DOI QR코드

DOI QR Code

LOCAL SPECTRAL THEORY AND QUASINILPOTENT OPERATORS

  • Received : 2022.02.21
  • Accepted : 2022.03.16
  • Published : 2022.05.30

Abstract

In this paper we show that if A ∈ L(X) and R ∈ L(X) is a quasinilpotent operator commuting with A then XA(F) = XA+R(F) for all subset F ⊆ ℂ and 𝜎loc(A) = 𝜎loc(A + R). Moreover, we show that A and A + R share many common local spectral properties such as SVEP, property (C), property (𝛿), property (𝛽) and decomposability. Finally, we show that quasisimility preserves local spectrum.

Keywords

References

  1. P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluwer Acad. Publishers, 2004.
  2. P. Aiena, M.L. Colasante, M. Gonzalez, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc. 141 (2013), 2039-2050. https://doi.org/10.1090/S0002-9939-2013-11635-7
  3. P. Aiena, T.L. Miller, and M.M. Neumann, On a localized single-valued extension property, Math. Proc. Royal Irish. Acad. 104A (2004), 17-34. https://doi.org/10.1353/mpr.2004.0016
  4. P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), 435-448. https://doi.org/10.1006/jmaa.2000.6966
  5. P. Aiena and M.M. Neumann, On the stability of the localized single-valued extension property under commuting perturbations, Proc. Amer. Soc. 141 (2013), 2039-2050. https://doi.org/10.1090/S0002-9939-2013-11635-7
  6. E. Albrecht and J. Eschmeier, Analytic functional models and local spectral theory, Proc. London Math. Soc. 75 (1997), 323-348. https://doi.org/10.1112/S0024611597000373
  7. E. Albrecht, J. Eschmeier and M.M. Neumann, Some topics in the theory of decomposable operators In: Advances in invariant subspaces and other results of Operator Theory: Advances and Applications, Birkhauser Verlag, Basel 17 (1986), 15-34.
  8. J. Bracic and V. Muller, On bounded local resolvents, Int. Eq. Operator Theory 55 (2006), 477-486. https://doi.org/10.1007/s00020-005-1402-4
  9. I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  10. M. Drissi and M. El Hodaibi, Spectra of quasisimilar operators, Bull. Belgian Math. Soc. 14 (2007), 723-733.
  11. N. Dunford, Spectral theory II. Resolution of the identity, Pacific J. Math. 2 (1952), 559-614. https://doi.org/10.2140/pjm.1952.2.559
  12. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. https://doi.org/10.2140/pjm.1954.4.321
  13. N. Dunford and J.T. Schwartz, Linear operators, Part III: Specral operators, Wiley, New York, 1971.
  14. I. Erdelyi and R. Range, Spectral decompositions on Banach spaces, Lecture Notes in Mathematics, No. 623, Springer-Verlag, New York, 1977.
  15. J. Eschmeier, K.B. Laursen and M.M. Neumann, Multipliers with natural local spectra on commutative Banach algebras, J. Functional Analysis 138 (1996), 273-294. https://doi.org/10.1006/jfan.1996.0065
  16. J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. https://doi.org/10.2140/pjm.1975.58.61
  17. J. Eschmeier and B. Prunaru, Invariant subspaces and localizable spectrum, Integral Equations Operator Theory 55 (2002), 461-471.
  18. C. Foias, Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math. 14 (1963), 341-349. https://doi.org/10.1007/BF01234965
  19. K.B. Laursen and M.M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czech. Math. J. 43 (1993), 483-497. https://doi.org/10.21136/cmj.1993.128413
  20. K.B. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford Science Publications, Oxford, 2000.
  21. T.L. Miller and V.G. Miller, and M.M. Neumann, On operators with closed analytic core, Rend. Circ. Mat. Palermo 51 (2002), 483-497.
  22. T.L. Miller and V.G. Miller, and M.M. Neumann, Sur la theorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631. https://doi.org/10.1090/S0002-9939-1990-1004421-1
  23. P. Vrbova, On local spectral properties of operators in Banach spaces, Czechoslovak. Math. J. 23 (1973), 483-492. https://doi.org/10.21136/cmj.1973.101189