DOI QR코드

DOI QR Code

EFFECT OF CHLORHEXIDINE ON MICROTENSILE BOND STRENGTH OF DENTIN BONDING SYSTEMS

Chlorhexidine 처리가 상아질 접착제의 미세인장결합강도에 미치는 영향

  • Oh, Eun-Hwa (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Kyoung-Kyu (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Kim, Jong-Ryul (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Park, Sang-Jin (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University)
  • 오은화 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최경규 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 김종률 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 박상진 (경희대학교 대학원 치의학과 치과보존학교실)
  • Published : 2008.03.31

Abstract

The purpose of this study was to evaluate the effect of chlorhexidine (CHX) on microtensile bond strength (${\mu}TBS$) of dentin bonding systems. Dentin collagenolytic and gelatinolytic activities can be suppressed by protease inhibitors, indicating that MMPs (Matrix metalloproteinases) inhibition could be beneficial in the preservation of hybrid layers. Chlorhexidine (CHX) is known as an inhibitor of MMPs activity in vitro. The experiment was proceeded as follows: At first, flat occlusal surfaces were prepared on mid-coronal dentin of extracted third molars. GI (Glass Ionomer) group was treated with dentin conditioner, and then, applied with 2 % CHX. Both SM (Scotchbond Multipurpose) and SB (Single Bond) group were applied with CHX after acid-etched with 37% phosphoric acid. TS (Clearfil Tri-S) group was applied with CHX, and then, with adhesives. Hybrid composite Z-250 and resin-modified glass ionomer Fuji-II LC was built up on experimental dentin surfaces. Half of them were subjected to 10,000 thermocycle, while the others were tested immediately. With the resulting data, statistically two-way ANOVA was performed to assess the ${\mu}TBS$ before and after thermo cycling and the effect of CHX. All statistical tests were carried out at the 95 % level of confidence. The failure mode of the testing samples was observed under a scanning electron microscopy (SEM). Within limited results, the results of this study were as follows; 1. In all experimental groups applied with 2 % chlorhexidine, the microtensile bond strength increased, and thermo cycling decreased the micro tensile bond strength (P > 0.05). 2. Compared to the thermocycling groups without chlorhexidine, those with both thermocycling and chlorhexidine showed higher microtensile bond strength, and there was significant difference especially in GI and TS groups. 3. SEM analysis of failure mode distribution revealed the adhesive failure at hybrid layer in most of the specimen. and the shift of the failure site from bottom to top of the hybrid layer with chlorhexidine groups. 2 % chlorhexidine application after acid-etching proved to preserve the durability of the hybrid layer and microtensile bond strength of dentin bonding systems.

본 연구는 상아질 혼성층의 교원섬유를 가수분해하는 효소인 MMPs (Matrix metalloproteinses)의 억제제로 알려진 chlorhexidine (CHX)을 적용 후 결합강도를 측정하였으며, 이를 각각 열순환 처리 후 결합강도를 측정하였다. 또한 주사전자현미경으로 접착계면에서의 파괴 양상을 비교 분석하였다. 우식이 없는 발거한 32개의 제3대구치의 교합면 상아질을 노출시키고 GI그룹에서는 dentin conditioner를 처리 후 2% chlorhexidine을 적용시키고, 산부식 접착제 그룹에서는 인산 산부식을 시행하고 2% chlorhexidine을 적용 후 3단계 산부식형 상아질 접착제 (Scotchbond Multipurpose, SM), 2단계 산부식형 상아질 접착제 (Single Bond, SB)를 도포하고, 자가부식 접착제 그룹에서는 2% chlorhexidine 적용 후 자가부식 상아질 접착제 (Clearfil Tri-S, TS)를 도포한다. 이후 복합 레진 (Z-250)과 GI (Fuji-II LC)를 충전한 시편을 $1\;mm^2$의 단면을 갖는 beam으로 제작하여 열순환 하지 않거나, 10,000회 열순환 ($5\;{\sim}\;55^{\circ}C$)하였다. Universal testing machine (EZ-test; Shimadzu, Japan)에서 cross head speed 1 mm/min로 인장력을 가하여, 미세인장결합강도를 측정하였다. 실험 결과는 유의수준 0.05 level에서 two-way ANOVA를 이용하여 통계분석하였다. 그 후 파절된 시편의 파괴 양상을 현미경 (SEM)으로 관찰하여 다음과 같은 결론을 얻었다; 1. 2% CHX을 적용한 모든 실험군에서 상아질과의 미세인장결합강도가 증가하였고, 열순환은 상아질과의 미세인장결합강도를 감소시켰다 (P > 0.05). 2. CHX 적용 후 열순환 한 군은 CHX을 적용하지 않고 열순환한 군에 비하여 상아질과의 미세인장결합강도가 높았으며, 특히 GI와 TS군에서 유의한 차이를 나타내었다 (P < 0.05). 3. 파괴 양상 분석 결과, 혼성층에서의 접착성 파괴를 보이며, CHX을 적용하면 혼성층 기저부에서 상부로 파괴 부위가 옮겨가는 양상을 나타내었다. 이상의 연구 결과를 토대로, MMPs 억제제인 2% CHX은 글래스 아이오노머 시멘트와 상아질 접착제의 초기 미세인장결합강도에는 영향을 미치지 않으며, CHX 적용이 접착내구성을 유지하는데 도움이 되었다.

Keywords

References

  1. Van Meerbeek B, Perdigao J, Lambrechts P. The clinical performance of adhesives. J Dent 26:1-20, 1998 https://doi.org/10.1016/S0300-5712(96)00070-X
  2. Hashimoto M, Ohno H, Sano H. In vitro degradation of resin-dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials 24:3795-3803, 2003 https://doi.org/10.1016/S0142-9612(03)00262-X
  3. Okuda M, Pereira PNR, Nakajima M. Long-term durability of resin dentin interface: nanoleakage vs microtensile bond strength. Oper Dent 27:289-296, 2002
  4. De Munck J, Van Meerbeek B, Yoshida Y. Four-year Water Degradation of Total-etch adhesives Bonded to Dentin. J Dent Res 2:136-140, 2003
  5. Pashley DH, Tay FR, Yiu C. Callagen Degradation by Host-derived Enzymes during aging. J Dent Res 83:216-221, 2004 https://doi.org/10.1177/154405910408300306
  6. Gendron R, Grenier D, Sorsa T. Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin Diagn Lab Immunol:437-439, 1999
  7. Hashimoto M, Ohno H. Kaga M. In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J Dent Res 79:1385-1391, 2000 https://doi.org/10.1177/00220345000790060601
  8. Chaussain-Miller C, Fioretti F, Goldberg M. The role of matrix metalloproteinases(MMPs) in Human Caries. J Dent Res 85:22-32, 2006 https://doi.org/10.1177/154405910608500104
  9. Sorsa T, Tjaderhane L, Salo T. Matrix metalloproteinases( MMPs) in oral disease. Oral Disease 10:311- 318, 2004 https://doi.org/10.1111/j.1601-0825.2004.01038.x
  10. Hebling J, Pashley DH, Tjaderhane L. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res 84:741-746, 2005 https://doi.org/10.1177/154405910508400811
  11. Carrilho MR, Carvalho RM. Chlorhexidine preserves dentin bond in vitro. J Dent Res 86:90-94, 2007 https://doi.org/10.1177/154405910708600115
  12. Carrilho MR, Tay FR, Pashley DH. Mechnical stability of resin- dentin bond components. Dent Mater 21:232- 241, 2005 https://doi.org/10.1016/j.dental.2004.06.001
  13. Carrilho MR, Carvalho RM, Tay FR. Durability of resin-dentin bonds related to water and oil storage. Am J Dent 18:315-319, 2005
  14. De Castro F, De andrade M. Effect of 2% chlorhexidine on microtensile bond strength of composite to dentin. J Adhes Dent 5:129-138, 2003
  15. Martin-De Las Heras S, Valenzuela A, Overall CM. The matrix metalloproteinases gelatinases a in human dentin. Arch Oral Biology 45:757-765, 2000 https://doi.org/10.1016/S0003-9969(00)00052-2
  16. De Munck J, Van Landuyt K, Peumans M. a critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res 84:118-132, 2005 https://doi.org/10.1177/154405910508400204
  17. Nagase H, Visse R, Mruphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Res 69:562-573, 2006 https://doi.org/10.1016/j.cardiores.2005.12.002
  18. Nishitani Y, Yoshiyama M, Wadgaonkar B. activation of gelatinolytic/collagenolytic activity in dentin by selfetching adhesives. Eur J Oral Sci 114:160-166, 2006 https://doi.org/10.1111/j.1600-0722.2006.00342.x
  19. Dumas J, Hurion N, Weill R. Collagenases in mineralized tissues of human teeth. FEBS Lett 187:51-55, 1985 https://doi.org/10.1016/0014-5793(85)81212-6
  20. Sulkala M, Wahlgren J, Larmas M. The effects of MMP inhibitors on human salivary MMP activity and caries progression in rat. J Dent Res 80:1545-1549, 2001 https://doi.org/10.1177/00220345010800061301
  21. Traderhane L, Larjava H, Sorsa T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res 77:1622-1629, 1998 https://doi.org/10.1177/00220345980770081001
  22. Van Strijp AJ, Van Steenbergen TJ, De Graaff J. Bacterial colonization and degradation of demineralized dentin matrix in situ. Caries Res 28:21-27, 1994 https://doi.org/10.1159/000261615
  23. Van Strijp AJ, Van Steenbergen TJ, ten Cate JM. Bacterial colonization of mineralized and completely demineralized dentin in situ. Caries Res 31:349-355, 1997 https://doi.org/10.1159/000262417
  24. Birkedal-Hansen H, Moore WG, Bodden MK. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4:197-250, 1993 https://doi.org/10.1177/10454411930040020401
  25. Bode W, Fernandez-Catalan C, Tschesche H. Structural properties of matrix metalloproteinases. Cell Mol Life Sci 55:639-652, 1999 https://doi.org/10.1007/s000180050320
  26. Van Strijp AJ, Jansen DC, DeGroot J. Host-derived proteinases and degradation of dentine collagen in situ. Caries Res 37:58-65, 2003 https://doi.org/10.1159/000068223
  27. Brackett WW, Tay FR, Brackett MG. The effect of chlorhexidine on dentin hybrid layers in vivo. Oper Dent 32:107-111, 2007 https://doi.org/10.2341/06-55
  28. Carrilho MR, Geraldeli S, Tay F. In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res 86:529-533, 2007 https://doi.org/10.1177/154405910708600608
  29. Inoue S, Van Meerbeek B, Abe Y. Effect of remaining dentin thickness and the use of conditioner on microtensile bond strength of glass ionomer adhesive. Dent Mater 17:445-455, 2001 https://doi.org/10.1016/S0109-5641(01)00003-3
  30. Lin A, Mclntyre NS, Davidson RD. Studies on the adhesion of glass ionomer cements to dentin. J Dent Res 71:1836-1841, 1992 https://doi.org/10.1177/00220345920710111401
  31. Van Meerbeek B, Vargas S, Inoue S. adhesives and cements to promote preservation dentistry. Oper Dent 26:S119-S144, 2001
  32. Yoshida Y, Van Meerbeek B, Nakayama Y. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J Dent Res 79:709-714, 2000 https://doi.org/10.1177/00220345000790020301
  33. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 27:89- 99, 1999 https://doi.org/10.1016/S0300-5712(98)00037-2
  34. Van Meerbeek B, Conn LJ Jr, Duke ES. Correlative transmission electron microscopy examination of nondemineralized and demineralized resin-dentin interfaces formed by two dentin adhesive systems. J Dent Res 75:879-888, 1996 https://doi.org/10.1177/00220345960750030401
  35. Eliades G, Vougiouklakis G, Palaghias G. Heterogenous distribution of single-bottle adhesive monomers in the resin-dentin interdiffusion zone. Dent Mater 17:277-283, 2001 https://doi.org/10.1016/S0109-5641(00)00082-8

Cited by

  1. The effect of the removal of chondroitin sulfate on bond strength of dentin adhesives and collagen architecture vol.35, pp.3, 2010, https://doi.org/10.5395/JKACD.2010.35.3.211