Honam Mathematical J. 31 (2009), No. 2, pp. 137-145

COMMON LOCAL SPECTRAL PROPERTIES OF INTERTWINING LINEAR OPERATORS

JONG-KWANG YOO AND HYUK HAN

Abstract. Let $T \in \mathcal{L}(X)$, $S \in \mathcal{L}(Y)$, $A \in \mathcal{L}(X,Y)$ and $B \in \mathcal{L}(Y,X)$ such that SA = AT, TB = BS, AB = S and BA = T. Then S and T shares that same local spectral properties SVEP, property (β) , property $(\beta)_{\epsilon}$, property (δ) and decomposability. From these common local spectral properties, we give some results related with Aluthge transforms and subscalar operators.

1. Introduction

Let X and Y be Banach spaces over the complex plane \mathbb{C} , let $\mathcal{L}(X, Y)$ be the space of all bounded linear operators from X to Y. And let $\mathcal{L}(X)$ denote the Banach algebra of all bounded linear operators on a Banach space X.

Given an operator $T \in \mathcal{L}(X)$, $\sigma(T)$ denotes the spectrum of T and Lat(T) denotes the collection of all closed T-invariant linear subspaces of X, and for an $Y \in \text{Lat}(T)$, T|Y denotes the restriction of T on Y. An operator $T \in \mathcal{L}(X)$ is called *decomposable* if for every open covering $\{U, V\}$ of the complex plane \mathbb{C} , there exist $Y, Z \in \text{Lat}(T)$ such that

 $\sigma(T|Y) \subset U, \ \sigma(T|Z) \subset V \text{ and } Y + Z = X.$

It has been shown by Albrecht[1] that this simple definition of operator decomposability is equivalent to the original definition due to Foias[5]. Decomposable operators are rich. For example, normal operators, spectral operators in the sense of Dunford, operators with totally disconnected spectrum and hence compact operators are decomposable[7].

Received March 30, 2009. Accepted May 19, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 47A11, 47A53.

Key words and phrases: Local Spectral Theory, Bishop's Property β , Decomposable Operators, Subscalar Operators.

Corresponding author : Hyuk Han(hyukhan@kongju.ac.kr).

Jong-Kwang Yoo and Hyuk Han

Let $D(\lambda, r)$ be the open disc centered at $\lambda \in \mathbb{C}$ with radius r > 0. We say that T has the single valued extension property, abbreviate it SVEP, at $\lambda \in \mathbb{C}$ if there exists r > 0 such that for every open subset $U \subset D(\lambda, r)$, the only analytic solution of the equation $(T - \mu)f(\mu) = 0$ is the constant function $f \equiv 0$. We define the analytic residuum, denoted by S(T), the open set where T fails to have the constant function $f \equiv 0$. An operator $T \in \mathcal{L}(X)$ said to have the single-valued extension property, when T satisfies this property at every complex number. Hence T has the SVEP if and only if $S(T) = \emptyset$.

Given an arbitrary operator $T \in \mathcal{L}(X)$ and $x \in X$, the *local resolvent* set $\rho_T(x)$ of T at $x \in X$ is defined as the set of all $\lambda \in \mathbb{C}$ for which there exist an analytic X-valued function f on some open neighborhood U of λ such that $(T - \mu)f(\mu) = x$ for all $\mu \in U$. The complement of the local resolvent set is said to be the *local spectrum* and denoted by $\sigma_T(x)$. That is,

$$\sigma_T(x) = \mathbb{C} \setminus \rho_T(x).$$

It may happen that the local spectrum $\sigma_T(x)$ is the empty set.

Let U be an open subset of the complex plane and $\mathcal{O}(U, X)$ be the Fréchet algebra of all analytic X-valued functions on U endowed with uniform convergence on compact sets of U. The operator T is said to satisfy Bishop's property (β) at $\lambda \in \mathbb{C}$ if there exists r > 0 such that for every open subset $U \subset D(\lambda, r)$ and for any sequence $\{f_n\} \subset \mathcal{O}(U, X)$, if $\lim_{n\to\infty} (T-\mu)f_n(\mu) = 0$ in $\mathcal{O}(U, X)$, then $\lim_{n\to\infty} f_n(\mu) = 0$ in $\mathcal{O}(U, X)$. We denote by $\sigma_{\beta}(T)$ by the set where T fails to satisfy (β) and we say that T satisfies Bishop's property (β) precisely when $\sigma_{\beta}(T) = \emptyset$.

An operator $T \in L(X)$ is said to have the *decompositions property* (δ) if given an arbitrary open covering $\{U, V\}$ of \mathbb{C} and for every $x \in X$ there exist a pair of elements $u, v \in X$ and a pair of analytic functions $f: \mathbb{C} \setminus U^- \longrightarrow X$ and $g: \mathbb{C} \setminus V^- \longrightarrow X$ such that x = u + v,

$$u = (T - \lambda)f(\lambda) \quad \text{for all} \quad \lambda \in \mathbb{C} \setminus U^{-},$$
$$v = (T - \lambda)g(\lambda) \quad \text{for all} \quad \lambda \in \mathbb{C} \setminus V^{-}.$$

It is well known that the properties (β) and (δ) are dual to each other[7]. That is, the operator T satisfies has Bishop's property (β) if and only if its adjoint T^* satisfies the decomposition property (δ) on the dual space, and if two properties are interchanged the corresponding statement true. Also it is well known that T is decomposable in the sense of Foias if and only if T satisfies both (β) and (δ) , and hence T is decomposable if and only if T^* is decomposable. It has also been shown that an operator $T \in L(X)$ has property (β) if and only if T is similar to

the restriction of a decomposable operator to one of its closed invariant subspaces and an operator $T \in L(X)$ has property (δ) if and only if Tis similar to a quotient of a decomposable operator[7].

The property $(\beta)_{\epsilon}$ is defined in a similar way as for property (β) . To be precise; let $\mathcal{E}(U, X)$ be the Fréchet algebra of all infinitely differentiable X-valued functions on $U \subset \mathbb{C}$ endowed with the topology of uniform convergence on compact subsets of U of all derivatives. The operator $T \in \mathcal{L}(X)$ is said to have property $(\beta)_{\epsilon}$ at $\lambda \in \mathbb{C}$ if there exists U a neighborhood of λ such that for each open set $O \subset U$ and for any sequence $\{f_n\}$ of X-valued functions in $\mathcal{E}(O, X)$ the convergence of $(T - \mu)f_n(\mu)$ to zero in $\mathcal{E}(O, X)$ yields to the convergence of f_n to zero in $\mathcal{E}(O, X)$. Denote by $\sigma_{(\beta)_{\epsilon}}(T)$ the set where T fails to satisfy $(\beta)_{\epsilon}$. We will say that T satisfies property $(\beta)_{\epsilon}$ if $\sigma_{(\beta)_{\epsilon}}(T) = \emptyset$.

An important generalization of normal operators to the setting of Banach spaces is the class of generalized scalar operators. We denote by $C^{\infty}(\mathbb{C})$ the Fréchet algebra of all infinitely differentiable complex valued functions $\varphi(z)$, $z = x_1 + ix_2$, x_1 , $x_2 \in \mathbb{R}$, defined on the complex plane \mathbb{C} with the topology of uniform convergence of every derivative on each compact subset of \mathbb{C} . That is, with the topology generated by the family of pseudo-norm

$$|\varphi|_{K,m} = \max_{|p| \le m} \sup_{z \in K} |D^p \varphi(z)|,$$

where K is an arbitrary compact subset of \mathbb{C} , m a non-negative integer, $p = (p_1, p_2), p_1, p_2 \in \mathbb{N}, |p| = p_1 + p_2$ and

$$D^{p}\varphi = \frac{\partial^{|p|}\varphi}{\partial x_{1}^{p_{1}}\partial x_{2}^{p_{2}}}, \quad (z = x_{1} + ix_{2}).$$

An operator $T \in L(X)$ on a complex Banach space X is called a generalized scalar operator if there exists a continuous algebra homomorphism $\Phi: C^{\infty}(\mathbb{C}) \to L(X)$ satisfying $\Phi(1) = I$ and $\Phi(z) = T$, where I is the identity operator on X and z denotes the identity function on \mathbb{C} . Such a continuous function Φ is in fact an operator valued distribution and it is called a spectral distribution for T. The class of generalized scalar operators were introduced by Colojoară and Foiás[5]. An important subclass of the decomposable operators is formed by the generalized scalar operators. An operator $T \in \mathcal{L}(X)$ on a complex Banach space X is said to be subscalar if T is similar to the restriction of a generalized scalar operator to one of its closed invariant subspaces. It is clear that every subscalar operator has property (β), since the restriction of an operator with property (β) to a closed invariant subspace certainly inherits this property. Moreover it is well known that $T \in \mathcal{L}(X)$ is subscalar if and only if T has property $(\beta)_{\epsilon}$ [6].

Let H be a Hilbert space over the complex plane \mathbb{C} with the inner product $\langle \cdot, \cdot \rangle$. An operator $T \in \mathcal{L}(H)$ is said to be *hyponormal* if its self commutator $[T^*, T] = T^*T - TT^*$ is positive, that is,

$$\langle (T^*T - TT^*)\xi, \xi \rangle \ge 0,$$

or equivalently, $||T^*\xi|| \leq ||T\xi||$ for every $\xi \in H$. It is well known that hyponormal operators on a Hilbert space H is subscalar[9].

2. Common local spectral properties of intertwining Linear Operators

Theorem 1. Let $T \in \mathcal{L}(X)$, $S \in \mathcal{L}(Y)$, $A \in \mathcal{L}(X,Y)$ and $B \in \mathcal{L}(Y,X)$ such that SA = AT and TB = BS. Suppose that AB = S and BA = T. Then T has the single valued extension property (resp. property (β)) at $\lambda \in \mathbb{C}$ if and only if S has the single valued extension property (resp. property (β)) at $\lambda \in \mathbb{C}$. Moreover, T has the single valued extension property (resp. property (β)) if and only if S has the single valued extension property (resp. property (β)) if S has the single valued extension property (resp. property (β)) if S has the single valued extension property (resp. property (β)).

Proof. We only give the proof for property (β) , the case of the single valued extension property is similar. Let $\lambda \in \mathbb{C} \setminus \sigma_{\beta}(S)$ and let $\{f_n\}$ be a sequence of X-valued analytic functions in a open neighborhood U of λ such that $\lim_{n\to\infty} (T-\mu)f_n(\mu) = 0$ in $\mathcal{O}(U, X)$. Then we have,

$$0 = \lim_{n \to \infty} A(T - \mu) f_n(\mu)$$
$$= \lim_{n \to \infty} (S - \mu) A f_n(\mu)$$

in $\mathcal{O}(U, Y)$. Since $\lambda \in \mathbb{C} \setminus \sigma_{\beta}(S)$, it follows that $\lim_{n \to \infty} Af_n(\mu) = 0$ in $\mathcal{O}(U, Y)$. Then we have,

$$0 = \lim_{n \to \infty} BAf_n(\mu)$$
$$= \lim_{n \to \infty} Tf_n(\mu)$$

in $\mathcal{O}(U, X)$. Since $\mu f_n(\mu) = T f_n(\mu) - (T - \mu) f_n(\mu)$, we deduce that $\{\mu f_n(\mu)\}$ converges to 0 on compact sets of U. Since f_n is analytic, the maximum modulus principle implies $\{f_n\}$ converges to 0 on compact sets of U. Thus $\lambda \in \mathbb{C} \setminus \sigma_{\beta}(T)$. The reverse implication is obtained by the symmetry.

By passing to adjoint in Theorem 1, and by using the duality of property (β) and (δ) , we obtain

Corollary 2. Let $T \in \mathcal{L}(X)$, $S \in \mathcal{L}(Y)$, $A \in \mathcal{L}(X,Y)$ and $B \in \mathcal{L}(Y,X)$ such that SA = AT and TB = BS. Suppose that AB = S and BA = T. Then T has the decomposition property (δ) if and only if S has the decomposition property (δ). Moreover, T is decomposable if and only if S is decomposable.

The following lemma is found in [8].

Lemma 3. Let O be an open subset of \mathbb{C} and $\{f_n\}$ be a sequence in $\mathcal{E}(O, X)$ such that $\{\mu f_n(\mu)\}$ converges to zero in $\mathcal{E}(O, X)$. Then $\{f_n\}$ converges to zero in $\mathcal{E}(O, X)$.

Theorem 4. Let $T \in \mathcal{L}(X)$, $S \in \mathcal{L}(Y)$, $A \in \mathcal{L}(X,Y)$ and $B \in \mathcal{L}(Y,X)$ such that SA = AT and TB = BS. Suppose that AB = S and BA = T. Then $\sigma_{(\beta)_{\epsilon}}(T) = \sigma_{(\beta)_{\epsilon}}(S)$. In particular, T is subscalar if and only if S is subscalar.

Proof. Suppose that $\lambda \in \mathbb{C} \setminus \sigma_{(\beta)_{\epsilon}}(S)$. Then there exists a neighborhood O of λ such that $O \cap \sigma_{(\beta)_{\epsilon}}(S) = \phi$. If $\{f_n\}$ is any sequence in $\mathcal{E}(O, X)$ such that $(T - \mu)f_n(\mu)$ converges to zero in $\mathcal{E}(O, X)$, then

$$0 = \lim_{n \to \infty} A(T - \mu) f_n(\mu)$$
$$= \lim_{n \to \infty} (S - \mu) A f_n(\mu).$$

in $\mathcal{E}(O, Y)$. Since $\lambda \in \mathbb{C} \setminus \sigma_{(\beta)_{\epsilon}}(S)$, it follows that $\lim_{n \to \infty} Af_n(\mu) = 0$ in $\mathcal{E}(O, Y)$. Then we have,

$$0 = \lim_{n \to \infty} BAf_n(\mu)$$
$$= \lim_{n \to \infty} Tf_n(\mu).$$

Since $\mu f_n(\mu) = T f_n(\mu) - (T - \mu) f_n(\mu)$, we deduce that $\{\mu f_n(\mu)\}$ converges to 0 in $\mathcal{E}(O, X)$. By Lemma 3, $\{f_n\}$ converges to zero in $\mathcal{E}(O, X)$. Hence $\lambda \in \mathbb{C} \setminus \sigma_{(\beta)_{\epsilon}}(T)$. The reverse implication is obtained by the the symmetry.

Corollary 5. Let $A : X \longrightarrow Y$ and $B : Y \longrightarrow X$ be bounded linear operators. Then AB has property (β) (resp. (δ) or decomposable or

subscalar) if and only if BA has property (β) (resp. (δ) or decomposable or subscalar).

Proof. Let S = AB and T = BA. Then we have,

$$SA = ABA = AT$$
 and $TB = BAB = BS$.

Hence by Theorem 1 and Theorem 4, we have this corollary.

Let $T \in \mathcal{L}(H)$ be a bounded operator on a Hilbert space H and U|T| be the polar decomposition of T, where $|T| = (TT^*)^{\frac{1}{2}}$ and U is the appropriate partial isometry. The generalized Aluthge transform associated with T and $s, t \ge 0$ is defined by

$$T(s,t) = |T|^s U|T|^t.$$

 $T(s,t) = |T|^s U |T|^s$ In the case $s=t=\frac{1}{2},$ the operator

$$\widetilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$$

is called the *Aluthge transform* of T and was first considered by Aluthge[2] to extend some inequalities related to hyponormality. Let $s \leq t, A =$ $|T|^r$ and $B = |T|^s U |T|^{t-r}$. Then we have,

$$AB = T(s+r,t-r)$$
 and $BA = T(s,t)$.

Therefore, T(s,t) and T(s+r,t-r) almost have the same local spectral properties. In particular, T and T almost have the same local spectral properties.

Corollary 6. Let $T \in \mathcal{L}(H)$, $s \ge 0$ and $0 \le r \le t$. Then T(s,t)has the property (β) (resp. (δ) or decomposable or subscalar) if and only if T(s+r,t-r) has the property (β) (resp. (δ) or decomposable or subscalar).

Theorem 7. Let $T \in \mathcal{L}(X)$, $S \in \mathcal{L}(Y)$, $A \in \mathcal{L}(X,Y)$ and $B \in$ $\mathcal{L}(Y,X)$ such that SA = AT, TB = BS. Suppose that AB = S and BA = T. Then

(1) $\sigma_S(Ax) \subset \sigma_T(x) \subset \sigma_S(Ax) \cup \{0\}$ for every $x \in X$.

(resp. $\sigma_T(By) \subset \sigma_S(y) \subset \sigma_T(By) \cup \{0\}$ for every $y \in Y$.)

(2) In particular, if A is injective then $\sigma_T(x) = \sigma_S(Ax)$ for every $x \in X$. (resp. if B is injective then $\sigma_S(y) = \sigma_T(By)$ for every $y \in Y$.

Proof. (1) Let $\lambda \notin \sigma_T(x)$ and $x(\mu)$ be an X-valued analytic function on a neighborhood O of λ such that $(T - \mu)x(\mu) = x$ for every $\mu \in O$.

142

Common local spectral properties of intertwining Linear Operators 143

Since SA = AT, we have

$$Ax = A(T - \mu)x(\mu)$$
$$= (S - \mu)Ax(\mu)$$

for all $x \in O$. Since $Ax(\cdot) : O \longrightarrow Y$ is an Y-valued analytic function on a neighborhood O of λ , we have

$$\lambda \notin \sigma_S(Ax).$$

To show the second inclusion, let $\lambda \notin \sigma_S(Ax) \cup \{0\}$ and $y(\mu)$ be an *Y*-valued analytic function on an open neighborhood *O* of λ with $0 \notin O$ such that $(S - \mu)y(\mu) = Ax$ for all $\mu \in O$. Since BA = T and TB = BS, we have

$$Tx = BAx$$

= $B(S - \mu)y(\mu)$
= $(T - \mu)By(\mu)$

Therefore, we have

$$T(By(\mu) - x) = \mu By(\mu).$$

Define the X-valued analytic function $z(\cdot): O \longrightarrow X$ by

$$z(\mu) = \frac{1}{\mu}(By(\mu) - x).$$

Then it is easy to see that

$$x = (T - \mu)z(\mu)$$
 for every $\mu \in O$,

and hence $\lambda \notin \sigma_T(x)$.

(2) Since $\sigma_{T+\lambda I}(x) = \sigma_T(x) + \lambda$ for every $\lambda \in \mathbb{C}$ and every $x \in X$, it suffices to consider the case $\lambda = 0$. Suppose that $0 \in \sigma_S(Ax)$. Then, by (1) of this Theorem we have,

$$\sigma_T(x) = \sigma_S(Ax)$$
 for every $x \in X$.

Suppose that $0 \notin \sigma_S(Ax)$ and let $y(\mu)$ be an Y-valued analytic function on a neighborhood U of 0 such that $(S - \mu)y(\mu) = Ax$ for every $\mu \in U$. Since $0 \in U$, ABy(0) = Sy(0) = Ax. From the injectivity of A, it follows that By(0) = x. Moreover, we have

$$\mu y(\mu) = Sy(\mu) - Ax$$
$$= A(By(\mu) - x).$$

Jong-Kwang Yoo and Hyuk Han

Therefore, we have

$$y(\mu) = A[\frac{1}{\mu}(By(\mu) - x)]$$

for every $\mu \in U \setminus \{0\}$. Define the function $z(\cdot) : U \longrightarrow X$ by

$$z(\mu) = \begin{cases} \frac{1}{\mu} (By(\mu) - x) & \text{if } \mu \neq 0\\ By'(0) & \text{if } \mu = 0. \end{cases}$$

Then clearly $z(\mu)$ is analytic on U and it is easily see that $A[x - (T - \mu)z(\mu)] = 0$ for every $\mu \in U$. Since A is injective, we have

$$(T-\mu)z(\mu) = x$$

for every $\mu \in U$. Hence $0 \notin \sigma_T(x)$.

Corollary 8. Let $T \in \mathcal{L}(X)$, $S \in \mathcal{L}(Y)$, $A \in \mathcal{L}(X,Y)$ and $B \in \mathcal{L}(Y,X)$ such that SA = AT, TB = BS. Suppose that AB = S and BA = T. Suppose that A and B are injective. Then $\sigma(T) = \sigma(S)$.

Proof. For an arbitrary operator $T \in \mathcal{L}(X)$, the following equality is well known

$$\sigma(T) = \bigcup_{x \in X} \sigma_T(x) \bigcup \mathcal{S}(T).$$

Suppose that A and B are injective. Then by Theorem 1 and Theorem 7 we have,

$$\sigma(T) = \bigcup_{x \in X} \sigma_T(x) \bigcup \mathcal{S}(T)$$
$$= \bigcup_{x \in X} \sigma_S(Ax) \bigcup \mathcal{S}(S)$$
$$\subset \bigcup_{y \in Y} \sigma_S(y) \bigcup \mathcal{S}(S)$$
$$= \sigma(S).$$

The reverse inclusion is obtained by the symmetry.

References

- E. Albrecht, On decomposable operators, Integral Equations Operator Theory, 2(1979), 1–10.
- [2] A. Aluthge, On p-hyponormal operators for 0 ator Theory, 13(1990), 307–315.

144

Common local spectral properties of intertwining Linear Operators 145

- [3] C. Benhida and E. H. Zerouali, Local spectral theory of linear operators RS and SR, Integral Equations and Operator Theory, 54(1)(2006), 1–8.
- [4] Lin Chen, Yan Zikun and Ruan Yingbin, Common operator properties of operators RS and SR and p-Hyponormal operators, Integral Equations Operator Theory, 43(2002), 313–325.
- [5] I. Colojoarvă and C. Foiás, Theory of Generalized Spectral Operators, Gorden and Breach, New York, 1968.
- [6] J. Eschmeier and M. Putinar, Bishop's condition (β) and rich extensions of linear operators, Indiana Univ. Math. J., 37(1988), 325–348.
- [7] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Oxford Science Publications, Oxford, 2000.
- [8] B. Malgrange, *Ideals of Differentiable Functions*, Oxford University Press, London, 1967.
- [9] M. Putinar, Hyponormal operators are subscalar, J. Operator Theory, 12(1984), 385–395.

Jong-Kwang Yoo Department of Liberal Arts and Science Chodang University Muan 534-701, Korea *E-mail*: jkyoo@chodang.ac.kr

Hyuk Han Department of Liberal Arts Kongju National University Yesan 340-702, Korea *E-mail*: hyukhan@kongju.ac.kr