• Title/Summary/Keyword: Biological threat

Search Result 89, Processing Time 0.022 seconds

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

A Study on the Planning of Civil Defense Shelter and Design 1 - On the ideas of the State of Civil Defense Shelter & Design Criteria - (민방위 대피시설 계획 및 설계 방안에 관한 연구 1 - 민방위 대피시설의 현황 및 설계기준을 중심으로 -)

  • Park, Namkwun;Paik, Sungkun
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.3
    • /
    • pp.358-365
    • /
    • 2014
  • North Korea has been preparing for WMD(Weapons Mass Destruction) using asymmetric force since it recognized the economic effects of CBR (Chemical, Biological, Radiological) weapons system operation and the limitations of conventional weapons. However, the threat only to conventional bombs, missiles and etc. is considered on the current Civil Defense Shelter, which could increase civil damages, not responding appropriately to disasters such as CBR weapons, terror attacks and etc. Therefore, this study confirms the current situation of Civil Defense Shelter and design criteria focused on CBR disasters so that we could make a plan and design of Civil Defense Shelter. In addition, we suggest the research result and improvements on Civil Defense Shelter and Design.

Review of Nanoparticles in Drinking Water: Risk Assessment and Treatment (나노입자의 현황조사 및 처리방안 마련을 위한 문헌연구)

  • Kim, Seung-Hyun;Hong, Seung-kwan;Yoon, Je-Yong;Kim, Doo-Il;Lee, Sang-Ho;Kweon, Ji-Hyang;Kim, Hyung-Soo;ko, Seok-Dock;Kuk, Ji-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.201-212
    • /
    • 2011
  • Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.

Potentials of and Threats to Traditional Institutions for Community Based Biodiversity Management in Dryland Areas of Lower Moshi, Tanzania

  • Woiso, Dino Andrew;Shemdoe, Riziki Silas;Kayeye, Heri
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.3
    • /
    • pp.177-185
    • /
    • 2009
  • Dryland species and ecosystems have developed unique strategies to cope with low and sporadic rainfall. They are highly resilient and recover quickly from prevailing disturbances such as fires, herbivore pressure and drought. Dryland people have engineered pastoral and farming systems, which are adapted to these conditions and have sustained the livelihoods of dryland people for centuries. In this article, we present the status of potentials and threats to dryland biodiversity and explore options for its conservation and sustainable use. Findings of the research can be summarized as follows: (i) The ecosystem goods and services are highly valued by the community but mechanism for wise use of the resources has disappeared, (ii) forests are under the ownership of the government but the local community is the realistic custodian of the forests through village leaderships and environmental committees; (iii) the immediate major threat to dryland biodiversity held in the forests appears to be the degradation of ecosystems and habitats caused by new and powerful forces of environmental degradation such as large scale irrigation of rice farms, poverty-induced overexploitation of natural resources, and disappearance and ignorance of traditional institutions for management of dryland biodiversity. These new forms of disturbances often overpower the legendary resilience of dryland ecosystems and constitute potentially serious threats to dryland biodiversity. Forests, wetlands and oases all of which are micro hot spots of dryland biodiversity, appear to be particularly vulnerable hence the need to set up some rules and regulations for sustainable utilization of these resources.

  • PDF

A Study on the Heavy Metal Contents in Fish and Sediments of the Mankyung River (일부 河川流域의 淡水魚와 沈積土의 중금속 함량에 관한 연구)

  • 황인담;기노석;양기승;이재형;김남송
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.33-49
    • /
    • 1989
  • Pollution in the rivers has received considerable attention in recent years, particullary with reference to the effect due to increasing concentration of heavy metals. The metals are toxic to the ecosystem as a whole and to man in particular, since he is at the end of a variety of food chains by virture of his varigated diet. In addition, numerous laboratory tests have established that certain metals, such as Cd, pose a threat to a wide variety of aquatic organisms at concentrations as low as a few $\mu$g/1. Before the biological effects of heavy metals in impacted ecosystems can be completely assessed, however it is necessary to provide data on the concentration of heavy metals in such systems. This study was performed to investigate the concentration level of heavy metals in water, fish and sediments from upstream ($S_1-S_4$) to downstream ($S_5-S_9$) of the Mankyung river. Samples of water, fish, and sediments were collected along the tributaries of the Mankyung from September to October in 1987 and analyzed for lead, cadmium, copper, and zinc by atomic absorption spectrophotometer. From the data presented in this study, we can infer that the concentrations of the heavy metals investigated both in water and sediments are similar to those found in literature for unpolluted regions. The results obtained from the analysis of the edible tissue of the C. auratus show low concentration levels of the four heavy metals investigated. We conclude that the area is still relatively unpolluted and recommended continuing the monitoring of heavy metal concentrations to improve our understanding of their cycle in the river environment.

  • PDF

Epidemiological Characteristics of Re-emerging Vivax Malaria in the Republic of Korea (1993-2017)

  • Bahk, Young Yil;Lee, Hyeong-Woo;Na, Byoung-Kuk;Kim, Jeonga;Jin, Kyoung;Hong, Yeong Seon;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.6
    • /
    • pp.531-543
    • /
    • 2018
  • Historically, Plasmodium vivax malaria has been one of the most highly endemic parasitic diseases in the Korean Peninsula. Until the 1970s, vivax malaria was rarely directly lethal and was controlled through the Korean Government Program administered by the National Malaria Eradication Service in association with the World Health Organization's Global Malaria Eradication Program. Vivax malaria has re-emerged in 1993 near the Demilitarized Zone between South and North Korea and has since become an endemic infectious disease that now poses a serious public health threat through local transmission in the Republic of Korea. This review presents major lessons learned from past and current malaria research, including epidemiological and biological characteristics of the re-emergent disease, and considers some interesting patterns of diversity. Among other features, this review highlights temporal changes in the genetic makeup of the parasitic population, patient demographic features, and spatial distribution of cases, which all provide insight into the factors contributing to local transmission. The data indicate that vivax malaria in Korea is not expanding exponentially. However, continued surveillance is needed to prevent future resurgence.

The Peripheral Immune Landscape in a Patient with Myocarditis after the Administration of BNT162b2 mRNA Vaccine

  • Yoon, Bo Kyung;Oh, Tae Gyu;Bu, Seonghyeon;Seo, Kyung Jin;Kwon, Se Hwan;Lee, Ji Yoon;Kim, Yeumin;Kim, Jae-woo;Ahn, Hyo-Suk;Fang, Sungsoon
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.738-748
    • /
    • 2022
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed a serious threat to global public health. A novel vaccine made from messenger RNA (mRNA) has been developed and approved for use at an unprecedented pace. However, an increased risk of myocarditis has been reported after BNT162b2 mRNA vaccination due to unknown causes. In this study, we used single-cell RNA sequencing and single-cell T cell receptor sequencing analyses of peripheral blood mononuclear cells (PBMCs) to describe, for the first time, changes in the peripheral immune landscape of a patient who underwent myocarditis after BNT162b2 vaccination. The greatest changes were observed in the transcriptomic profile of monocytes in terms of the number of differentially expressed genes. When compared to the transcriptome of PBMCs from vaccinated individuals without complications, increased expression levels of IL7R were detected in multiple cell clusters. Overall, results from this study can help advance research into the pathogenesis of BNT162b2-induced myocarditis.

Biodegradation of marine microplastics by the whole-cell catalyst overexpressing recombinant PETase (PET분해효소(PETase) 과발현 전세포 촉매의 해양미세플라스틱 생분해 활성 연구)

  • Hyunji, Kim;Jong-Ha, Park;Ae-Ran, Park;Dae-Hee, Lee;Joonho, Jeon;Hyuk Taek, Kwon;Sung In, Lim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The increased production and consumption of polyethylene terephthalate (PET)-based products over the past several decades has resulted in the discharge of countless tons of PET waste into the marine environment. PET microparticles resulting from the physical erosion of general PET wastes end up in the ocean and pose a threat to the marine biosphere and human health, necessitating the development of new technologies for recycling and upcycling. Notably, enzyme-mediated PET degradation is an appealing option due to its eco-friendly and energy-saving characteristics. PETase, a PET-hydrolyzing enzyme originating from Ideonella sakaiensis, is one of the most thoroughly researched biological catalysts. However, the industrial application of PETase-mediated PET recycling is limited due to the low stability and poor reusability of the enzyme. Here we developed the whole-cell catalyst (WCC) in which functional PETase is attached to the outer membrane of Escherichia coli. Immunoassays are used to identify the surface-expressed PETase, and we demonstrated that the WCC degraded PET microparticles most efficiently at 30℃ and pH 9 without agitation. Furthermore, the WCC increased the PET-degrading activity in a concentration-dependent manner, surpassing the limited activity of soluble PETase above 100 nM. Finally, we demonstrated that the WCC could be recycled up to three times.

Past and Future Epidemiological Perspectives and Integrated Management of Rice Bakanae in Korea

  • Soobin, Shin;Hyunjoo, Ryu;Yoon-Ju, Yoon;Jin-Yong, Jung;Gudam, Kwon;Nahyun, Lee;Na Hee, Kim;Rowoon, Lee;Jiseon, Oh;Minju, Baek;Yoon Soo, Choi;Jungho, Lee;Kwang-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • In the past, rice bakanae was considered an endemic disease that did not cause significant losses in Korea; however, the disease has recently become a serious threat due to climate change, changes in farming practices, and the emergence of fungicide-resistant strains. Since the bakanae outbreak in 2006, its incidence has gradually decreased due to the application of effective control measures such as hot water immersion methods and seed disinfectants. However, in 2013, a marked increase in bakanae incidence was observed, causing problems for rice farmers. Therefore, in this review, we present the potential risks from climate change based on an epidemiological understanding of the pathogen, host plant, and environment, which are the key elements influencing the incidence of bakanae. In addition, disease management options to reduce the disease pressure of bakanae below the economic threshold level are investigated, with a specific focus on resistant varieties, as well as chemical, biological, cultural, and physical control methods. Lastly, as more effective countermeasures to bakanae, we propose an integrated disease management option that combines different control methods, including advanced imaging technologies such as remote sensing. In this review, we revisit and examine bakanae, a traditional seed-borne fungal disease that has not gained considerable attention in the agricultural history of Korea. Based on the understanding of the present significance and anticipated risks of the disease, the findings of this study are expected to provide useful information for the establishment of an effective response strategy to bakanae in the era of climate change.

Raoultella ornithinolytica as a Potential Candidate for Bioremediation of Heavy Metal from Contaminated Environments

  • Laila Ibrahim Faqe Salih;Rezan Omer Rasheed;Sirwan Muhsin Muhammed
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.895-908
    • /
    • 2023
  • Disposal of waste containing heavy metals into the environment is a major threat to human health and can result in toxic or chronic poisoning in aquatic life. In the current study, metal-resistant Raoultella ornithinolytica was isolated from metal-contaminated samples collected from the Tanjaro River, located southwest of Sulaymaniyah, Iraq. R. ornithinolytica was identified by partial amplification of 16S rRNA. The uptake potency of heavy metals was assessed using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and indicated that R. ornithinolytica removed 67, 89, 63.4, 55.6, 56.5, 65, and 61.9% of Cd, Pb, Cr, Ni, Zn, Co, and Fe, respectively. These removal rates were influenced by temperature, pH, and contact time; at 35℃ and pH 5 with a change in the incubation time, the reduction rate improved from 89 to 95% for Pb, from 36.4 to 45% for Cu, and from 55.6 to 64% for Ni. Gene analysis indicated that R. ornithinolytica contained pbrT, chrB, nccA, iroN, and czcA genes, but the pcoD gene was absent. Energy-dispersive X-ray spectroscopy (EDS) images showed evidence of metal ion binding on the cell wall surface with different rates of binding. Transmission electron microscopy (TEM) detected different mechanisms for metal particle localization; cell surface adsorption was the main mechanism for Pb, Zn, and Co uptake, while Cd, Ni, and Fe were accumulated inside the cell. The current study describes, for the first time, the isolation of R. ornithinolytica from metal-contaminated water, which can be used as an eco-friendly biological expedient for the remediation and detoxification of metals from contaminated environments.