \tau}{d t}\right)^{n+\frac{1}{2}}, e_{2}^{n+1}\right\rangle-\left\langle\overline{W^{n}}, e_{2}^{n+1}\right\rangle+\left\langle\left(s^{n+\frac{1}{2}}\right)^{2}, e_{2}^{n+1}\right\rangle \\
\leq & \left|d_{t} \tau^{n}-\left(\frac{d \tau}{d t}\right)^{n+\frac{1}{2}}\right|^{2}+\left|e_{2}^{n+1}\right|^{2}-\left\langle\left(\overline{W^{n}}\right)^{2}-\left(\frac{s^{n}+s^{n+1}}{2}\right)^{2}, e_{2}^{n+1}\right\rangle \\
& +\left\langle\left(s^{n+\frac{1}{2}}\right)^{2}-\left(\frac{s^{n}+s^{n+1}}{2}\right)^{2}, e_{2}^{n+1}\right\rangle .
\end{aligned}
$$

Since

$$
\left\langle d_{t} e_{2}^{n}, e_{2}^{n+1}\right\rangle \geq \frac{1}{2 k}\left(\left|e_{2}^{n+1}\right|^{2}-\left|e_{2}^{n}\right|^{2}\right)
$$

we have

$$
\left|e_{2}^{n+1}\right|^{2} \leq k K\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)(n+1)\left\{h^{2 m}+k^{4}\right\}+6 k \sum_{i=1}^{n+1}\left|e_{2}^{i}\right|^{2}
$$

Finally we obtain,

$$
\left|e_{2}^{n+1}\right|^{2} \leq K\left(K_{1}, K_{2}, K_{4}, K_{5}, K_{6}, \rho\right)\left\{h^{2 m}+k^{4}\right\}
$$

Let $U_{h}^{n} \equiv Z^{n}$ and $S_{h}^{n} \equiv W^{n}$. Now we approximate the errors $U^{n}-U_{h}^{n}=U\left(\tau_{h}^{n}\right)-Z^{n}$ and $S^{n}-S_{h}^{n}=S\left(\tau_{h}^{n}\right)-W^{n}$ in $\|\cdot\|$. By the similar way as in [7], we obtain the following theorem.

Theorem 4.5. Suppose that conditions I and II hold for $\{U, S\}$ and $k=O(h)$. Then for $4 \leq m \leq r+1, \Delta \tau_{h}=O(h)$ and

$$
\begin{aligned}
& \sup _{n}\left\{\left\|U^{n}-U_{h}^{n}\right\|_{L^{2}\left(\tilde{\Omega}^{n}\right)}+\left|S^{n}-S_{h}^{n}\right|\right\}=K\left(\nu, \widetilde{K}_{2}, K_{10}\right)\left(h^{m}+\left(\Delta \tau_{h}\right)^{2}\right) \\
& \sup \left\|U^{n}-U_{h}^{n}\right\|_{H^{1}\left(\tilde{\Omega}^{n}\right)}=K\left(\nu, \widetilde{K}_{2}, K_{9}\right)\left(h^{m-1}+\left(\Delta \tau_{h}\right)^{2}\right)
\end{aligned}
$$

REFERENCES

1. P. G. Ciarlet, The finite element methods for elliptic problems, North-Holland New York (1987)
2. M. Crouzeix, Sur L'approximation des equations differentielles operation nelles lineaires par des methods de Runge-Kutta, University of Paris Ph.D. Thesis
3. P. C. Das, \& A. K. Pani, A priori error estimates in H^{1} and H^{2} norms for Galerkin approximations to a single-phase nonlinear Stefan problem in one space dimension, IMA J. Numer. Anal, Vol. 9, (1989) 213-229
4. P. C. Das, \& A. K. Pani, A priori Error Estimates for a single-phase quasilinear Stefan problem in one space dimension, IMA Journal of Numerical Analysis, Vol. 11, (1991) 377-392
5. J. Jr. Douglas, H^{1}-Galerkin methods for a nonlinear Dirichlet problem, Proc.Symp. Mathematical Aspects of the Finite Element Method, Springer Lecture Notes in Mathematics, Vol. 606 (1977), 64-86
6. A. Fasano, \& M. Primicerio, Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., Vol. 72, (1979) 247-273
7. Lee, \& Lee, Error estimates for a single-phase quasi-linear Stefan problem in one space dimension, Applied Numerical Analysis, Vol. 26, (1997) 327-342
8. Lee, Ohm, \& Shin, Error estimates for a single-phase nonlinear Stefan problem in one space dimension, J. Korean Math. Soc., Vol. 34, No. 3, (1997) 661-672
9. J.A. Nitsche, Finite element approximations to the one-dimensional Stefan problem. In: jour Proc. Recent Adv. Numer. Anal. (C de Boor \& G. Golub, Eds.) New York, Academic Press, (1978) 119-142
10. J. A. Nitsche, A finite element method for parabolic free boundary problems. In: Free Boundary Problems I, (E. Magenes. Ed.) Rome: Institute Nationale di Alta Matematica (1980) 277-318
11. M. R. Ohm, $W^{1, \infty}$-estimates of optimal orders for Galerkin methods to one dimensional Stefan problems, Communications in Applied Mathematics, Vol. 1, No. 4, (1997), 503-510
12. A. K. Pani, \& P. C. Das, a finite element Galerkin method for a unidimensional single-phase nonlinear Stefan problem with Dirichlet boundary conditions, IMA. J. Numer. Anal., Vol. 11, (1991) 99-113

Department of Mathematics Kyungsung University
Pusan, Korea 608-736
hylee@star.kyungsung.ac.kr
Department of Applied Mathematics Dongseo University
Pusan, Korea 617-716
mrohm@dongseo.ac.kr
Department of Applied Mathematics Pukyung National University
Pusan, Korea 608-737
jyshin@dolphin.pknu.ac.kr

[^0]: Key Words and Phrase :Galerkin method, Stefan problem, Neumann boundary condition 1991 AMS Mathematics Subject Classfication: 65M15, 65N30
 The Research was Supported by Kyungsung University Research Grants in 1999

