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LOCAL SPECTRAL THEORY AND QUASINILPOTENT

OPERATORS

JONG-KWANG YOO

Abstract. In this paper we show that if A ∈ L(X) and R ∈ L(X) is a
quasinilpotent operator commuting with A then XA(F ) = XA+R(F ) for

all subset F ⊆ C and σloc(A) = σloc(A + R). Moreover, we show that A

and A + R share many common local spectral properties such as SVEP,
property (C), property (δ), property (β) and decomposability. Finally, we

show that quasisimility preserves local spectrum.
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1. Introduction

The single valued extension property dates back to the early days of local
spectral theory and appeared in the work of Dunford [11], [12], Dunford-Schwartz
[13] and Colojoarvă and Foiás [9]. The following localized version of single valued
extension property was introduced by Finch [16]. The single valued extension
property has now developed into one of the major tools in the local spectral
theory and Fredholm theory for operators on Banach spaces, see [1], [20].

Throughout this paper, L(X,Y ) denotes the set of all bounded linear op-
erators from Banach space X to Banach space Y, and L(X) := L(X,X). For
A ∈ L(X), let ker(A) denote the kernel of A and R(A) denote the range of
A. We use σ(A), σap(A), σsur(A) and ρ(A) to denote the spectrum, the ap-
proximate point spectrum, the surjectivity spectrum and the resolvent set of A,
respectively.

The local resolvent set ρA(x) of A at x ∈ X is defined as the union of all open
subsets U of C such that there exists an analytic function f : U → X which
satisfies

(λI −A)f(λ) = x for all λ ∈ U.
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The local spectrum σA(x) of A at x is the set defined by σA(x) := C\ρA(x). Note
that σA(x) is a closed subset of σ(A) and it may be empty. For every subset F
of C, the local spectral subspace of A associated with F is the set

XA(F ) := {x ∈ X : σA(x) ⊆ F}.
It is clear from the definition thatXA(F ) is a linear subspace ofX and in general,
XA(F ) is not closed. Moreover, for every closed F ⊆ C we have

(λI −A)XA(F ) = XA(F ) for all λ ∈ C \ F,
see, Proposition 1.2.16 [20]. Note that XA+λI(F ) = XA(F − λ) for every subset
F ⊆ C and all λ ∈ C. For every closed subset F ⊆ C, the glocal spectral subspace
XA(F ) is defined as the set of all x ∈ X for which there exists an analytic
function f : C \ F → X which satisfies

(λI −A)f(λ) = x for each λ ∈ C \ F.
In general, XA(F ) ⊆ XA(F ) for every closed F ⊆ C. Note that XA(F ) as well
as XA(F ), may not closed. But the two concepts of local spectral subspace and
glocal spectral subspace coincide if A has SVEP, see, Proposition 3.3.2 [20].

An operatpr A ∈ L(X) is said to have Dunford’s property (C) (property (C)
for brevity) if the local spectral subspace XA(F ) is closed for every closed subset
F of C. We say that A ∈ L(X) is said to have property (Q) if XA{λ} is closed
for every λ ∈ C. Note that property (Q) is strictly weaker than property (C),
see more details [1], [9], [15] and [20]. Recall that an operator A ∈ L(X) is said
to be decomposable if, for every open cover {U, V } of C, there exist A−invariant
closed linear subspaces Y and Z of X for which

X = Y + Z, σ(A|Y ) ⊆ U and σ(A|Z) ⊆ V.

The class of decomposable operators contains all normal operators and more
generally all spectral operators. Operators with totally disconnected spectrum
are decomposable by the Riesz functional calculus. In particular, compact and
algebraic operators are decomposable. An operator A ∈ L(X) is said to have the
decomposition property (δ) (abbreviated property (δ)) if, X = XA(U) + XA(V )
for every open cover {U, V } of C. It is clear that every decomposable operator
has property (δ).

Definition 1.1. An operator A ∈ L(X) is said to have the single-valued exten-
sion property An operator A ∈ L(X) is said to have the single-valued extension
property at λ0 ∈ C (SVEP at λ0 for brevity), if for every open disc U cen-
tered at λ0, the only analytic function f : U → X which satisfies the equation
(λI − A)f(λ) = 0 for all λ ∈ U is the constant function f ≡ 0. An operator
A ∈ L(X) is said to have the SVEP if A has the SVEP at every point λ ∈ C.

In this case, σA(x) = ϕ if and only if x = 0, and we have XA(F ) = XA(F )
for every closed subset F ⊆ C. Obviously, SVEP at a point is inherited by
restrictions to closed invariant subspaces. It is clear that A ∈ L(X) has SVEP
at every point of the resolvent set ρ(A). Moreover, from the identity theorem for
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analytic function it is easily seen that A ∈ L(X) has SVEP at every point of the
boundary ∂σ(A) of the spectrum σ(A). In particular, A ∈ L(X) has SVEP at
every isolated point of σ(A). Also, it should be noted that, by Propsition 1.2.16
[20],

A has SVEP ⇐⇒ XA(ϕ) = {0} ⇐⇒ XA(ϕ) is closed.

It is well known that both SVEP and property (C) are preserved under the Riesz
functional calculus, see [1] and [20].

Proposition 1.2. Let A ∈ L(X) and µ ∈ C. If σap(A) does not cluster at µ
then A has the SVEP at µ.

Proof. Suppose that σap(A) does not cluster at µ. Then there exists an open
neighborhood U of µ such that λI − A is injective for every λ ∈ U \ {µ}. Let
f : V → X be an analytic function defined on an open neighborhood V of µ for
which

(λI −A)f(λ) = 0 for all λ ∈ V.

Thus (λI − A)f(λ) = 0 for all λ ∈ U ∩ V, and hence f(λ) ∈ ker(λI − A) for all
λ ∈ (U ∩ V ) \ {µ}. It follows that f(λ) = 0 for all λ ∈ (U ∩ V ) \ {µ}. By the
continuity of f, we have f(λ) = 0 for all λ ∈ U ∩ V. It follows from the identity
theorem that f(λ) = 0 for all λ ∈ V. We conclude that f ≡ 0 in V. Hence A has
the SVEP at µ. □

It is well known that σsur(A) = σap(A
∗). Obviously, by Proposition 1.2, if

σsur(A) does not cluster at µ then A∗ has the SVEP at µ.
Let O(U,X) denote the Fréchet algebra of all X−valued analytic functions on

the open subset U ⊆ C endowed with uniform convergence on compact subsets
of U. An operator A ∈ L(X) is said to have Bishop’s property (β) (abbreviated
property (β)) if for every open subset U of C and any sequence {fn}∞n=1 ⊆
O(U,X), limn→∞(λI − A)fn(λ) = 0 in O(U,X) implies limn→∞ fn(λ) = 0 in
O(U,X).

In [6], Albrecht and Eschmeier proved that A ∈ L(X) has property (β) if and
only if its adjoint A∗ ∈ L(X∗) on the topological dual space X∗ has property
(δ), and the same equivalence holds when the roles of (β) and (δ) are inter-
changed. As observed in [7], an operator is decomposable if and only if it has
both properties (β) and (δ). It is well known that

property (β) ⇒ property (C) ⇒ property (Q) ⇒ SVEP.

In general, the converse implications do not hold, see [1], [7], [9] and [20].

Proposition 1.3. If A ∈ L(X) and N ∈ L(X) is a nilpotent operator commut-
ing with A then A has SVEP if and only if A+N has SVEP. Moreover, A has
property (β) if and only if A+N has property (β).

Proof. Let Np = 0 for some p ∈ N. Suppose that A has SVEP at λ0. To establish
SVEP for A+N, it suffices to show that for every open U ⊆ C and every analytic
function f : U → X for which (λI − (A +N))f(λ) = 0 for all λ ∈ U, it follows



788 Jong-Kwang Yoo

that f ≡ 0 on U. Let λ0 ∈ C, and let f : U → X be an analytic function on an
open neighborhood U of λ0 such that

(λI − (A+N))f(λ) = 0 for all λ ∈ U.

Thus (λI −A)f(λ) = Nf(λ) for all λ ∈ U, and hence

(λI −A)Np−1f(λ) = Np−1(λI −A)f(λ) = Npf(λ) = 0 for all λ ∈ U.

It is clear that Np−1f(λ) is analytic. It follows from the definition of SVEP that
Np−1f(λ) = 0 for all λ ∈ U. Also, we obtain

(λI −A)Np−2f(λ) = Np−2(λI −A)f(λ) = Np−1f(λ) = 0 for all λ ∈ U.

Since A has SVEP, we have Np−2f(λ) = 0 for all λ ∈ U. Because Ap = 0, by
induction, we can show that

f(λ) = 0 for all λ ∈ U,

and hence f ≡ 0. It follows that A +N has SVEP. The converse implication is
similar.

Finally, suppose that A + N has property (β). To establish property (β)
for A, it suffices to show that if for every open subset U of C and any se-
quence {fn}∞n=1 ⊆ O(U,X), limn→∞(λI − A)fn(λ) = 0 in O(U,X) implies
limn→∞ fn(λ) = 0 in O(U,X). Let {fn}∞n=1 ⊆ O(U,X) such that limn→∞(λI −
A)fn(λ) = 0 in O(U,X). Then

lim
n→∞

[(λI − (A+N))fn(λ) +Nfn(λ)] = lim
n→∞

(λI −A)fn(λ) = 0

in O(U,X). Thus we have

lim
n→∞

Np−1((λI−(A+N))fn(λ)+Nfn(λ)) = lim
n→∞

(λI−(A+N))Np−1fn(λ) = 0

in O(U,X). Since A+N has property (β),

lim
n→∞

Np−1fn(λ) = 0

in O(U,X). Clearly, we have

lim
n→∞

(λI−(A+N))Np−2fn(λ) = lim
n→∞

Np−2((λI−(A+N))fn(λ)+Nfn(λ)) = 0

in O(U,X). Since A+N has property (β),

lim
n→∞

Np−2fn(λ) = 0

in O(U,X). By induction, limn→∞ fn(λ) = 0 in O(U,X). Hence A has property
(β). The converse implication is similar. □

It is well known that (β) and (δ) are completely dual, and A ∈ L(X) is
decomposable if and only if A has both properties (β) and (δ). We have the
following.

Corollary 1.4. Let A ∈ L(X) and N ∈ L(X) be a nilpotent operator commuting
with A. Then A has property (δ) if and only if A+N has property (δ). Moreover,
A is decomposable if and only if A+N is decomposable.
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Definition 1.5. LetX be a Banach space and A ∈ L(X) be a bounded operator.
Then the localizable spectrum σloc(A) of A will be defined as the set of all λ ∈ C
such that XA(V ) ̸= {0} for each open neighborhood V of λ.

It is well known that σloc(A) is a closed subset of σ(A) and that σloc(A)
contains the point spectrum and is included in the aproximate point spectrum
of A, see [21]. As shown by Eschmeier and Prunaru [17], the localizable spectrum
plays an important role in the theory of invariant subspaces; see also [8] and [21].

2. Main results

We say that an operator R ∈ L(X) is called quasinilpotent if ∥Rn∥ 1
n → 0 as

n → ∞, equivalently, if σ(R) = {0}. It is clear that R ∈ L(X) is quasinilpotent
if and only if σR(x) = {0} for every x ∈ X \ {0}.

Theorem 2.1. Let A ∈ L(X) and λ ∈ C. Then A has SVEP at λ if and only if
XA(ϕ)∩ker(λI−A) = {0}. Moreover, A has SVEP if and only if XA(ϕ) = {0}.

Proof. Theorem 2.22 and Corollary 2.41 of [1]. □

It is clear that if XA({λ}) ∩XA(ϕ) = {0} then we have

ker(λI −A) ∩XA(ϕ) ⊆ XA({λ}) ∩XA(ϕ) = {0},

and hence, by Theorem 2.1, A has SVEP at λ.

Theorem 2.2. Let A ∈ L(X) and R ∈ L(X) be a quasinilpotent operator
commuting with A. Then σA(x) = σA+R(x) for all x ∈ X. Moreover, XA(F ) =
XA+R(F ) for every subset F ⊆ C. Furthermore, XA(G) = XA+R(G) for every
closed subset G ⊆ C.

Proof. Let λ0 /∈ σA(x). Then there exists an open neighborhood U of λ0 and
an analytic function f : U → X such that (λI − A)f(λ) = x for all λ ∈ U. Let
0 < a < b, and letW := {λ ∈ C : |λ−λ0| ≤ a} and let V := {λ ∈ C : |λ−λ0| ≤ b}
with W ⊆ V ⊆ U. Because f is analytic on V, there exists a real number m > 0
such that

∥f(λ)∥ ≤ m for all λ ∈ V.

Let ϵ := (b− a)/2. Since R is quasinilpotent, ∥Qn∥ 1
n → 0 as n → ∞. Therefore

there exists c > 0 such that

∥Rn∥ ≤ cϵn for all n ∈ N.

Since f is analytic on W, it follows from Cauchy’s integral formula that for each
λ ∈ W,

f (n)(λ) =
n!

2πi

∫
∂V

f(µ)

(µ− λ)n+1
dµ for all n ≥ 0.

Thus we obtain ∥∥∥∥f (n)(λ)

n!

∥∥∥∥ ≤ mb

(b− a)n+1
for all n ≥ 0,
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and hence ∥∥∥∥Rn f
(n)(λ)

n!

∥∥∥∥ ≤ mbc

2n(b− a)
for all λ ∈ W and n ≥ 0.

It follows that for all λ ∈ W,∥∥∥∥Rn f
(n)(λ)

n!

∥∥∥∥ → 0 as n → ∞.

We define g : U → X by

g(λ) :=

∞∑
n=0

Rn f
(n)(λ)

n!
for all λ ∈ U.

Then clearly, g(λ) converges uniformly on W and locally uniformly on U. It
follows that g is analytic. Since (λI − A)f(λ) = x for all λ ∈ U, we obtain
by induction that (λI − A)f (n)(λ) = nf (n−1)(λ) for all λ ∈ U and n ∈ N.
Finally, we claim that (λI −A−R)g(λ) = x for all λ ∈ U. Since AR = RA and
(λI −A)f (n)(λ) = nf (n−1)(λ), we have for each λ ∈ U,

∞∑
n=1

(λI −A−R)Rn f
(n)(λ)

n!
=

∞∑
n=1

(Rn(λI −A)−Rn+1)
f (n)(λ)

n!

=

∞∑
n=1

Rn f
(n−1)(λ)

(n− 1)!
−

∞∑
n=1

Rn+1 f
(n)(λ)

n!

= Rf(λ).

It follows that

(λI −A−R)g(λ) =

∞∑
n=0

(λI −A−R)Rn f
(n)(λ)

n!

= (λI −A−R)f(λ) +

∞∑
n=1

(λI −A−R)Rn f
(n)(λ)

n!

= (λI −A−R)f(λ) +Rf(λ) = (λI −A)f(λ) = x.

This implies that λ0 /∈ σA+R(x), and hence σA+R(x) ⊆ σA(x). The inclusion
σA(x) ⊆ σA+R(x) is clear, if just interchanging A and A + R in the argument
above, then σA(x) ⊆ σA+R(x) for all x ∈ X and hence σA(x) = σA+R(x) for all
x ∈ X, as desired. It follows from σA(x) = σA+R(x) that XA(F ) = XA+R(F )
for all subset F ⊆ C. Also, it is easily seen that XA(F ) = XA+R(F ) for all closed
subset F ⊆ C. □

It is clear that every nilpotent operator is a quasinilpotent operator. As an
immediate application of Theorem 2.2, we obtain the following corollary.

Corollary 2.3. Let A ∈ L(X) and let N ∈ L(X) be nilpotent operator com-
muting with A. Then σA(x) = σA+N (x) for all x ∈ X. Moreover, XA(F ) =
XA+N (F ) for every subset F ⊆ C and XA(G) = XA+R(G) for every closed
subset G ⊆ C.



Local spectral theory and quasinilpotent operators 791

Recall that A ∈ L(X) is said to be bounded below if A is inective and has
closed range. Denote by σap(A) the classical approximate point spectrum of
A ∈ L(X) defined by

σap(A) := {λ ∈ C : λI −A is not bounded below }.

It is well known that σap(A) is a compact subset of C that contains the boundary
of σ(A). Note that if σsur(A) denotes the surjectivity spectrum

σsur(A) := {λ ∈ C : λI −A is not onto}.

Clearly, σsur(A) is a compact subset of σ(A) such that ∂σ(A) ⊆ σsur(A).
Obviously, σ(A) = σsur(A) ∪ σap(A). Furthermore, σsur(A

∗) = σap(A) and
σap(A

∗) = σsur(A), where A∗ is the dual of A.

Corollary 2.4. If A ∈ L(X) and R ∈ L(X) is a quasinilpotent operator com-
muting with A then we have the following.
(a) σloc(A) = σloc(A+R),
(b) σsur(A) = σsur(A+R),
(c) σap(A) = σap(A+R),
(d) σ(A) = σ(A+R).

Proof. (a) Suppose that λ ∈ σloc(A). Then XA(V ) ̸= {0} for each open neigh-
borhood V of λ. By Theorem 2.2, XA+R(V ) = XA(V ) ̸= {0}, and hence
λ ∈ σloc(A+R). The converse implication is similar.

(b) It follows from Theorem 1.9 of [14] that

σsur(A) =
⋃
x∈X

σA(x) =
⋃
x∈X

σA+R(x) = σsur(A+R).

(c) σap(A) = σsur(A
∗) = σsur((A+R)∗) = σap(A+R).

(d) σ(A) = σsur(A) ∪ σap(A) = σsur(A+R) ∪ σap(A+R) = σ(A+R). □

Corollary 2.5. Let A,B ∈ L(X) be decomposable operators with AB = BA and
let R = A−B. Then R is a quasinilpotent operator if and only if σA(x) = σB(x)
for all x ∈ X.

Proof. Suppose that R is a quasinilpotent operator. Then, by Theorem 2.2, we
have

σA(x) = σB+R(x) = σB(x) for all x ∈ X.

Conversely, if σA(x) = σB(x) for all x ∈ X then XA(F ) = XB(F ) for all F ⊆ C.
It follows from Theorem 3.2 of [18] that R is a quasinilpotent operator. □

By Theorem 2.1 and Theorem 2.2, we have the following.

Corollary 2.6. Let A ∈ L(X) and R ∈ L(X) be a quasinilpotent operator
commuting with A and let λ ∈ C. Then A has SVEP at λ if and only if A+R has
SVEP at λ. In particular, the SVEP is stable under quasinilpotent commuting
perturbations.
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Note that, by Theorem 2.2, XA(F ) = XA+R(F ) for all closed subset F ⊆ C.
We have the following.

Corollary 2.7. Let A ∈ L(X) and R ∈ L(X) be a quasinilpotent operator
commuting with A. Then A has property (C) if and only if A+ R has property
(C). In particular, A has property (Q) if and only if A+R has property (Q).

In [6], Albrecht and Eschmeier proved that the properties (β) and (δ) are
completely dual: an operator has one if and only if its adjoint has the other. It
has been observed in [7] that an operator A ∈ L(X) is decomposable if and only
if it has both properties (β) and (δ). Note that R ∈ L(X) is quasinilpotent if
and only if R∗ is quasinilpotent. We have the following.

Corollary 2.8. Let A ∈ L(X) and R ∈ L(X) be a quasinilpotent operator
commuting with A. Then we have the following assertions.
(a) A has property (δ) if and only if A+R has property (δ).
(b) A has property (β) if and only if A+R has property (β).
(c) A is decomposable if and only if A+R is decomposable. In particular, A has
property (Q) if and only if A+R has property (Q).

Proof. (a) Suppose that A has property (δ). Let {U, V } be an open neighbor-
hood of C. Then we have X = XA(U) + XA(V ). By Theorem 2.2, we have
X = XA+R(U) +XA+R(V ), and therefore A+R has property (δ). The converse
implication follows by interchanging A and A+R.

(b), (c) Noting that (β) and (δ) are dual to each other, and that A ∈ L(X) is
decomposable if and only if A satisfies both (β) and (δ). □

Lemma 2.9. Let A ∈ L(X) and B ∈ L(Y ) on complex Banach spaces X and
Y and let T ∈ L(X,Y ) and S ∈ L(Y,X) such that TA = BT and AS = SB.
Suppose that T and S are injective. Then for each closed subset F ⊆ C, XA(F ) =
{0} if and only if YB(F ) = {0}.

Proof. Let F ⊆ C be closed. If y = Tx for some x ∈ XA(F ), then there exists
some analytic function f : C \ F → X with

(λI −A)f(λ) = x for all λ ∈ C \ F.
Clearly, Tf(λ) is analytic on C \ F. Because of TA = BT, we obtain

(λI −B)Tf(λ) = T (λI −A)f(λ) = Tx = y for all λ ∈ C \ F,
and hence y ∈ YB(F ). We conclude that TXA(F ) ⊆ YS(F ) for all closed subset
F ⊆ C. Also, it is easily seen that SYB(F ) ⊆ XA(F ) for all closed subset F ⊆ C.
By the injectivity of T and S, we conclude that XA(F ) = {0} if and only if
YB(F ) = {0} for all closed F ⊆ C. □

We say that A ∈ L(X) and B ∈ L(Y ) on complex Banach spaces X and Y are
quasisimilar if there exist T ∈ L(X,Y ) and S ∈ L(Y,X), each injective and with
dense range such that TA = BT and AS = SB. As an immediate application of
Lemma 2.9, we obtain the following theorem.
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Theorem 2.10. If A ∈ L(X) and B ∈ L(Y ) on complex Banach spaces X and
Y are quasisimilar then σloc(A) = σloc(B).

Let A ∈ L(X) and B ∈ L(Y ) be quasisimilar operators on complex Banach
spaces X and Y. Then clearly, for each integer n ≥ 1, An and Bn are quasisimilar
operators. We set A1 := A|R(An) and B1 := B|R(Bn). It follows from Lemma
5.2 of [10] that A1 and B1 are quasisimilar operators.

Corollary 2.11. Let A ∈ L(X) and B ∈ L(Y ) be quasisimilar operators, and let

A1 := A|R(An) and B1 := B|R(Bn). Then for each integer n ∈ N, σloc(A
n) =

σloc(B
n) and σloc(A1) = σloc(B1).
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