• Title/Summary/Keyword: Bishop's theory

Search Result 15, Processing Time 0.018 seconds

Bishop theory and longitudinal vibration of nano-beams by two-phase local/nonlocal elasticity

  • Reza Nazemnezhad;Roozbeh Ashrafian;Alireza Mirafzal
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2023
  • In this paper, Bishop theory performs longitudinal vibration analysis of Nano-beams. Its governing equation, due to integrated displacement field and more considered primarily effects compared with other theories, enjoys fully completed status, and more reliable results as well. This article aims to find how Bishop theory and Two-phase elasticity work together. In other words, whether Bishop theory will be compatible with Two-phase local/nonlocal elasticity. Hamilton's principle is employed to derive governing equation of motion, and then the 6th order of Generalized Differential Quadrature Method (GDQM) as a constructive numerical method is utilized to attain the discretized two-phase formulation. To acquire a proper verification procedure, exact solution is prepared to be compared with current results. Furthermore, the effects of key parameters on the objective are investigated.

Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory

  • Nazemnezhad, Reza;Kamali, Kamran
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • Free axial vibration of axially functionally graded (AFG) nanorods is studied by focusing on the inertia of lateral motions and shear stiffness effects. To this end, Bishop's theory considering the inertia of the lateral motions and shear stiffness effects and the nonlocal theory considering the small scale effect are used. The material properties are assumed to change continuously through the length of the AFG nanorod according to a power-law distribution. Then, nonlocal governing equation of motion and boundary conditions are derived by implementing the Hamilton's principle. The governing equation is solved using the harmonic differential quadrature method (HDQM), After that, the first five axial natural frequencies of the AFG nanorod with clamped-clamped end condition are obtained. In the next step, effects of various parameters like the length of the AFG nanorod, the diameter of the AFG nanorod, material properties, and the nonlocal parameter value on natural frequencies are investigated. Results of the present study can be useful in more accurate design of nano-electro-mechanical systems in which nanotubes are used.

BISHOP'S PROPERTY (${\beta}$) AND SPECTRAL INCLUSIONS ON BANACH SPACES

  • Yoo, Jong-Kwang;Oh, Heung-Joon
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.459-468
    • /
    • 2011
  • Let T ${\in}$ L(X), S ${\in}$ L(Y), A ${\in}$ L(X, Y) and B ${\in}$ L(Y, X) such that SA = AT, TB = BS, AB = S and BA = T. Then S and T shares the same local spectral properties SVEP, Bishop's property (${\beta}$), property $({\beta})_{\epsilon}$, property (${\delta}$) and and subscalarity. Moreover, the operators ${\lambda}I$ - T and ${\lambda}I$ - S have many basic operator properties in common.

On a clary theorem

  • Ko, Eungil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.29-33
    • /
    • 1996
  • In this paper we shall generalize a Clary theorem by using the local spectral theory; If $ T \in L(H)$ has property $(\beta)$ and A is any operator such that $A \prec T$, then $\sigma(T) \subseteq \sigma(A)$.

  • PDF

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

On the spectral propeties of multipliers

  • Yoo, Jong-Kwang
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.911-920
    • /
    • 1997
  • This note centers around the class M(A) of multipliers on a Gelfand algebra A. This class is a large subalgebra of the Banach algebra L(A). The aim of this note is to investigate some aspects concerning their local spectral properties of multipliers. In the last part of work we consider some applications to automatic continuity theory.

  • PDF

LOCAL SPECTRAL THEORY AND QUASINILPOTENT OPERATORS

  • YOO, JONG-KWANG
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.785-794
    • /
    • 2022
  • In this paper we show that if A ∈ L(X) and R ∈ L(X) is a quasinilpotent operator commuting with A then XA(F) = XA+R(F) for all subset F ⊆ ℂ and 𝜎loc(A) = 𝜎loc(A + R). Moreover, we show that A and A + R share many common local spectral properties such as SVEP, property (C), property (𝛿), property (𝛽) and decomposability. Finally, we show that quasisimility preserves local spectrum.

The Reliability Analysis for Homogeneous Slope Stability Using Stochastic Finite Element Method (확율유한요소법을 이용한 균질 사면의 신뢰성 해석)

  • 조래청;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.125-139
    • /
    • 1996
  • This study was performed to provide the design method for soil structure which guarantees proper safety with uncertainty of soil parameters. For this purpose, the effect of uncertainty of soil parameters for slope stability was analyzed by Bishop's simplified method and Monte Carlo simulation(MC). And reliability analysis program, RESFEM, was developed by combining elastic theory, MC, FEM, SFEM, and reliability, which can consider uncertainty of soil parameters. For factor of safety(FS) 1.0 and 1.2 by Bishop's simplified method, the probability of failure(Pf) was analyzed with varying coefficient of variation(c.o.v.) of soil parameters. The Pf increased as c.o.v. of soil parameters increased. This implies that FS is not the absolute index of slope safety, and even if FS is same, it has different Pf according to c.o.v. of soil parameters. The RESFEM was able to express the Pf at each element in slope quantitatively according to uncertainty of soil parameters. The variation of Pf with uncertainty of soil parameters was analyzed by RESFEM, and it was shown that the Pf increased as the c.o.v. of soil parameters increased.

  • PDF

COMMON LOCAL SPECTRAL PROPERTIES OF INTERTWINING LINEAR OPERATORS

  • Yoo, Jong-Kwang;Han, Hyuk
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.137-145
    • /
    • 2009
  • Let T ${\in}$ $\mathcal{L}$(X), S ${\in}$ $\mathcal{L}$(Y ), A ${\in}$ $\mathcal{L}$(X, Y ) and B ${\in}$ $\mathcal{L}$(Y,X) such that SA = AT, TB = BS, AB = S and BA = T. Then S and T shares that same local spectral properties SVEP, property (${\beta}$), property $({\beta})_{\epsilon}$, property (${\delta}$) and decomposability. From these common local spectral properties, we give some results related with Aluthge transforms and subscalar operators.