• Title/Summary/Keyword: Bonding Durability

Search Result 117, Processing Time 0.033 seconds

Analysis of Thermal Expansion of Latex-Modified Concrete (라텍스개질 콘크리트의 열팽창 특성 분석)

  • Choi, Seong-Yong;Lee, Joo-Hyung;Lim, Hong-Beom;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.157-163
    • /
    • 2003
  • The properties of mechanics and durability of LMC have been performed actively. However, little studies on analysis and properties of thermal expansion has been on the temperature variation. Especially, the low of bonding strength and tensile cracking are caused by difference of thermal expansion between LMC and the substrate concrete. Therefore, this study focused on effect of thermal expansion behavior and properties of LMC according to temperature variation. To identify the property of thermal expansion of LMC, tests of modulus of thermal expansion were carried out at 28 days after casting specimen, subjected to temperature variation between $10^{\circ}C$ and $60^{\circ}C$. The results of this study showed the modulus of elastic of LMC was similar to that of ordinary portland concrete(OPC). It means that stresses caused by difference of modulus of elastic did not occur on interface between LMC and existing concrete. The modulus of thermal expansion of LMC had a little smaller than that of OPC. The modulus of thermal expansion of polymer modified concrete is generally larger than OPC, but the result of this test is disagree with the fact, which may be due to the humidity evaporation difference and aggregate properties.

  • PDF

Effect of Hydrodemolition on Bonding Strengthof Structures Repaired or Rehabilitated with VES-LMC (VES-LMC로 보수.보강된 구조물의부착강도에 미치는 Hydrodemolition의 영향)

  • Kim, Seong-Kwon;Shim, Do-Sick;Lee, Bong-Hak;Yun, Kyung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.397-400
    • /
    • 2006
  • Most of the civil structures in Korea and abroad have many kinds of damages when they are facing over-loaded traffics, long-term serviceability, and severe environmental conditions. Repair, rehabilitation, and retrofit are important for maintaining the serviceability of structures. In recent year, VES-LMC has been widely used as repair material for bridge deck repair and rehabilitation, because the VES-LMC has a various benefits such as traffic opening after 3 hours of curing, higher durability and bond strength. In case of any structure repaired or rehabilitated with VES-LMC, those were influenced capacity of bond between the base layer of slab and VES-LMC as well as physical properties of each other materials. The capacity of bond depended on purity of interface, micro cracks, curing of VES-LMC and so like. A kind of popular concrete repair technique, High pressure water jetting equipment is extremely efficient at removing damaged concrete. Removing damaged or poor quality concrete from sensitive structures such as bridge, tunnels, multi-story car parking decks and runways, using the high pressure water jetting could remove damaged or poor quality concrete remaining healthy and sound concrete. Accordingly, the purpose of this study is that it was to evaluate effect of hydrodemolition on the bond strength of VES-LMC overlay compared with effects of other method such as breaker, untreated. Also, it was evaluated the effect of surface moisture.

  • PDF

A Study Properties of concrete Recycling Cockle Shells as Fine Aggregate (고막 패각의 콘크리트 잔골재로 재활용 방안에 관한 연구)

  • Kim, Jeong-Sup;Kim, Kwang-Sup;Kim, Pan-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.141-146
    • /
    • 2004
  • 1) As a result of compressive strength experiment, rupture compressive strength showed more increases in specimens of 15% and 20% of Cockle shells in those of non-mixture. Comparing compressive strength between no-mixed Specimens and Specimens of containing Cockle shells, Specimens containing Cockle shells showed higher strength in 60 days and 90 days of age, and as ark Cockle is contained and age is elapsed, compressive strength is also increased In addition, estimation of compressive strength by reactive hardness in concrete using Cockle shells as aggregate shows low reliability. 2) As a result of experimenting compressive strength after heating, Specimens containing Cockle shells and non-mixed Specimens showed similar strength at $200^{\circ}C$, but compressive strength was lowered as content of Cockle shells increased at over $400^{\circ}C$ and heating temperature was higher. It is because Cockle shells was fired by heat and then its adhesion and bonding capacity were lost. 3) To sum up the above experimental results, it is found that using splitted Cockle shells as aggregate for concrete by 10%~20% showed the same or higher compressive strength and shear strength as concretes using general aggregate and it can be used as substitute aggregate of concrete. It is considered that for future use of splitted Cockle shells as substitute concrete aggregate, continuous researches of its durability, applicability and economy are needed.

Dissolution and Structure Analysis of Phosphate Water Soluble glasses (인산염계 수용성 유리의 용출 및 구조 분석)

  • Yoon, Young-Jin;Yoon, Tae-Min;Lee, Yong-Soo;Kang, Won-Ho
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.545-549
    • /
    • 2002
  • Potassium-Calcium-Phosphate glasses in range $XCaO\cdot(50-X)K_2O$ \cdot $50P_2$$O^{5}$were investigated. Glass transition temperature(Tg) of prepared glasses were below $520^{\circ}C$, thermal expansion coefficient from $270.3$\times$10^{7}$ to $604.5$\times$10^{7}$/$^{\circ}C$. The structure of XCaO.(50-X)$K_2$O\cdot$50P_2$$O^{5}$ glasses were examined by FT-IR spectroscopy indirectly. As CaO was increased, Ts, Tg, P-O-P bonding strength and chemical durability were increased. Glass surface change was observed with increasing dissolution time using bulk specimen, weight loss and pH change were measured as function of the dissolution time.

Optical Properties of DLC-coated ZnS Substrates in the Mid-infrared Region (중적외선 영역의 DLC 코팅된 ZnS 기판의 광학 특성)

  • Kwon, Tae-Hyeong;Yeo, Seo-Yeong;Kim, Chang-Il;Nahm, Sahn;Kwon, Min-Chul;Chu, Byoung-Uck;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.101-105
    • /
    • 2019
  • ZnS substrates with excellent transmittance in the mid-infrared region ($3-5{\mu}m$) were prepared using hot pressing instead of conventional chemical vapor deposition (CVD). Diamond-like carbon(DLC) was coated on either one or both sides of the ZnS substrates to improve their mechanical properties and transmittance. More specifically DLC was coated using CVD with an Ar and $C_2H_2$ mixed gas, and Ge was used as the bonding layer. During CVD, the bias voltage was fixed to 500 V and analyzed by Fourier transform infrared spectroscopy (FT-IR), nanoindenter, scanning electron microscope and energy dispersive spectrometry. Results of hardness analysis using the nanoindenter, showed that DLC coating increased from 5.9 to 17.7 GPa after deposition. The FT-IR spectroscopy results showed that, in the mid-infrared region ($3-5{\mu}m$), the average transmittance of the samples with DLC coating on one and both sides increased by approximately 6% and approximately 11.2% respectively. In conclusion, the DLC coating improved the durability and transmittance of the ZnS substrates.

EFFECT OF CHLORHEXIDINE ON MICROTENSILE BOND STRENGTH OF DENTIN BONDING SYSTEMS (Chlorhexidine 처리가 상아질 접착제의 미세인장결합강도에 미치는 영향)

  • Oh, Eun-Hwa;Choi, Kyoung-Kyu;Kim, Jong-Ryul;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of chlorhexidine (CHX) on microtensile bond strength (${\mu}TBS$) of dentin bonding systems. Dentin collagenolytic and gelatinolytic activities can be suppressed by protease inhibitors, indicating that MMPs (Matrix metalloproteinases) inhibition could be beneficial in the preservation of hybrid layers. Chlorhexidine (CHX) is known as an inhibitor of MMPs activity in vitro. The experiment was proceeded as follows: At first, flat occlusal surfaces were prepared on mid-coronal dentin of extracted third molars. GI (Glass Ionomer) group was treated with dentin conditioner, and then, applied with 2 % CHX. Both SM (Scotchbond Multipurpose) and SB (Single Bond) group were applied with CHX after acid-etched with 37% phosphoric acid. TS (Clearfil Tri-S) group was applied with CHX, and then, with adhesives. Hybrid composite Z-250 and resin-modified glass ionomer Fuji-II LC was built up on experimental dentin surfaces. Half of them were subjected to 10,000 thermocycle, while the others were tested immediately. With the resulting data, statistically two-way ANOVA was performed to assess the ${\mu}TBS$ before and after thermo cycling and the effect of CHX. All statistical tests were carried out at the 95 % level of confidence. The failure mode of the testing samples was observed under a scanning electron microscopy (SEM). Within limited results, the results of this study were as follows; 1. In all experimental groups applied with 2 % chlorhexidine, the microtensile bond strength increased, and thermo cycling decreased the micro tensile bond strength (P > 0.05). 2. Compared to the thermocycling groups without chlorhexidine, those with both thermocycling and chlorhexidine showed higher microtensile bond strength, and there was significant difference especially in GI and TS groups. 3. SEM analysis of failure mode distribution revealed the adhesive failure at hybrid layer in most of the specimen. and the shift of the failure site from bottom to top of the hybrid layer with chlorhexidine groups. 2 % chlorhexidine application after acid-etching proved to preserve the durability of the hybrid layer and microtensile bond strength of dentin bonding systems.

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.

Hardening mechanism associated with post-firing heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding porcelain (연화 열처리 후 모의소성된 금속-세라믹용 Pd-Ag-Au계 합금의 후열처리에 의한 경화기전)

  • Kim, Sung-Min;Yu, Young-Jun;Cho, Mi-Hyang;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.42 no.2
    • /
    • pp.95-106
    • /
    • 2015
  • Hardening mechanism associated with post-firing heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding porcelain was examined by observing the change in hardness, crystal structure and microstructure. By post-firing heat treatment of as-cast, solution treated and pre-firing heat treated specimens at $650^{\circ}C$ after casting, the hardness value increased within 10 minutes. Then, hardness consistently increased until 30 minutes, and gap of hardness value among the specimens was reduced. The increase in hardness after post-firing heat treatment was caused by grain interior precipitation in the matrix. The softening heat treatment did not affect the increase in hardness by post-firing heat treatment. The precipitated phase from the parent Pd-Ag-Au-rich ${\alpha}$ phase with face-centered cubic structure by post-firing heat treatment was $Pd_3$(Sn, In) phase with face-centered tetragonal structure, which has lattice parameters of $a_{200}=4.0907{\AA}$, $c_{002}=3.745{\AA}$. From above results, appropriate post-firing heat treatment in order to support the hardness of Pd-Ag-Au metal substructure was expected to bring positive effects to durability of the prosthesis.

Evaluation of Environment Friendly High Performance Ternary Cement Concrete Deck Overlay Pavement by Experimental Construction (시험시공을 통한 친환경 고성능 3성분계 시멘트 콘크리트 교면 포장의 성능 평가)

  • Choi, In-Hyeok;Kim, Dae-Seong;Lee, Jun-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.85-93
    • /
    • 2011
  • This study experimented to evaluate the environment friendly high performance ternary cement concrete deck overlay pavement using mineral admixture such as fly ash and ground granulated blast-furnace slag. It was measured to find best binder mixing according to replacement rate of mineral admixture with compressive strength and flexural strength. After finding best binder, it is also experimented to evaluate durability on chloride penetration resistance, freezing- thawing resistance, scaling resistance of deicing chemicals, abrasion resistance, alkali-silica reactivity test and bonded environment friendly high performance ternary cement concrete deck overlay pavement experimented to evaluate bonded old deck and new concrete overlay pavement using special polymer cement mortar. In additions, bonded environment friendly high performance ternary cement concrete deck overlay pavement by experimental construction was evaluated at interchange bridge of North Yeoju. Result, examination was indicated better binding with binder replacement of cement 70%, ground granulated blast-furnace slag 15% and fly ash 15%. And special polymer cement mortar used in old deck and new overlay concrete was indicated better bonding both laboratory and construction.

THE BONDING DURABILITY OF TOTAL ETCHING ADHESIVES ON DENTIN (산부식형 상아질 접착제의 접착 내구성에 관한 연구)

  • Jung, Mi-Ra;Choi, Gi-Woon;Park, Sang-Hyuk;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.365-376
    • /
    • 2007
  • The purpose of this study was to evaluate the effect of different etching times on microtensile bond strength (${\mu}TBS$) to dentin both initial and after thermocycling with 3 different types of total-etching adhesives. Fifty four teeth were divided into 18 groups by etching times (5, 15, 25 sec), adhesives types (Scotchbond Multipurpose (SM), Single Bond (SB), One-Step (OS)) and number of thermocycling (0, 2,000 cycles). Flat dentin surfaces were prepared on mid-coronal dentin of extracted third molars. After exposed fresh dentin surfaces were polished with 600-grit SiC papers, each specimen was acid-etched with 35% phosphoric acid (5, 15, 25 sec) and bonded with 3 different types of total etching adhesives respectively. Then, hybrid composite Z-250 was built up. Half of them were not thermocycled (control group) and the ethers were subjected to 2,000 thermocycle (experimental group). They were sectioned occluso-gingivally into $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams and tested with universal testing machine at a crosshead speed of 1.0 mm/min. Within limited data of this study, the results were as follows 1. There was no statistically significant difference in ${\mu}TBS$ between the thermocycled and non-thermocycled groups, except for both SM and SB etched for 25 sec. 2. In thermocycled SM and SB groups, bond strength decreased by extended etching time. In total etching systems, adhesive durability for dentin could be affected by type of solvents in adhesive and etching time. Especially, extended etching time may cause deteriorate effects on bond strength when ethanol-based adhesive was used.