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AN APPLICATION OF LINKING THEOREM TO

FOURTH ORDER ELLIPTIC BOUNDARY VALUE

PROBLEM WITH FULLY NONLINEAR TERM

Tacksun Jung and Q-Heung Choi†

Abstract. We show the existence of nontrivial solutions for some
fourth order elliptic boundary value problem with fully nonlinear
term. We obtain this result by approaching the variational method
and using a linking theorem. We also get a uniqueness result.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
c ∈ R1 and g : Ω×R→ R be a C1 function.

In this paper we investigate the existence of the nontrivial solutions
for the following fourth order elliptic problem with Dirichlet boundary
condition

∆2u+ c∆u− bu+ = f(x, u) in Ω, (1.1)

u = 0, ∆u = 0 on ∂Ω,

where f(x, s) = |s|p−2s+ − |s|q−2s− with p, q > 2 and p 6= q.
Jung and Choi [6] investigated the number of the weak solutions for

the following fourth order elliptic problem with Dirichlet boundary con-
dition

∆2u+ c∆u = g(x, u) in Ω, (1.2)
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u = 0, ∆u = 0 on ∂Ω.

They assumed that g ∈ C1(Ω×R,R) satisfies the following:
(g1) g ∈ C1(Ω×R,R),
(g2) g(x, 0) = 0, g(x, ξ) = o(|ξ|) uniformly with respect to x ∈ Ω,
(g3) there exists C > 0 such that |g(x, ξ)| < C ∀(x, ξ) ∈ Ω×R.

Liu [9] investigated the existence of nontrivial solutions for the the
semilinear beam equation

utt + uxxxx + bu+ = f(x, t, u) in (−π
2
, π

2
)×R,

u(±π
2
, t) = uxx(±π

2
, t) = 0,(1)

u is π-periodic in t and even in x and t,

where u+ = max{u, 0}, the nonlinear term is a functions with different
powers:

f(x, t, s) =

{
s2, s ≥ 0
s3, s ≤ 0.

The eigenvalue problem

∆u+ λu = 0 in Ω,

u = 0 on ∂Ω

has infinitely many eigenvalues λj, j ≥ 1 which is repeated as often as
its multiplicity, and the corresponding eigenfunctions φj, j ≥ 1 suitably
normalized with respect to L2(Ω) inner product. The eigenvalue problem

∆2u+ c∆u = Λu in Ω,

u = 0, ∆u = 0 on ∂Ω,

has also infinitely many eigenvalues Λj = λj(λj − c), j ≥ 1 and cor-
responding eigenfunctions φj, j ≥ 1. We note that Λ1,Λ2, . . . ,Λj are
negative and

0 < Λj+1 ≤ Λj+2 ≤ . . . ≤ Λk ≤ . . . , Λk → +∞,
where we assume that c ∈ R1 satisfies λj < c < λj+1.

Jung and Choi [5] proved that (1.1) has at least one nontrivial solution
when c < λ1 and g satisfies the condition (g1), (g2) and additional
conditions
(g3)′ there exists ξ ≥ 0 such that p(x, ξ) ≤ 0 ∀x ∈ Ω,
(g4)′ there exist a constant r > 0 and an element e ∈ H such that
‖e‖ = r, e < ξ and 1

2
r2 −

∫
Ω
P (x, e) < 0,
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by reducing the problem (1.1) to the problem with bounded nonlinear
term and then applying the maximum principle for the elliptic operator
−∆ and −∆−c two times and the mountain pass theorem in the critical
point theory. Jung and Choi [3] showed the existence of at least two
solutions, one of which is bounded solution and large norm solution of
(1.1) when g(u) is polynomial growth or exponential growth nonlinear
term. The authors proved these results by the variational method and
the mountain pass theorem. For the constant coefficient semilinear case
Choi and Jung [2] showed that the problem

∆2u+ c∆u = bu+ + s in Ω, , (1.3)

u = 0, ∆u = 0 on ∂Ω,

has at least two nontrivial solutions when c < λ1, Λ1 < b < Λ2 and
s < 0 or when λ1 < c < λ2, b < Λ1 and s > 0. The authors obtained
these results by use of the variational reduction method. The authors
[5] also proved that when c < λ1, Λ1 < b < Λ2 and s < 0, (1.2) has at
least three nontrivial solutions by use of the degree theory. Tarantello
[11] also studied the problem

∆2u+ c∆u = b((u+ 1)+ − 1) in Ω, , (1.4)

u = 0, ∆u = 0 on ∂Ω.

She showed that if c < λ1 and b ≥ Λ1, then (1.4) has a negative solution.
She obtained this result by the degree theory. Micheletti and Pistoia [9]
also proved that if c < λ1 and b ≥ Λ2, then (1.4) has at least three
solutions by the variational linking theorem and Leray-Schauder degree
theory.

In this paper we are trying to find weak solutions of (1.1), that is,∫
Ω

[∆2u · v + c∆u · v − bu+v − f(x, u)v]dx = 0, ∀v ∈ H,

where H is introduced in section 2.
We consider the associated functional of (1.1)

I(u) =

∫
Ω

[
1

2
|∆u|2 − c

2
|∇u|2 − b

2
|u+|2 − F (x, u)]dx, (1.4)

where F (x, s) =
∫ s

0
f(x, τ)dτ . By (g1), I is well defined.

Our main result is the following.

Theorem 1.1. Assume that λj < c < λj+1, j ≥ 1. If Λ−i ≤ −b then
problem (1.1) has at least one nontrivial solution.
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We prove Theorem 1.1 by approaching the variational method and
using a linking theorem for the reduced fourth order elliptic problem
with bounded nonlinear term. The outline of the proof of Theorem
1.1 is as follows: In section 2, we prove the functional I(u) ∈ C1 and
the functional I satisfies the Palais Smale condition. In section 3, we
prove the uniqueness result for problem (1.1). In section 4, we show the
existence of nontrivial solutions for some fourth order elliptic boundary
value problem with fully nonlinear term.

2. Variational approach

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hkφk with
∑

h2
k <∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑
|Λk|h2

k <∞}. (2.1)

Then this is a complete normed space with a norm

‖u‖ = [
∑
|Λk|h2

k]
1
2 .

Since λk → +∞ and c is fixed, we have Λk →∞ and
(i) ∆2u+ c∆u ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0,
which is proved in [1].

Suppose that λj < c < λj+1. We denote by (Λ−i )i≥1 the sequence of
the negative eigenvalues of ∆2 + c∆ , by (Λ+

i )i≥1 the sequence of the
positive ones, so that

· · · < Λ−1 < 0 < Λ+
1 = λj+1(λj+1 − c) < Λ+

2 = λj+2(λj+2 − c) < · · · .
We consider an orthonormal system of eigenfunctions {e−i , e+

i , i ≥ 1}
associated with the eigenvalues {Λ−i ,Λ+

i , i ≥ 1}. We set

H+ = closure of span{eigenfunctions with eigenvalue ≥ 0},
H− = closure of span{eigenfunctions with eigenvalue ≤ 0}.

Then H = H− ⊕ H+, for u ∈ H, u = u− + u+ ∈ H− ⊕ H+. Let P+

be the orthogonal projection from H onto H+ and P− be the orthogonal
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projection from H onto H−. We can write P+u = u+, P−u = u−, for
u ∈ H.

By the following Lemma 2.1, the weak solutions of (1.1) coincide with
the critical points of the associated functional I(u).

Lemma 2.1. Assume that λj < c < λj+1, j ≥ 1, and g satisfies the
conditions (g1) − (g3). Then I(u) is continuous and Fréchet differen-
tiable in H with Fréchet derivative

I ′(u)h =

∫
Ω

[∆u ·∆h− c∇u · ∇h− g(x, u)h]dx.

If we set

F (u) =
1

2

∫
Ω

G(x, u)dx,

then F ′(u) is continuous with respect to weak convergence, F ′(u) is
compact and

F ′(u)h =

∫
Ω

g(x, u)hdx for all h ∈ H,

this implies that I ∈ C1(H,R) and F (u) is weakly continuous.

The proof of Lemma 2.1 has the similar process to that of the proof
in Appendix B in [10].

Now we shall show that I(u) satisfies Palais-Smale condition.

Lemma 2.2. Assume that λj < c < λj+1, j ≥ 1, and g satisfies
the conditions (g1)− (g3). Then the functional I satisfies Palais-Smale
condition: Any sequence (um) in H for which |I(um)| ≤M and I ′(um)→
0 as m→∞ possesses a convergent subsequence.

Proof. Let us choose u ∈ H. By g ∈ C1 and (g1), G(x, u) is bounded.
Then we have

I(u) =

∫
Ω

[
1

2
|∆u|2 − c

2
|∇u|2 −G(x, u)]dx

≥ 1

2
{λ1(λ1 − c)}‖u‖2

L2(Ω) −
∫

Ω

G(x, u)dx.

Since u is bounded and
∫

Ω
G(x, u)dx is bounded, I(u) is bounded from

below. Thus I satisfies the (PS) condition.
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3. Uniqueness

The following theorem is the uniqueness result for problem (1.1).

Lemma 3.1. Assume that λj < c < λj+1, j ≥ 1. Let b < Λ1 < 0 and

f(x, s) =

{
0, s ≥ 0

|s|q−2s, s ≤ 0.

Then problem (1.1) has only trivial solution.

Proof. Let Lu = ∆2u+ c∆u and we rewrite (1.1) as

Lu− Λ1u = f(x, u)− Λ1u+ bu+

= (u−)q−2u− Λ1u+ bu+

= (u−)q−2u− (Λ1 − b)u+ + Λ1u
−.

Multiplying across by −φ1 and integrating over Ω,

0 = < [L− Λ1]u,−φ1 >

= −
∫

Ω

[|u−|p−2u− (Λ1 − b)u+ + Λ1u
−]φ1dx ≥ 0.

Since the condition b < Λ1 imply that −(Λ1 − b)u+ ≤ 0, (u−)q−1u ≤ 0,
and Λ1u

− ≤ 0 for all real valued function u and φ1(x) > 0 for all x ∈ Ω.
Therefore the only possibility to hold (1.1) is that u ≡ 0.

In this section, we suppose b < 0. Under this assumption, we have a
concern with multiplicity of solutions of equation (1). Here we suppose
that f is defined by equation (2).

In the following, we consider the following sequence of subspaces of
L2(RN) :

Hn = (⊕ni=1HΛ−
i

)⊕ (⊕ni=1HΛ+
i

)

where HΛ is the eigenspace associated to Λ.

Lemma 3.2. The functional Ib satisfies (P.S.)∗γ condition, with respect
to (Hn), for all γ.

Proof. Let (kn) be any sequence in N with kn → ∞. And let (un)
be any sequence in H such that un ∈ Hn for all n, Ib(un) → γ and
D(Ib) |Hkn

(un)→ 0.
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First, we prove that (un) is bounded. By contradiction let tn =
‖un‖ → ∞ and set ûn = un/tn. Up to a subsequence ûn ⇀ û in H
for some û in H. Moreover

0 ← < D(Ib)Hkn
(un), ûn > −

2

tn
Ib(un)

=
2

tn

∫
Ω

F (un)dx− 1

tn

∫
Ω

f(un)undx

=

∫
Ω

−p− 2

p
(tn)p−1[(Aûn)+]p +

q + 2

q
(tn)q−1[(ûn)−]qdx.

Since tn →∞, (Aûn)+ → 0 and (Aûn)− → 0. This implies Aû = 0 and
û = 0, a contradiction.

So (un) is bounded and we can suppose un ⇀ u for some u ∈ H. We
know that

D(Ib)Hkn
(un) = P+un − P−un + b(un)+ − f(un).

Hence P+un − P−un converges strongly, hence un → u strongly and
DIb(u) = 0.

4. An application of linking theory

Fixed Λ−i and Λ−i < −b < Λ−i−1. We prove the main result via a
linking argument.

First of all, we introduce a suitable splitting of the space H. Let

Z1 = ⊕∞j=i+1HΛ−
j
, Z2 = HΛ−

i
, Z3 = ⊕i−1

j=1HΛ−
j
⊕H+

Lemma 4.1. There exists R such that supv∈Z1⊕Z2,‖v‖=R Ib(v) < 0.

Proof. If v ∈ Z1 ⊕ Z2 then

Ib(v) = −1

2
‖v‖2 +

b

2

∫
Ω

|[v]+|2dx−
∫

Ω

F (v)dx.

Since

b

2
‖[Sv]+‖2 −

∫
Ω

F (Sv)dx =

∫
Ω

b

2
([Sv]+)2 − 1

p
([Sv]+)p − 1

q
([Sv]−)qdx,
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there exists R such that b
2
‖[Sv]+‖2 −

∫
Ω
F (Sv)dx ≤ 0 for all ‖v‖ = R.

Hence, for v ∈ Z1 ⊕ Z2, ‖v‖ = R

Ib(v) ≤ −1

2
‖v‖2 < 0.

Lemma 4.2. There exists ρ such that infu∈Z2⊕Z3,‖u‖=ρ Ib(u) > 0.

Proof. Let σ ∈ [0, 1]. We consider the functional Ib,σ : Z2 ⊕ Z3 → R
defined by

Ib,σ(u) =
1

2
‖P+u‖2 − 1

2
‖P−u‖2 +

b

2

∫
Ω

|[v]+|2dx− σ
∫

Ω

F (u)dx.

We claim that there exists a ball Bρ = {u ∈ Z2⊕Z3|‖u‖ < ρ} such that

1. Ib,σ are continuous with respect to σ,
2. Ib,σ satisfies (P.S) condition,
3. 0 is a minimum for Ib,0 in Bρ,
4. 0 is the unique critical point of Ib,σ in Bρ.

Then by a continuation argument of Li-Szulkin’s (see[7]), it can be
shown that 0 is a local minimum for Ib|Z2⊕Z3

= Ib,1 and Lemma is proved.

The continuity in σ and the fact that 0 is a local minimum for Ib,0
are straightforward. To prove (P.S.) condition one can argue as in the
previous Lemma, when dealing with Ib.

To prove that 0 is isolated we argue by contradiction and suppose
that there exists a sequence (σn) in [0, 1] and sequence (un) in Z2 ⊕ Z3

such that DIb,σn(un) = 0 for all n, un 6= 0, andun → 0. Set tn = ‖un‖
and ûn = un/tn then tn → 0. Let v̂n = P−ûn and ŵn = P+ûn. Since
v̂n varies in a finite dimensional space, we can suppose that v̂n → v̂ for
some v̂. We get

(2)
1

tn
DIb,σ(un) = ŵn − v̂n +

b

tn
(un)+ − σn

tn
f(un) = 0.

Multiplying by ŵn yields

‖ŵn‖2 =
σn
tn

∫
Ω

f(un)ŵndx−
b

tn

∫
Ω

(un)+ŵndx.
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We know that ∫
Ω

(un)+ŵndx =

∫
Ω

P+(un)+ûndx

=

∫
Ω

P+(un)+(ûn)+dx.

Since b > 0, there exists a sequence (εn) such that εn → 0 and 0 < εn < b
for all n. That is

b

tn

∫
Ω

(un)+ŵndx ≥
εn
tn

∫
Ω

P+(un)+(ûn)+dx.

Then

‖ŵn‖2 ≤ 1

tn

∫
Ω

f(un)ŵndx−
εn
tn

∫
Ω

P+(un)+(ûn)+dx

≤
∫

Ω

|f(un)|
tn
|ŵn|dx+ εn

∫
Ω

|P+(ûn)+||(ûn)+|dx.

Hence

|f(un)| = |{([tnûn]+)p−1 − ([tnûn]−)q−1}|
≤ tn

p−1|[ûn]+|p−1 + tn
q−1|[ûn]−|q−1

≤ tn
m(M1 + tn

M−mM2)

for some M1 and M2 where m = min{p − 1, q − 1} and M = max{p −
1, q − 1}. We get that∫

Ω

|f(un)|
tn
|ŵn|dx ≤ tn

m(M1 + tn
M−mM2)

∫
Ω

|ŵn|dx ≤ o(1).

Hence

(3) ‖ŵn‖2 ≤ o(1) + εn

∫
Ω

|P+(ûn)+||(ûn)+|dx.

Since
∫

Ω
|P+(ûn)+||(ûn)+|dx is bounded and equation (7) holds for every

εn, ŵn → 0 and so (ûn) converges. Since |f(un)| ≤ tn
m(M1 + tn

M−mM2),
we get

σn
tn
|f(un)| ≤ 1

tn
|f(un)| ≤ tn

m−1(|M1 + tn
M−mM2) ≤ o(1).

Then σn
tn
f(un)→ 0. From equation (6), (v̂n) converges to zero, but this

is impossible if ‖(̂un)‖ = 1.
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Definition 4.3. Let H be an Hilbert space, Y ⊂ H, ρ > 0 and
e ∈ H \ Y , e 6= 0. Set:

Bρ(Y ) = {x ∈ Y | ‖x‖ ≤ ρ},
Sρ(Y ) = {x ∈ Y | ‖x‖ = ρ},

4ρ(e, Y ) = {σe+ v | σ ≥ 0, v ∈ Y, ‖σe+ v‖ ≤ ρ},
Σρ(e, Y ) = {σe+ v | σ ≥ 0, v ∈ Y, ‖σe+ v‖ = ρ} ∪ {v | v ∈ Y, ‖v‖ ≤ ρ}.

Theorem 4.1. If Λ−i ≤ −b then problem (1.1) has at least one non-
trivial solution.

Proof. Let e ∈ Z2. By Lemma 4.1 and Lemma 4.2, for a suitable large
R and a suitable small ρ, we have the linking inequality

sup Ib(ΣR(e, Z1)) < inf Ib(Sρ(Z2 ⊕ Z3)).(4)

Moreover (P.S.)∗γ holds. By standard linking arguments, it follows that
there exists a critical point u for Ib with α ≤ Ib(u) ≤ β, where α =
inf Ib(Sρ(Z2 ⊕ Z3)) and β = sup Ib(∆R(e, Z1)). Since α > 0, then u 6=
0.
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