Browse > Article
http://dx.doi.org/10.12989/anr.2020.9.3.157

Size dependent axial free and forced vibration of carbon nanotube via different rod models  

Khosravi, Farshad (Department of Aerospace Engineering, K.N. Toosi University of Technology)
Simyari, Mahdi (Department of Mechanical Engineering, University of Tehran)
Hosseini, Seyed A. (Department of Mechanical Engineering, University of Tehran)
Tounsi, Abdelouahed (Yonsei Frontier Lab, Yonsei University)
Publication Information
Advances in nano research / v.9, no.3, 2020 , pp. 157-172 More about this Journal
Abstract
The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.
Keywords
forced vibration; Bishop theory; Rayleigh theory; carbon nanotube; axial vibration; assumed modes method;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Mehar, K. and Panda, S.K. (2018a), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.   DOI
2 Mehar, K. and Panda, S.K. (2018b), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircr. Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237.   DOI
3 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. http://dx.doi.org/10.12989/anr.2019.7.3.181.   DOI
4 Mehar, K. and Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mech., 231(3), 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.   DOI
5 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.   DOI
6 Mehar, K., Panda, S.K. and Patle, B.K. (2017b), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.   DOI
7 Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.   DOI
8 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.   DOI
9 Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., Int. J., 6(3), 279-298. http://dx.doi.org/10.12989/anr.2018.6.3.279.
10 Bethune, D., Kiang, C.H., De Vries, M., Gorman, G., Savoy, R., Vazquez, J. and Beyers, R. (1993), "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls", Nature, 363(6430), 605-607. https://doi.org/10.1038/363605a0.   DOI
11 Bianco, A., Kostarelos, K., Partidos, C.D. and Prato, M. (2005), "Biomedical applications of functionalised carbon nanotubes", Chem. Commun., 1(5), 571-577. https://doi.org/10.1039/B410943K.
12 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. http://dx.doi.org/10.12989/anr.2019.7.3.191.
13 Caruthers, S.D., Wickline, S.A. and Lanza, G.M. (2007), "Nanotechnological applications in medicine", Curr. Opin. Biotechnol., 18(1), 26-30. https://doi.org/10.1016/j.copbio.2007.01.006.   DOI
14 Mohammadian, M., Abolbashari, M.H. and Hosseini, S.M. (2019), "Axial vibration of hetero-junction CNTs mass nanosensors by considering the effects of small scale and connecting region: An analytical solution", Physica B Condens. Matter., 553, 137-150. https://doi.org/10.1016/j.physb.2018.10.044.   DOI
15 Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.   DOI
16 Mehralian, F. and Beni, Y.T. (2017), "A nonlocal strain gradient shell model for free vibration analysis of functionally graded shear deformable nanotubes", Int. J. Eng. Appl. Sci., 9(2), 88-102. http://dx.doi.org/10.24107/ijeas.309818.
17 Miyako, E., Hosokawa, C., Kojima, M., Yudasaka, M., Funahashi, R., Oishi, I., Hagihara, Y., Shichiri, M., Takashima, M. and Nishio, K. (2011), "A photo-thermal-electrical converter based on carbon nanotubes for bioelectronic applications", Angew. Chem. Int. Ed., 50(51), 12266-12270. https://doi.org/10.1002/anie.201106136.   DOI
18 Natsuki, T., Matsuyama, N., Shi, J.X. and Ni, Q.Q. (2014), "Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads", Appl. Phys. A, 116(3), 1001-1007. https://doi.org/10.1007/s00339-014-8289-3.   DOI
19 Oveissi, S., Toghraie, D. and Eftekhari, S.A. (2016), "Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid", Physica E Low Dimens. Syst. Nanostruct., 83, 275-283. https://doi.org/10.1016/j.physe.2016.05.004.   DOI
20 Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1016/j.physe.2016.05.004.   DOI
21 Rahmani, O., Hosseini, S., Ghoytasi, I. and Golmohammadi, H. (2017), "Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties", Appl. Phys. A, 123(1), 4. https://doi.org/10.1007/s00339-016-0591-9.
22 Chau, R., Datta, S., Doczy, M., Doyle, B., Jin, B., Kavalieros, J., Majumdar, A., Metz, M. and Radosavljevic, M. (2005), "Benchmarking nanotechnology for high-performance and lowpower logic transistor applications", IEEE Trans. Nanotechnol., 4(2), 153-158. https://doi.org/10.1109/TNANO.2004.842073.   DOI
23 Cox, B.J., Thamwattana, N. and Hill, J.M. (2008), "Mechanics of nanotubes oscillating in carbon nanotube bundles", Proc. Math. Phys. Eng. Sci., 464(2091), 691-710. https://doi.org/10.1098/rspa.2007.0247.
24 Dai, H. (2002), "Carbon nanotubes: Opportunities and challenges", Surf. Sci., 500(1-3), 218-241. https://doi.org/10.1016/S0039-6028(01)01558-8.   DOI
25 Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., Int. J., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.
26 Paradise, M. and Goswami, T. (2007), "Carbon nanotubes-production and industrial applications", Mater. Des., 28(5), 1477-1489. https://doi.org/10.1016/j.matdes.2006.03.008.   DOI
27 Shen, H.S. and Zhu, Z. (2012), "Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations", Eur. J. Mech. A Solids, 35, 10-21. https://doi.org/10.1016/j.euromechsol.2012.01.005.   DOI
28 Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstruct.2016.12.009.   DOI
29 Sherigara, B.S., Kutner, W. and D'Souza, F. (2003), "Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes", Electroanalysis, 15(9), 753-772. https://doi.org/10.1002/elan.200390094.   DOI
30 Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Comput. Mater. Sci., 50(7), 2112-2123. https://doi.org/10.1016/j.commatsci.2011.02.017.   DOI
31 Sinha, N. and Yeow, J.W. (2005), "Carbon nanotubes for biomedical applications", IEEE Trans. Nanobiosci., 4(2), 180-195. https://doi.org/10.1109/TNB.2005.850478.   DOI
32 Ebrahimi, F., Dehghan, M. and Seyfi, A. (2019), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., Int. J., 7(1), 1-11. https://doi.org/10.12989/anr.2019.7.1.001.
33 Danesh, M., Farajpour, A. and Mohammadi, M. (2012), "Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method", Mech. Res. Commun., 39(1), 23-27. https://doi.org/10.1016/j.mechrescom.2011.09.004.   DOI
34 De Volder, M.F., Tawfick, S.H., Baughman, R.H. and Hart, A.J. (2013), "Carbon nanotubes: Present and future commercial applications", Science, 339(6119), 535-539. https://doi.org/10.1126/science.1222453.   DOI
35 Diallo, M., Street, A., Sustich, R., Duncan, J. and Savage, N. (2009), Nanotechnology Applications for Clean Water: Solutions for Improving Water Quality, William Andrew, New York, USA.
36 Eltaher, M., Alshorbagy, A.E. and Mahmoud, F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016.   DOI
37 Wang, Q. and Liew, K. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093.   DOI
38 Suehiro, J., Zhou, G. and Hara, M. (2003), "Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy", J. Phys. D Appl. Phys., 36(21), 109. https://doi.org/10.1088/0022-3727/36/21/L01.   DOI
39 Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G. and Rinzler, A.G. (1996), "Crystalline ropes of metallic carbon nanotubes", Science, 273(5274), 483-487. https://doi.org/10.1126/science.273.5274.483.   DOI
40 Wang, C., Lv, R., Kang, F., Gu, J., Gui, X. and Wu, D. (2009), "Synthesis and application of iron-filled carbon nanotubes coated with FeCo alloy nanoparticles", J. Magn. Magn. Mater., 321(13), 1924-1927. https://doi.org/10.1016/j.jmmm.2008.12.013.   DOI
41 Yumura, M. (2003), "Carbon nanotube industrial applications", AIST Today, 10, 8-9.
42 Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017a), "Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory", Microfluid. Nanofluidics, 21(5), 85. https://doi.org/10.1007/s10404-017-1918-3.   DOI
43 Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017b), "Material length scale and nonlocal effects on the wave propagation of composite laminated cylindrical micro/nanoshells", Eur. Phys. J. Plus, 132(12), 503. https://doi.org/10.1140/epjp/i2017-11770-7.   DOI
44 Glory, J., Bonetti, M., Helezen, M., Mayne-L'Hermite, M. and Reynaud, C. (2008), "Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes", J. Appl. Phys., 103(9), 094309. https://doi.org/10.1063/1.2908229.   DOI
45 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
46 Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.   DOI
47 Georgantzinos, S. and Anifantis, N. (2010), "Carbon nanotube-based resonant nanomechanical sensors: A computational investigation of their behavior", Physica E Low Dimens. Syst. Nanostruct., 42(5), 1795-1801. https://doi.org/10.1016/j.physe.2010.02.002.   DOI
48 Harris, P.J. and Harris, P.J.F. (2009), Carbon Nanotube Science: Synthesis, Properties and Applications, Cambridge University Press, London, UK.
49 Gooding, J.J. (2005), "Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing", Electrochim. Acta, 50(15), 3049-3060. https://doi.org/10.1016/j.electacta.2004.08.052.   DOI
50 Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135(1), 1-20. https://doi.org/10.1140/epjp/s13360-019-00037-8.   DOI
51 He, H., Pham-Huy, L.A., Dramou, P., Xiao, D., Zuo, P. and Pham-Huy, C. (2013), "Carbon nanotubes: Applications in pharmacy and medicine", BioMed Res. Int., 2013, 578290. https://doi.org/10.1155/2013/578290.
52 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.   DOI
53 Hosseini, S.A. and Khosravi, F. (2020), "Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings", Adv. Nano Res., Int. J., 8(1), 25-36. https://doi.org/10.12989/anr.2020.8.1.025.   DOI
54 Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2019), "Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen's theory", J. Vib. Control, 26(11-12), 913-928. https://doi.org/10.1177/1077546319890170.   DOI
55 Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2020), "Effect of external moving torque on dynamic stability of carbon nanotube", J. Nano Res., 61, 118-135. https://doi.org/10.4028/www.scientific.net/JNanoR.61.118.   DOI
56 Iost, R.M. and Crespilho, F.N. (2012), "Layer-by-layer self-assembly and electrochemistry: Applications in biosensing and bioelectronics", Biosens. Bioelectron., 31(1), 1-10. https://doi.org/10.1016/j.bios.2011.10.040.   DOI
57 Katariya, P.V. and Panda, S.K. (2019b), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.   DOI
58 Karaoglu, P. and Aydogdu, M. (2010), "On the forced vibration of carbon nanotubes via a non-local Euler-Bernoulli beam model", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 224(2), 497-503. https://doi.org/10.1243/09544062JMES1707.   DOI
59 Karlicic, D.Z., Ayed, S. and Flaieh, E. (2019), "Nonlocal axial vibration of the multiple Bishop nanorod system", Math. Mech. Solids., 24(6), 1668-1691. https://doi.org/10.1177/1081286518766577.   DOI
60 Katariya, P.V. and Panda, S.K. (2019a), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.   DOI
61 Katariya, P.V. and Panda, S.K. (2019c), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., Int. J., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.
62 Joshi, M., Bhattacharyya, A. and Ali, S.W. (2008), "Characterization techniques for nanotechnology applications in textiles", Indian J. Fibre Text. Res., 33(3), 304-317.
63 Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Prediction of nonlinear eigenfrequency of laminated curved sandwich structure using higher-order equivalent single-layer theory", J. Sandw. Struct. Mater., 21(8), 2846-2869. https://doi.org/10.1177/1099636217728420.
64 Katariya, P.V., Das, A. and Panda, S.K. (2018), "Buckling analysis of SMA bonded sandwich structure-using FEM", Proceedings of the 7th National Conference on Processing and Characterization of Materials, Roukela, India, December.
65 Kelly, B. (1981), Physics of Graphite, Applied Science, London, UK.
66 Khosravi, F., Hosseini, S.A. and Hayati, H. (2020c), "Free and forced axial vibration of single walled carbon nanotube under linear and harmonic concentrated forces based on nonlocal theory", Int. J. Mod. Phys. B, 34(8), 2050067. https://doi.org/10.1142/S0217979220500678.   DOI
67 Adams, F.C. and Barbante, C. (2013), "Nanoscience, nanotechnology and spectrometry", Spectrochim. Acta Part B At. Spectrosc., 86, 3-13. https://doi.org/10.1016/j.sab.2013.04.008.   DOI
68 Khosravi, F. and Hosseini, S.A. (2020), "On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model", Mech. Based Des. Struct. Mach., 2020, 1-24. https://doi.org/10.1080/15397734.2020.1744001.   DOI
69 Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020a), "On torsional vibrations of triangular nanowire", Thin-Wall. Struct., 148, 106591. https://doi.org/10.1016/j.tws.2019.106591.   DOI
70 Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020b), "Torsional Vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: comparison with hollow elliptical cross section", Eur. Phys. J. Plus., 135(3), 1-20. https://doi.org/10.1140/epjp/s13360-020-00312-z.   DOI
71 Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E Low Dimens. Syst. Nanostruct., 41(5), 861-864. https://doi.org/10.1016/j.physe.2009.01.007.   DOI
72 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
73 Alizadeh Hamidi, B., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories", J. Therm. Stress., 43(2), 157-174. https://doi.org/10.1080/01495739.2019.1666694.   DOI
74 Askari, H. and Esmailzadeh, E. (2017), "Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations", Compos. Part B Eng., 113, 31-43. https://doi.org/10.1016/j.compositesb.2016.12.046.   DOI
75 Aydogdu, M. (2012), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity", Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001.   DOI
76 Aydogdu, M. (2015), "A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial van der Waals force effects", J. Vib. Control., 21(16), 3132-3154. https://doi.org/10.1177/1077546313518954.   DOI
77 Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded T-joints", Wind Struct., Int. J., 29(5), 361-369. https://doi.org/10.12989/was.2019.29.5.361.
78 Khosravi, F., Hosseini, S.A. and Norouzi, H. (2020d), "Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 234(10), 1928-1942. https://doi.org/10.1177/0954406220903341.   DOI
79 Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020e), "Forced axial vibration of a single-walled carbon nanotube embedded in elastic medium under various moving forces", J. Nano Res., 63, 112-133. https://doi.org/10.4028/www.scientific.net/JNanoR.63.112.   DOI
80 Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020f), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Eur. Phys. J. Plus, 135(2), 183. https://doi.org/10.1140/epjp/s13360-020-00207-z.   DOI
81 Lei, Z., Liew, K. and Yu, J. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panels", Int. J. Mater. Sci., 1(1), 36-40. https://doi.org/0.12720/ijmse.1.1.36-40.
82 Li, C., Lim, C.W. and Yu, J. (2010), "Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load", Smart Mater. Struct., 20(1), 015023. https://doi.org/10.1088/0964-1726/20/1/015023.   DOI
83 Liu, K.C., Friend, J. and Yeo, L. (2009), "The axial-torsional vibration of pretwisted beams", J. Sound Vib., 321(1-2), 115-136. https://doi.org/10.1016/j.jsv.2008.09.016.   DOI
84 Makar, J. and Beaudoin, J. (2004), "Carbon nanotubes and their application in the construction industry", Proceedings of the 1st International Symposium on Nanotechnology in Construction, Paisley, Scotland, June.
85 Ajayan, P.M. (1999), "Nanotubes from carbon", Chem. Rev., 99(7), 1787-1800. https://doi.org/10.1021/cr970102g.   DOI
86 Aydogdu, M. and Filiz, S. (2011), "Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity", Physica E Low Dimens. Syst. Nanostruct., 43(6), 1229-1234. https://doi.org/10.1016/j.physe.2011.02.006.   DOI
87 Bastanfar, M., Hosseini, S.A., Sourki, R. and Khosravi, F. (2019), "Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response", Arch. Mech. Eng., 66(4), 417-437. https://doi.org/10.24425/ame.2019.131355.