• Title/Summary/Keyword: Bonding temperature effect

Search Result 252, Processing Time 0.026 seconds

Preparation of Thermal Bonding Fabric by using-low-melting-point Bicomponent Filament Yarn - Head tie - (저융점 복합사를 이용한 열융착 직물의 제조(I) - 헤드타이를 중심으로 -)

  • Ji, Myeong-Kyo;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.11 no.3
    • /
    • pp.474-480
    • /
    • 2009
  • The purpose of this study is to prepare the hardness of polyester(PET) fabric by thermal bonding with low melting component of bicomponent fiber and to describe the change of physical properties of thermal bonded PET fabrics. The PET fabrics were prepared with regular PET fiber as warp and bicomponent fiber as weft. The bicomponent fiber of sheath-core type were composed with a regular PET core and low melting PET sheath. The thermal bonding of PET fabric was carried out in pin tenter from 120 to $195^{\circ}C$ temperature range for 60 seconds. In this study, we investigated the physical properties and melting behavior of PET fiber and the effect of the temperature of the pin tenter on the thermal bonding, mechanical properties. Melting peak of warp showed the thermal behavior of general PET fiber. However, melting peak of weft fiber(bicomponent fiber) showed the double melting peak. The thermal bonding of the PET fabric formed at about temperature of lower melting peak. The optimum thermal bonding conditions for PET fabrics was applied at $190{\sim}195^{\circ}C$ for 60seconds by pin tenter. On the other hand, the tensile strength of the PET fabric decreased with an increasing temperature of thermal bonding.

The Effect of Processing Variables on Self-Bonding Strength in Amorphous PEEK Films (비정질 PEEK 필름의 Self-Bonding강도에 미치는 제조공정변수의 영향)

  • Jo, Beom-Rae;Kardos, J.L.
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.191-196
    • /
    • 1995
  • Self-bonding strength developed at the interface of amorphous PEEK films is highly sensitive to the processing variables(time, temperature, and pressure) during the bonding process. In order to examine the effects of these processing variables, amorphous PEEK films were bonded at various bonding conditions and the resultant interfacial bond strengths were measured using a modified single lap-shear test. Experimental results showed that the developed self-bonding strength increases with increase in bonding temperature and is directly proportional to the bonding time raised to the 1/4 power. The applied pressure seems only to produce better wetting at the beginning stage of the bonding process. Conclusively, the self-bonding of amorphous PEEK films provides a great potential for developing excellent bond strength approaching the strength of the parent material without any adhesives in structural applications.

  • PDF

Low Temperature Bonding of Copper with Interlayers Coated by Sputtering(Part 1) (스퍼터링 코팅층을 중간재로 사용한 동(Cu)의 저온 접합(제1보))

  • Kim, Dae-Hun
    • 연구논문집
    • /
    • s.24
    • /
    • pp.63-79
    • /
    • 1994
  • This article reports a experimental study of the method to achieve a bond joint at lower temperature in a short time. DC magnetron sputtering of Sn, Sn/Pb, Sn/In and Sn/Cu on copper substrate was provided as an interlayer for Cu to Cu bonding under the air environment. Various examination was conducted and investigated on the effect of experimental parameters such as coating materials, coating time(or coating thickness), bonding temperature and bonding time etc. Bonding was performed at the temperature of $210^\circC-320^\circC$ for 0sec and interfacial reaction between the coated layer and copper substrate was examined using optical, scanning electron microscope and x-ray diffractometer. From the obtained results, it was found that intermetallic compounds layer consisted of $\eta-phase(Cu_6Sn_5)$ and $\beta-phase(Cu_3Sn)$ was formed at the joint interface for almost all coating materials. But the dominant phase formed in the preetched Cu substrate coated with Sn was $\beta-phase$. A characteristic morphology looks like a reaction ring, which was believed as the strong interconnecting regions between two substrates, was found to be formed on the reaction surface of copper substrates. The morphologies and compositions of the intermetallics, which depends on the regions of the reaction surface, was appeared as greatly different. Based on above results, the new bonding process to make the joint at lower temperature for short time can be admitted as a feasible process.

  • PDF

Thermocompression Anisothropic Conductive Films(ACFs) bonding for Flat Panel Displays(FPDs) Application (평판디스플레이를 위한 열압착법을 이용한 이방성 도전성 필름 접합)

  • Pak, Jin-Suk;Jo, Il-Jea;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.199-204
    • /
    • 2009
  • The effect of temperature on ACF thermocompression bonding for FPD assembly was investigated, It was found that Au bumps on driver IC's were not bonded to the glass substrate when the bonding temperature was below $140^{\circ}C$ so bonds were made at temperatures of $163^{\circ}C$, $178^{\circ}C$ and $199^{\circ}C$ for further testing. The bonding time and pressure were constant to 3 sec and 3.038 MPa. To test bond reliability, FPD assemblies were subjected to thermal shock storage tests ($-30^{\circ}C$, $1\;Hr\;{\leftrightarrow}80^{\circ}C$, 1 Hr, 10 Cycles) and func! tionality was verified by driver testing. It was found all of FPDs were functional after the thermal cycling. Additionally, Au bumps were bonded using ACF's with higher conductive particle densities at bonding temperatures above $163^{\circ}C$. From the experimental results, when the bonding temperature was increased from $163^{\circ}C$ to $199^{\circ}C$, the curing time could be reduced and more conductive particles were retained at the bonding interface between the Au bump and glass substrate.

Interfacial Microstructure and Mechanical Property of Au Stud Bump Joined by Flip Chip Bonding with Sn-3.5Ag Solder (Au 스터드 범프와 Sn-3.5Ag 솔더범프로 플립칩 본딩된 접합부의 미세조직 및 기계적 특성)

  • Lee, Young-Kyu;Ko, Yong-Ho;Yoo, Se-Hoon;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.65-70
    • /
    • 2011
  • The effect of flip chip bonding parameters on formation of intermetallic compounds (IMCs) between Au stud bumps and Sn-3.5Ag solder was investigated. In this study, flip chip bonding temperature was performed at $260^{\circ}C$ and $300^{\circ}C$ with various bonding times of 5, 10, and 20 sec. AuSn, $AuSn_2$ and $AuSn_4$ IMCs were formed at the interface of joints and (Au, Cu)$_6Sn_5$ IMC was observed near Cu pad side in the joint. At bonding temperature of $260^{\circ}C$, $AuSn_4$ IMC was dominant in the joint compared to other Au-Sn IMCs as bonding time increased. At bonding temperature of $300^{\circ}C$, $AuSn_2$ IMC clusters, which were surrounded by $AuSn_4$ IMC, were observed in the solder joint due to fast diffusivity of Au to molten solder with increased bonding temperature. Bond strength of Au stud bump joined with Sn-3.5Ag solder was about 23 gf/bump and fracture mode of the joint was intergranular fracture between $AuSn_2$ and $AuSn_4$ IMCs regardless bonding conditions.

Effect of Bonding Temperature and Bonding Pressure on Deformation and Tensile Properties of Diffusion Bonded Joint of STS304 Compact Heat Exchanger (STS304 콤팩트 열교환기 고상확산접합부의 접합부 변형과 인장성질에 미치는 접합온도 및 접합압력의 영향)

  • Jeon, Ae-Jeong;Yoon, Tae-Jin;Kim, Sang-Ho;Kim, Hyeon-Jun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.46-54
    • /
    • 2014
  • In this study, the effect of bonding temperature and bonding pressure on deformation and tensile properties of diffusion bonded joint of STS304 compact heat exchanger was investigated. The diffusion bonds were prepared at 700, 800 and $900^{\circ}C$ for 30, 60 and 90 min in pressure of 3, 5, and 7 MPa under high vacuum condition. The height deformation of joint decreased and the width deformation of joint increased with increasing bonding pressure at $900^{\circ}C$. The ratio of non-bonded layer and void observed in the joint decreased with increasing bonding temperature and bonding pressure. Three types of the fracture surface were observed after tensile test. The non-bonded layer was observed in diffusion bonded joint preformed at $700^{\circ}C$, the non-bonded layer and void were observed at $800^{\circ}C$. On the other hand, the ductile fracture occurred in diffusion bonded joint preformed at $900^{\circ}C$. Tensile load of joint bonded at $800^{\circ}C$ was proportional to length of bonded layer and tensile load of joint bonded at $900^{\circ}C$ was proportional to minimum width of pattern. The tensile strength of joint was same as base metal.

Effect of Surface Treatments and Glazing Temperatures on Bond Strength and Color Reproducibility in Titanium-Ceramic Prosthesis (티타늄의 표면처리와 저온용융도재의 글레이징 온도에 따른 티타늄-세라믹 보철물의 전단결합강도와 색조재현성)

  • Chung, In-Sung;Lee, Do-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.243-250
    • /
    • 2010
  • The bonding strength and color reproducibility of titanium-ceramic prosthesis were analyzed the effect according to the surface treatments of titanium and the glazing temperatures of the low fused porcelain. The result of bonding strength compared with respect to the surface treatments was observed that the STB1 group coated by TiN had strongest boding strength and then came the SB1 group used special bonding agent, the SGB1 group coated by gold in that order. The bonding strength by the glazing temperature was indicated that the group with $770^{\circ}C$ of glazing temperature was observed increasing the bonding strength as compared with it of the other group, and the group with $810^{\circ}C$ of glazing temperature was observed to be decreased the bonding strength. Glazing temperature increases, the color by the surface treatment of titanium influenced the color of titanium-ceramic on account of getting higher brightness(${\Delta}L$). As a this result, the SB1 and SGB3 groups was evaluated to has the best color reproducibility.

Effect of Bonding Process Conditions on the Interfacial Adhesion Energy of Al-Al Direct Bonds (접합 공정 조건이 Al-Al 접합의 계면접착에너지에 미치는 영향)

  • Kim, Jae-Won;Jeong, Myeong-Hyeok;Jang, Eun-Jung;Park, Sung-Cheol;Cakmak, Erkan;Kim, Bi-Oh;Matthias, Thorsten;Kim, Sung-Dong;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.319-325
    • /
    • 2010
  • 3-D IC integration enables the smallest form factor and highest performance due to the shortest and most plentiful interconnects between chips. Direct metal bonding has several advantages over the solder-based bonding, including lower electrical resistivity, better electromigration resistance and more reduced interconnect RC delay, while high process temperature is one of the major bottlenecks of metal direct bonding because it can negatively influence device reliability and manufacturing yield. We performed quantitative analyses of the interfacial properties of Al-Al bonds with varying process parameters, bonding temperature, bonding time, and bonding environment. A 4-point bending method was used to measure the interfacial adhesion energy. The quantitative interfacial adhesion energy measured by a 4-point bending test shows 1.33, 2.25, and $6.44\;J/m^2$ for 400, 450, and $500^{\circ}C$, respectively, in a $N_2$ atmosphere. Increasing the bonding time from 1 to 4 hrs enhanced the interfacial fracture toughness while the effects of forming gas were negligible, which were correlated to the bonding interface analysis results. XPS depth analysis results on the delaminated interfaces showed that the relative area fraction of aluminum oxide to the pure aluminum phase near the bonding surfaces match well the variations of interfacial adhesion energies with bonding process conditions.

The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length (탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향)

  • Hong, Soon-kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.