DOI QR코드

DOI QR Code

Past and Future Epidemiological Perspectives and Integrated Management of Rice Bakanae in Korea

  • Soobin, Shin (Department of Agricultural Biotechnology, Seoul National University) ;
  • Hyunjoo, Ryu (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Jin-Yong, Jung (Department of Agricultural Biotechnology, Seoul National University) ;
  • Yoon-Ju, Yoon (Department of Agricultural Biotechnology, Seoul National University) ;
  • Gudam, Kwon (Department of Agricultural Biotechnology, Seoul National University) ;
  • Nahyun, Lee (Department of Agricultural Biotechnology, Seoul National University) ;
  • Na Hee, Kim (Department of Agricultural Biotechnology, Seoul National University) ;
  • Rowoon, Lee (Department of Agricultural Biotechnology, Seoul National University) ;
  • Jiseon, Oh (Department of Agricultural Biotechnology, Seoul National University) ;
  • Minju, Baek (Department of Agricultural Biotechnology, Seoul National University) ;
  • Yoon Soo, Choi (Department of Agricultural Biotechnology, Seoul National University) ;
  • Jungho, Lee (Interdisciplinary Program of Agriculture and Forest Meteorology, Seoul National University) ;
  • Kwang-Hyung, Kim (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2022.08.29
  • Accepted : 2022.11.23
  • Published : 2023.02.01

Abstract

In the past, rice bakanae was considered an endemic disease that did not cause significant losses in Korea; however, the disease has recently become a serious threat due to climate change, changes in farming practices, and the emergence of fungicide-resistant strains. Since the bakanae outbreak in 2006, its incidence has gradually decreased due to the application of effective control measures such as hot water immersion methods and seed disinfectants. However, in 2013, a marked increase in bakanae incidence was observed, causing problems for rice farmers. Therefore, in this review, we present the potential risks from climate change based on an epidemiological understanding of the pathogen, host plant, and environment, which are the key elements influencing the incidence of bakanae. In addition, disease management options to reduce the disease pressure of bakanae below the economic threshold level are investigated, with a specific focus on resistant varieties, as well as chemical, biological, cultural, and physical control methods. Lastly, as more effective countermeasures to bakanae, we propose an integrated disease management option that combines different control methods, including advanced imaging technologies such as remote sensing. In this review, we revisit and examine bakanae, a traditional seed-borne fungal disease that has not gained considerable attention in the agricultural history of Korea. Based on the understanding of the present significance and anticipated risks of the disease, the findings of this study are expected to provide useful information for the establishment of an effective response strategy to bakanae in the era of climate change.

Keywords

Acknowledgement

Initial idea for this review study was developed from the students taking the course of the 2022 Plant Disease Epidemiology at Seoul National University through the collaborative team work; This study was also supported by a grant from the Agenda Program (Project No. PJ015111) of Rural Development Administration, Republic of Korea.

References

  1. Ajijolakewu, K. A., Leh, C. P., Lee, C. K. and Wan Nadiah, W. A. 2017. Characterization of novel Trichoderma hemicellulase and its use to enhance downstream processing of lignocellulosic biomass to simple fermentable sugars. Biocatal. Agric. Biotechnol. 11:166-175.  https://doi.org/10.1016/j.bcab.2017.06.005
  2. Aurangzeb, M., Ahmed, J. and Ilyas, M. B. 1998. Chemical control of Bakanae disease of rice caused by Fusarium moniliforme. Pak. J. Phytophathol. 10:14-17. 
  3. Bagga, P. S., Sharma, V. K. and Pannu, P. P. S. 2007. Effect of transplanting dates and chemical seed treatments on footrot disease of basmati rice caused by Fusarium moniliforme. Plant Dis. Res. 22:60-62. 
  4. Bal, R. S. and Biswas, B. 2018. Epidemiology and management of foot rot in basmati rice. J. Krishi Vigyan. 6:87-94.  https://doi.org/10.5958/2349-4433.2018.00067.3
  5. Bashyal, B. M. 2018. Etiology of an emerging disease: bakanae of rice. Indian Phytopathol. 71:485-494.  https://doi.org/10.1007/s42360-018-0091-2
  6. Bashyal, B. M., Aggarwal, R., Banerjee, S., Gupta, S. and Sharma, S. 2014. Pathogenicity, ecology and genetic diversity of the Fusarium spp. associated with an emerging bakanae disease of rice (Oryza sativa L.) in India. In: Microbial diversity and biotechnology in food security, eds. by R. Kharwar, R. Upadhyay, N. Dubey and R. Raghuwanshi, pp. 307-314. Springer, New Delhi, India. 
  7. Bhramaramba, S. and Nagamani, A. 2013. Antagonistic Trichoderma isolates to control bakanae pathogen of rice. Agric. Sci. Digest 33:104-108. 
  8. Biswas, S. and Das, S. 2002. Fungicidal spraying for control of bakanae disease of rice in field. J. Mycopathol. Res. 40:211-212. 
  9. Burgess, L. W., Backhouse, D., Swan, L. J. and Esdaile, R. J. 1996. Control of fusarium crown rot of wheat by late stubble burning and rotation with sorghum. Australas. Plant Pathol. 25:229-233.  https://doi.org/10.1071/AP96042
  10. Calderon, R., Navas-Cortes, J. A. and Zarco-Tejada, P. J. 2015. Early detection and quantification of Verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sens. 7:5584-5610.  https://doi.org/10.3390/rs70505584
  11. Cannon, A. J., Sobie, S. R. and Murdock, T. Q. 2015. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28:6938-6959.  https://doi.org/10.1175/JCLI-D-14-00754.1
  12. Chan, Z., Ding, K., Tan, G., Zhu, S., Chen, Q., Su, X., Ma, K. and Wang, A. 2004. Epidemic regularity of rice bakanae disease. J. Anhui Agric. Univ. 31:139-142. 
  13. Chen, Z., Gao, T., Liang, S., Liu, K., Zhou, M. and Chen, C. 2014. Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides. FEMS Microbiol. Lett. 357:77-84.  https://doi.org/10.1111/1574-6968.12504
  14. Choi, H.-W., Lee, Y.-H., Hong, S. K., Kim, W. G., Lee, Y. K. and Chun, S.-C. 2011. Identification of Fusarium fujikuroi isolated from barnyard grass and possibility of inoculum source of bakanae disease on rice. Res. Plant Dis. 17:82-85 (in Korean).  https://doi.org/10.5423/RPD.2011.17.1.082
  15. Choi, J.-H., Lee, S., Nah, J.-Y., Kim, H.-K., Paek, J.-S., Lee, S., Ham, H., Hong, S. K., Yun, S.-H. and Lee, T. 2018. Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. Int. J. Food Microbiol. 267:62-69.  https://doi.org/10.1016/j.ijfoodmicro.2017.12.006
  16. Chung, C.-L., Huang, K.-J., Chen, S.-Y., Lai, M.-H., Chen, Y.-C. and Kuo, Y.-F. 2016. Detecting bakanae disease in rice seedlings by machine vision. Comput. Electron. Agric. 121:404-411.  https://doi.org/10.1016/j.compag.2016.01.008
  17. Chung, E. J., Hossain, M. T., Khan, A., Kim, K. H., Jeon, C. O. and Chung, Y. R. 2015. Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathol. J. 31:152-164.  https://doi.org/10.5423/PPJ.OA.12.2014.0136
  18. Cother, E. and Lanoiselet, V. 2002. Crop nutrition. In: Production of quality rice in south-eastern Australia, eds. by L. M. Keaky and W. S. Clampett, p. 10. Kingston, ACT, Australia. 
  19. Desjardins, A. E., Plattner, R. D. and Nelson, P. E. 1997. Production of fumonisin B (inf1) and moniliformin by Gibberella fujikuroi from rice from various geographic areas. Appl. Environ. Microbiol. 63:1838-1842.  https://doi.org/10.1128/aem.63.5.1838-1842.1997
  20. Dyer, P. S., Hansen, J., Delaney, A. and Lucas, J. A. 2000. Genetic control of resistance to the sterol 14α-demethylase inhibitor fungicide prochloraz in the cereal eyespot pathogen Tapesia yallundae. Appl. Environ. Microbiol. 66:4599-4604.  https://doi.org/10.1128/AEM.66.11.4599-4604.2000
  21. Egerci, Y., Kinay-Teksur, P. and Uysal-Morca, A. 2021. First report of bakanae disease caused by Fusarium proliferatum on rice in Turkey. J. Plant. Dis. Prot. 128:577-582.  https://doi.org/10.1007/s41348-020-00369-z
  22. Elsharkawy, M. M., Hassan, N., Ali, M., Mondal, S. N. and Hyakumachi, M. 2014. Effect of zoysiagrass rhizosphere fungal isolates on disease suppression and growth promotion of rice seedlings. Acta Agric. Scand. 64:135-140.  https://doi.org/10.1080/09064710.2014.888470
  23. Fiyaz, R. A., Yadav, A. K., Krishnan, S. G., Ellur, R. K., Bashyal, B. M., Grover, N., Bhowmick, P. K., Nagarajan, M., Vinod, K. K. and Singh, N. K. 2016. Mapping quantitative trait loci responsible for resistance to bakanae disease in rice. Rice 9:45. 
  24. Food and Agriculture Organization of the United Nations. 2020. FAOSTAT-Crops and livestock products. URL https://www.fao.org/faostat/en/#data/QCL [30 July 2022]. 
  25. Garibaldi, A. 1985. Control of seed-borne Drechslera oryzae and Fusarium moniliforme on rice in Northern Italy. Meded. Fac. Landb. Rijksuniv. Gent. 50:1251-1257. 
  26. Ghazanfar, M. U., Wakil, W., Iqbal, M. and Ahmad, A. 2009. Impact of various fungicides against bakanae disease of rice under the field conditions. In: 5th International Conference on Plant Pathology in the Globalized Era. Indian Agricultural Research Institute, New Delhi, India. 
  27. Gisi, U., Binder, H. and Rimbach, E. 1985. Synergistic interactions of fungicides with different modes of action. Trans. Br. Mycol. Soc. 85:299-306.  https://doi.org/10.1016/S0007-1536(85)80192-3
  28. Goo, S.-G. and Koo, J. 2020. Establishment of rice bakanae disease management using slightly acidic hypochlorous acid water. J. Life Sci. 30:178-185.  https://doi.org/10.5352/JLS.2020.30.2.178
  29. Gupta, P. K., Sahai, S., Singh, N., Dixit, C. K., Singh, D. P., Sharma, C., Tiwari, M. K., Gupta, R. K. and Garg, S. C. 2004. Residue burning in rice-wheat cropping system: causes and implications. Curr. Sci. 87:1713-1717. 
  30. Gwon, S.-U. and Jin, S.-H. 2018. Evaluation of resistance characteristics of Korean traditional rice crops to bakanae disease. In: Proceedings of the Korean Society of Crop Science Conference. The Korean Society of Crop Science, Suwon, Korea (in Korean). 
  31. Hajra, K. K., Ganguly, L. K. and Khatua, D. C. 1994. Bakanae disease of rice in West Bengal. J. Mycopathol. Res. 32:95-99. 
  32. Halim, W. N. A. W. A., Razak, A. A., Ali, J. and Zainudin, N. A. I. M. 2015. Susceptibility of Malaysian rice varieties to Fusarium fujikuroi and in vitro activity of Trichoderma harzianum as biocontrol agent. Malays. J. Microbiol. 11:20-26. 
  33. Han, S. 2007. Review of disease occurrence of major crops in Korea in 2007. In: Proceedings of Annual Falling Meeting & Symposium of KSPP, pp. 19-20. Korean Society of Plant Pathology, Seoul, Korea. 
  34. Heaton, J. B. and Morschel, J. R. 1965. A foot rot disease of rice variety Blue Bonnet: Northern Territory, Australia, caused by Fusarium moniliforme Sheldon. Trop. Sci. 7:116-121. 
  35. Hernandez-Clemente, R., Hornero, A., Mottus, M., Penuelas, J., Gonzalez-Dugo, V., Jimenez, J. C., Suarez, L., Alonso, L. and Zarco-Tejada, P. J. 2019. Early diagnosis of vegetation health from high-resolution hyperspectral and thermal imagery: lessons learned from empirical relationships and radiative transfer modelling. Curr. For. Rep. 5:169-183.  https://doi.org/10.1007/s40725-019-00096-1
  36. Hernandez-Clemente, R., Navarro-Cerrillo, R. M. and ZarcoTejada, P. J. 2012. Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT + DART simulations. Remote Sens. Environ. 127:298-315.  https://doi.org/10.1016/j.rse.2012.09.014
  37. Hino, T. and Furuta, T. 1968. Studies on the control of bakanae disease of rice plants, caused by Gibberella fujikuroi. II. Influence on flowering season on rice plants and seed transmissibility through flower infection. Bull. Chugoku Agric. Exp. Stn. E 2:96-110. 
  38. Hori, S. 1898. Researches on "Bakanae" disease of the rice plant. Nojishikenjyo Seiseki 12:110-119. 
  39. Horino, O., Mew, T. W. and Yamada, T. 1982. The effect of temperature on the development of bacterial leaf blight on rice. Ann. Phytopathol. Soc. Jpn. 48:72-75.  https://doi.org/10.3186/jjphytopath.48.72
  40. Hossain, M. S., Ali, M. A., Mollah, M. I. U., Khan, M. A. I. and Islam, A. K. M. S. 2015. Evaluation of fungicides for the control of bakanae disease of rice caused by Fusarium moniliforme (Sheldon). Bangladesh Rice J. 19:49-55.  https://doi.org/10.3329/brj.v19i1.25220
  41. Hossain, M. T., Khan, A., Chung, E. J., Rashid, M. H.-O. and Chung, Y. R. 2016. Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathol. J. 32:228-241.  https://doi.org/10.5423/PPJ.OA.10.2015.0218
  42. Hou, Y.-P., Qu, X.-P., Mao, X.-W., Kuang, J., Duan, Y.-B., Song, X.-S., Wang, J.-X., Chen, C.-J. and Zhou, M.-G. 2018. Resistance mechanism of Fusarium fujikuroi to phenamacril in the field. Pest Manag. Sci. 74:607-616.  https://doi.org/10.1002/ps.4742
  43. Hur, Y.-J., Lee, S. B., Kim, T. H., Kwon, T., Lee, J.-H., Shin, D.- J., Park, S.-K., Hwang, U.-H., Cho, J. H., Yoon, Y.-N., Yeo, U.-S., Song, Y.-C., Kwak, D.-Y., Nam, M.-H. and Park, D.- S. 2015. Mapping of qBK1, a major QTL for bakanae disease resistance in rice. Mol. Breed. 35:78. 
  44. Hur, Y.-J., Lee, S.-B., Shin, D., Kim, T.-H., Cho, J.-H., Han, S.-I., Oh, S.-H., Lee, J.-Y., Son, Y.-B., Lee, J.-H., Kwon, T., Park, N.-B., Kim, S.-Y., Song, Y.-C., Nam, M.-H., Kwon, Y.-U. and Park, D.-S. 2016. Screening of rice germplasm for bakanae disease resistance in rice. Korean J. Breed. Sci. 48:22-28 (in Korean).  https://doi.org/10.9787/KJBS.2016.48.1.022
  45. Janevska, S. and Tudzynski, B. 2018. Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways. Appl. Microbiol. Biotechnol. 102:615-630.  https://doi.org/10.1007/s00253-017-8679-5
  46. Jeong, J.-M., Kim, E. C., Venkatanagappa, S. and Lee, J.-S. 2017. Review of rice: production, trade, consumption, and future demand in Korea and worldwide. Korean J. Crop Sci. 62:157-165.  https://doi.org/10.7740/KJCS.2017.62.3.157
  47. Ji, Z., Zeng, Y., Liang, Y., Qian, Q. and Yang, C. 2016. Transcriptomic dissection of the rice-Fusarium fujikuroi interaction by RNA-Seq. Euphytica 211:123-137.  https://doi.org/10.1007/s10681-016-1748-5
  48. Jo, S., Lee, S.-B., Hur, Y.-J., Lee, J.-Y., Cho, J.-H., Park, N.- B., Shin, D.-J., Lee, J.-H., Sohn, Y.-B., Han, S.-I., Oh, S.- H., Song, Y.-C. and Park, D.-S. 2020. Development of 'MY299BK', a cultivar resistant to bakanae disease harboring qBK1 gene derived from a tong-il type rice 'shingwang'. Korean. J. Breed. Sci. 52:172-178 (in Korean).  https://doi.org/10.9787/kjbs.2020.52.2.172
  49. Kang, D.-Y., Cheon, K.-S., Oh, J., Oh, H., Kim, S. L., Kim, N., Lee, E., Choi, I., Baek, J., Kim, K.-H., Chung, N.-J. and Ji, H. 2019. Rice genome resequencing reveals a major quantitative trait locus for resistance to bakanae disease caused by Fusarium fujikuroi. Int. J. Mol. Sci. 20:2598. 
  50. Kang, Y.-S., Kim, W. J. and Roh, J.-H. 2017. Effect of silicatecoated rice seed on healthy seedling development and bakanae disease reduction when raising rice in seed boxes. Korean. J. Crop Sci. 62:1-8.  https://doi.org/10.7740/KJCS.2016.62.1.001
  51. Kanjanasoon, P. 1965. Studies on the bakanae disease of rice in Thailand. Ph.D. thesis. Tokyo University, Tokyo, Japan. 
  52. Karov, I., Mitrev, S. and Arsov, E. 2009. Giberella fujikuroi (Wollenweber) the new parasitical fungus on rice in the Republic of Macedonia. Proc. Nat. Sci. Matica Srpska Novi Sad 116:175-182.  https://doi.org/10.2298/ZMSPN0916175K
  53. Kato, A., Miyake, T., Nishigata, K., Tateishi, H., Teraoka, T. and Arie, T. 2012. Use of fluorescent proteins to visualize interactions between the bakanae disease pathogen Gibberella fujikuroi and the biocontrol agent Talaromyces sp. KNB-422. J. Gen. Plant Pathol. 78:54-61.  https://doi.org/10.1007/s10327-011-0343-9
  54. Kazempour, M. N. and Elahinia, S. A. 2007. Biological control of Fusarium fujikuroi, the causal agent of bakanae disease by rice associated antagonistic bacteria. Bulg. J. Agric. Sci. 13:393-408. 
  55. Khaskheli, M. A., Wu, L., Chen, G., Chen, L., Hussain, S., Song, D., Liu, S. and Feng, G. 2020. Isolation and characterization of root-associated bacterial endophytes and their biocontrol potential against major fungal phytopathogens of rice (Oryza sativa L.). Pathogens 9:172. 
  56. Khunnamwong, P., Lertwattanasakul, N., Jindamorakot, S., Suwannarach, N., Matsui, K. and Limtong, S. 2020. Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiol. 65:573-590.  https://doi.org/10.1007/s12223-019-00764-6
  57. Kim, J.-M., Hong, S. K., Kim, W. G., Lee, Y. K., Yu, S.-H. and Choi, H.-W. 2010. Fungicide resistance of Gibberella fujikuroi isolates causing rice bakanae disease and their progeny isolates. Korean J. Mycol. 38:75-79 (in Korean).  https://doi.org/10.4489/KJM.2010.38.1.075
  58. Kim, K.-H., Cho, J., Lee, Y. H. and Lee, W.-S. 2015. Predicting potential epidemics of rice leaf blast and sheath blight in South Korea under the RCP 4.5 and RCP 8.5 climate change scenarios using a rice disease epidemiology model, EPIRICE. Agric. For. Meteorol. 203:191-207.  https://doi.org/10.1016/j.agrformet.2015.01.011
  59. Kim, S. W., Park, J. K., Lee, C. H., Hahn, B.-S. and Koo, J. C. 2016. Comparison of the antimicrobial properties of chitosan oligosaccharides (COS) and EDTA against Fusarium fujikuroi causing rice bakanae disease. Curr. Microbiol. 72:496-502.  https://doi.org/10.1007/s00284-015-0973-9
  60. Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., Linicus, L., Johannsmeier, J., Jelonek, L., Goesmann, A., Cardoza, V., McMillan, J., Mentzel, T. and Kogel, K.-H. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 12:e1005901. 
  61. Kumar, A., Khilari, K., Kumar, A., Yadav, P., Rathi, V. and Chaudhary, S. 2022. Effect of plant nutrient on incidence of bakanae disease of rice caused by Fusarium moniliforme in western Uttar Pradesh. Pharm. Innov. 11:902-904. 
  62. Kushiro, M., Saito, H., Sugiura, Y., Aoki, T., Kawamoto, S.-I. and Sato, T. 2012. Experimental infection of Fusarium proliferatum in Oryza sativa plants: fumonisin B1 production and survival rate in grains. Int. J. Food Microbiol. 156:204-208.  https://doi.org/10.1016/j.ijfoodmicro.2012.03.021
  63. Latif, M. A., Uddin, M. B., Rashid, M. M., Hossain, M., Akter, S. Jahan, Q. S. A., Hossain, M. S., Ali, M. A. and Hossain, M. A. 2021. Rice bakanae disease: yield loss and management issues in Bangladesh. Food Sci. Technol. 9:7-16.  https://doi.org/10.13189/fst.2021.090102
  64. Lee, S.-B. 2022. Degree of resistance to Bakanae disease and recommendation of major domestic cultivars. Nongsaro, Rural Development Administration of Korea, Suwon, Korea (in Korean). 
  65. Lee, S.-B., Hur, Y.-J., Cho, J.-H., Lee, J.-H., Kim, T.-H., Cho, S.-M., Song, Y.-C., Seo, Y.-S., Lee, J., Kim, T.-S., Park, Y.- J., Oh, M.-K. and Park, D. S. 2018. Molecular mapping of qBK1WD, a major QTL for bakanae disease resistance in rice. Rice 11:3. 
  66. Lee, S.-B., Kim, N., Hur, Y.-J., Cho, S.-M., Kim, T.-H., Lee, J.-Y., Cho, J.-H., Lee, J.-H., Song, Y.-C., Seo, Y.-S., Ko, J.-M. and Park, D.-S. 2019. Fine mapping of qBK1, a major QTL for bakanae disease resistance in rice. Rice 12:36. 
  67. Lee, S.-B., Kim, N., Jo, S., Hur, Y.-J., Lee, J.-Y., Cho, J.-H., Lee, J.-H., Kang, J.-W., Song, Y.-C., Bombay, M., Kim, S.-R., Lee, J., Seo, Y.-S., Ko, J.-M. and Park, D.-S. 2021. Mapping of a major QTL, qBK1z, for bakanae disease resistance in rice. Plants 10:434. 
  68. Lee, Y.-H. 2009. A prediction model for rice yield reduction by bakanae disease incidence in different paddy cultivation stages. Nongsaro, Rural Development Administration of Korea, Suwon, Korea (in Korean). 
  69. Lee, Y. H., Kim, S., Choi, H.-W., Lee, M.-J., Ra, D. S., Kim, I. S., Park, J. W. and Lee, S.-W. 2010. Fungicide resistance of Fusarium fujikuroi isolates isolated in Korea. Korean J. Pestic. Sci. 14:427-432 (in Korean). 
  70. Lee, Y.-H., Lee, M.-J., Choi, H.-W., Kim, S.-T., Park, J.-W., Myung, I.-S., Park, K. and Lee, S.-W. 2011. Development of in vitro seedling screening method for selection of resistant rice against bakanae disease. Res. Plant Dis. 17:288-294 (in Korean).  https://doi.org/10.5423/RPD.2011.17.3.288
  71. Li, F. J., Komura, R., Nakashima, C., Shimizu, M., Kageyama, K. and Suga, H. 2021. Molecular diagnosis of thiophanatemethyl-resistant strains of Fusarium fujikuroi in Japan. Plant Dis. 106:634-640. 
  72. Li, H., Diao, Y., Wang, J., Chen, C., Ni, J. and Zhou, M. 2008. JS399-19, a new fungicide against wheat scab. Crop Prot. 27:90-95.  https://doi.org/10.1016/j.cropro.2007.04.010
  73. Li, M., Li, T., Duan, Y., Yang, Y., Wu, J., Zhao, D., Xiao, X., Pan, X., Chen, W., Wang, J., Chen, C. and Zhou, M. 2017. Evaluation of phenamacril and ipconazole for control of rice bakanae disease caused by Fusarium fujikuroi. Plant Dis. 102:1234-1239.  https://doi.org/10.1094/pdis-10-17-1521-re
  74. Lopez-Lopez, M., Calderon, R;, Gonzalez-Dugo, V., ZarcoTejada, P. J. and Fereres, E. 2016. Early detection and quantification of almond red leaf blotch using high-resolution hyperspectral and thermal imagery. Remote Sens. 8:276. 
  75. Luo, J.-Y., Xie, G.-L., Li, B., Luo, Y.-C., Zhao, L.-H., Wang, X., Liu, B. and Li, W. 2005. Gram-positive bacteria associated with rice in China and their antagonists against the pathogens of sheath blight and Bakanae disease in rice. Rice Sci. 12:213-218. 
  76. Manandhar, J. 1999. Fusarium moniliforme in rice seeds: its infection, isolation, and longevity/Fusarium moniliforme in reissamen: Infektion, isolation und langlebigkeit. J. Plant Dis. Prot. 106:598-607. 
  77. Mandal, D. N. and Chaudhuri, S. 1988. Survivality of Fusarium moniliforme Sheld. under different moisture regimes and soil conditions. Int. J. Trop. Plant Dis. 6:201-206. 
  78. Matic, S., Garibaldi, A. and Gullino, M. L. 2021. Combined and single effects of elevated CO2 and temperatures on rice bakanae disease under controlled conditions in phytotrons. Plant Pathol. 70:815-826.  https://doi.org/10.1111/ppa.13338
  79. Matic, S., Gullino, M. L. and Spadaro, D. 2017. The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice. Front. Biosci. 9:333-344.  https://doi.org/10.2741/e806
  80. Matic, S., Spadaro, D., Garibaldi, A. and Gullino, M. L. 2014. Antagonistic yeasts and thermotherapy as seed treatments to control Fusarium fujikuroi on rice. Biol. Control 73:59-67.  https://doi.org/10.1016/j.biocontrol.2014.03.008
  81. Miyasaka, A., Ryoichi, S. and Masataka, I. 2000. Control of the bakanae disease of rice by soaking seeds in hot water for the hydroponically raised seedling method in the long-mat type rice cultivation. Proc. Kanto-Tosan Plant Prot. Soc. 47:31-33. 
  82. Mongiano, G., Zampieri, E., Morcia, C., Titone, P., Volante, A., Terzi, V., Tamborini, L., Vale, G. and Monaco, S. 2021. Application of plant-derived bioactive compounds as seed treatments to manage the rice pathogen Fusarium fujikuroi. Crop Prot. 148:105739. 
  83. Nagaraj Kumar, M., Laha, G. S. and Reddy, C. S. 2007. Role of antagonistic bacteria in suppression of bakanae disease of rice caused by Fusarium moniliforme Sheld. J. Biol. Control 21:97-104. 
  84. Nawaz, M.-E.-N., Malik, K. and Hassan, M. N. 2022. Rice-associated antagonistic bacteria suppress the Fusarium fujikuroi causing rice bakanae disease. BioControl 67:101-109.  https://doi.org/10.1007/s10526-021-10122-6
  85. Nelson, M. R., Orum, T. V., Jaime-Garcia, R. and Nadeem, A. 1999. Applications of geographic information systems and geostatistics in plant disease epidemiology and management. Plant Dis. 83:308-319.  https://doi.org/10.1094/PDIS.1999.83.4.308
  86. Niehaus, E.-M., Kim, H.-K., Munsterkotter, M., Janevska, S., Arndt, B., Kalinina, S. A., Houterman, P. M., Ahn, I.-P., Alberti, I., Tonti, S., Kim, D.-W., Sieber, C. M. K., Humpf, H.-U., Yun, S.-H., Guldener, U. and Tudzynski, B. 2017. Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. PLoS Pathog. 13:e1006670. 
  87. Niehaus, E.-M., Munsterkotter, M., Proctor, R. H., Brown, D. W., Sharon, A., Idan, Y., Oren-Young, L., Sieber, C. M., Novak, O., Pencik, A., Tarkowska, D., Hromadova, K., Freeman, S., Maymon, M., Elazar, M., Youssef, S. A., El-Shabrawy, E. S. M., Shalaby, A. B. A., Houterman, P., Brock, N. L., Burkhardt, I., Tsavkelova, E. A., Dickschat, J. S., Galuszka, P., Guldener, U. and Tudzynski, B. 2016. Comparative "omics" of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol. Evol. 8:3574-3599.  https://doi.org/10.1093/gbe/evw259
  88. Nofiani, R., de Mattos-Shipley, K., Lebe, K. E., Han, L.-C., Iqbal, Z., Bailey, A. M., Willis, C. L., Simpson, T. J. and Cox, R. J. 2018. Strobilurin biosynthesis in Basidiomycete fungi. Nat. Commun. 9:3940. 
  89. Nur Ain Izzati Mohd, Z., Azmi Abd., R. and Baharuddin, S. 2008. Bakanae disease of rice in Malaysia and Indonesia: etiology of the causal agent based on morphological, physiological and pathogenicity characteristics. J. Plant Prot. Res. 48:475-485.  https://doi.org/10.2478/v10045-008-0056-z
  90. Ochi, A., Konishi, H., Ando, S., Sato, K., Yokoyama, K., Tsushima, S., Yoshida, S., Morikawa, T., Kaneko, T. and Takahashi, H. 2017. Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma. Plant Pathol. 66:67-76.  https://doi.org/10.1111/ppa.12555
  91. Ogawa, K. and Takeda, H. 1990. Variation of the rice pathogen of benomyl-resistant rice bakanae disease. Jpn. J. Plant Pathol. 56:247-249. 
  92. Olivier, J. G. J., Schure, K. M. and Peters, J. A. H. W. 2017. Trends in global CO2 and total greenhouse gas emissions: 2017 report. PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands. 69 
  93. Ora, N., Faruq, A. N., Islam, M. T., Akhtar, N. and Rahman, M. M. 2015. Detection and identification of seed borne pathogens from some cultivated hybrid rice varieties in Bangladesh. Middle-East J. Sci. Res. 10:482-488. 
  94. Ou, S. H. 1985. Rice diseases. Commonwealth Mycological Institute, Kew, UK. 380 
  95. Pal, S., Khilari, K., Jain, S. K., Singh, J., Kumar, A. and Kumar, A. 2019. Management of bakanae disease of rice through combination of Trichoderma spp. and fungicides. Int. J. Curr. Microbiol. Appl. Sci. 8:494-501.  https://doi.org/10.20546/ijcmas.2019.811.060
  96. Park, D. S. 2020. QTL mapping for development of functional rice with disease and drought resistant. Nongsaro, Rural Development Administration, Suwon, Korea. 57 pp. (in Korean). 
  97. Park, H. G., Shin, H. R., Lee, Y., Kim, S. W., Kwon, O. D., Park, I. J. and Kuk, Y. I. 2003. Influence of water temperature, soaking period, and chemical dosage on bakanae disease of rice (Gibberella fujikuroi) in seed disinfection. Korean. J. Pestic. Sci. 7:216-222. 
  98. Park, W.-S., Choi. H.-W., Han, S.-S., Shin, D.-B., Shim, H.-K, Jung, E.-S., Lee, S.-W., Lim, C.-K. and Lee, Y. H. 2009. Control of bakanae disease of rice by seed soaking into the mixed solution of procholraz and fludioxnil. Res. Plant Dis. 15:94-100 (in Korean).  https://doi.org/10.5423/RPD.2009.15.2.094
  99. Pavgi, M. and Singh, J. 1964. Bakanae and foot rot of rice in Uttar Pradesh, India. Plant Dis. 48:340-342. 
  100. Piombo, E., Bosio, P., Acquadro, A., Abbruscato, P. and Spadaro, D. 2020. Different phenotypes, similar genomes: three newly sequenced Fusarium fujikuroi strains induce different symptoms in rice depending on temperature. Phytopathology 110:656-665.  https://doi.org/10.1094/phyto-09-19-0359-r
  101. Rajathi, S., Murugesan, S., Ambikapathy, V. and Panneerselvam, A. 2020. Antagonistic activity of fungal cultures filtrate and their enzyme activity against Fusarium moniliforme causing bakanae disease in paddy. Int. J. Bot. Stud. 5:654-658. 
  102. Rodrigues, C., de Souza Vandenberghe, L. P., de Oliveira, J. and Soccol, C. R. 2012. New perspectives of gibberellic acid production: a review. Crit. Rev. Biotechnol. 32:263-273.  https://doi.org/10.3109/07388551.2011.615297
  103. Rosales, A. M. and Mew, T. W. 1997. Suppression of Fusarium moniliforme in rice by rice-associated antagonistic bacteria. Plant Dis. 81:49-52.  https://doi.org/10.1094/pdis.1997.81.1.49
  104. Rosales, A. M., Nuque, F. L. and Mew, T. W. 1986. Biological control of bakanae disease of rice with antagonistic bacteria. Phytopathology 22:29-35. 
  105. Rosales, A. M., Vantomme, R., Swings, J., De Ley, J. and Mew, T. W. 1993. Identification of some bacteria from paddy antagonistic to several rice fungal pathogens. J. Phytopathol. 138:189-208.  https://doi.org/10.1111/j.1439-0434.1993.tb01377.x
  106. Rural Development Administration. 2007. Monitoring and management report of crop pest and disease. 11-1390000-001007-10. Rural Development Administration, Suwon, Korea. 
  107. Rural Development Administration. 2022. Pesticide Safety Information System. URL https://psis.rda.go.kr/psis/agc/res/agchmRegistStusLst.ps?menuId=PS00263 [29 August 2022]. 
  108. Sandhu, G. S. and Dhaliwal, N. S. 2016. Incidence of bakanae disease of basmati rice in south-western part of Punjab and its management. Int. J. Plant Prot. 9:353-357.  https://doi.org/10.15740/HAS/IJPP/9.1/353-357
  109. Sang, W. G., Kim, Y. D., Kang, S. G., Ku, B. I., Lee, H. S., Lee, M. H., Park, H. K. and Lee, J. H. 2014. Physiological responses of japonica rice cultivars to bakanae disease. J. Agric. Life Sci. 45:55-59. 
  110. Sarwar, A., Hassan, M. N., Imran, M., Iqbal, M., Majeed, S., Brader, G., Sessitsch, A. and Hafeez, F. Y. 2018. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol. Res. 209:1-13.  https://doi.org/10.1016/j.micres.2018.01.006
  111. Sasaki, T. 1987. Epidemiology and control of rice bakanae disease. J. Agric. Sci. 42:543-548 (in Japanese). 
  112. Savary, S., Nelson, A., Willocquet, L., Pangga, I. and Aunario, J. 2012. Modeling and mapping potential epidemics of rice diseases globally. Crop Prot. 34:6-17.  https://doi.org/10.1016/j.cropro.2011.11.009
  113. Secic, E. and Kogel, K.-H. 2021. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies. Curr. Opin. Biotechnol. 70:136-142.  https://doi.org/10.1016/j.copbio.2021.04.001
  114. Shanmugam, V., Sharma, V., Bharti, P., Jyoti, P., Yadav, S. K., Aggarwal, R. and Jain, S. 2017. RNAi induced silencing of pathogenicity genes of Fusarium spp. for vascular wilt management in tomato. Ann. Microbiol. 67:359-369.  https://doi.org/10.1007/s13213-017-1265-3
  115. Sharma, P. 2006. Evaluation of fungicides as seedling treatment for controlling bakanae/foot-rot (Fusarium moniliforme) disease in Basmati rice. Indian Phytopathol. 59:305-308. 
  116. Shin, M. U., Kang, H. J., Lee, Y.-H. and Kim, H. T. 2008a. Detection for the resistance of Fusarium spp. isolated from rice seeds to prochloraz and cross-resistance to other fungicides inhibiting sterol biosynthesis. Korean. J. Pestic. Sci. 12:277-282 (in Korean). 
  117. Shin, M. U., Lee, S. M., Lee, Y.-H., Kang, H. J. and Kim, H. T. 2008b. The controlling activity of several fungicides against rice bakanae disease caused by Fusarium fujikuroi in five assay methods. Korean. J. Pestic. Sci. 12:168-176 (in Korean). 
  118. Siciliano, I., Amaral Carneiro, G., Spadaro, D., Garibaldi, A. and Gullino, M. L. 2015. Jasmonic acid, abscisic acid, and salicylic acid are involved in the phytoalexin responses of rice to Fusarium fujikuroi, a high gibberellin producer pathogen. J. Agric. Food Chem. 63:8134-8142.  https://doi.org/10.1021/acs.jafc.5b03018
  119. Sierotzki, H. and Scalliet, G. 2013. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103:880-887.  https://doi.org/10.1094/PHYTO-01-13-0009-RVW
  120. Singh, R., Kumar, P. and Laha, G. S. 2019. Present status of bakanae of rice caused by Fusarium fujikuroi Nirenberg. Indian Phytopathol. 72:587-597.  https://doi.org/10.1007/s42360-019-00125-w
  121. Spadaro, D., Matic, S., Siciliano, I., Bagnaresi, P., Biselli, C., Orru, L., Volante, A., Tondelli, A., Aragona, M. and Valente, M. 2018. Elucidating bakanae disease resistance in japonica rice. In: 14 European Fusarium Seminar, p. 36. Tulln, Austria. 
  122. Steyn, W. J., Wand, S. J. E., Holcroft, D. M. and Jacobs, G. 2002. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol. 155:349-361.  https://doi.org/10.1046/j.1469-8137.2002.00482.x
  123. Stodola, F. H. 1958. Source book on gibberellin. Agricultural Research Service, US Department of Agriculture, Washington, DC, USA. pp. 1828-1957. 
  124. Su, M., Yu, S. M. and Sun, S. K. 1979. Variation of Fusarium moniliforme. Plant Prot. Bull. 21:342-350. 
  125. Sunder, S. 1997. Survival of Fusarium moniliforme in soil enriched with different nutrients and their combinations. Indian Phytopathol. 50:474-481. 
  126. Sunder, S., Singh, R. and Dodan, D. S. 2014. Management of bakanae disease of rice caused by Fusarium moniliforme. Indian J. Agric. Sci. 84:48-52.  https://doi.org/10.56093/ijas.v84i2.38038
  127. Takeuchi, S. 1972. Climatic effect on seed infection of rice plant with bakanae disease and disinfection with organic mercury compounds. Proc. Kansai Plant Prot. Soc. 14:14-19. 
  128. Tateishi, H., Saishoji, T., Suzuki, T. and Chida, T. 1998. Antifungal properties of the seed disinfectant ipconazole and its protection against "Bakanae" and other diseases of rice. Ann. Phytopathol. Soc. Jpn. 64:443-450.  https://doi.org/10.3186/jjphytopath.64.443
  129. Titone, P., Garibaldi, A., Tamborini, L. and Polenghi, G. 2003. Efficacy of chemical and physical seed dressing against bakanae disease of rice [Oryza sativa L.-Lombardy]. Sementi Elette 49:23-27. 
  130. Waller, J. M. 1987. Rice diseases. By S. H. Ou Slough, UK: Commonwealth Agricultural Bureaux (1985) 2nd ed., pp. 380, UK £38.00, USA $70, elsewhere £41.00. Exp. Agric. 23:357. 
  131. Wang, Z., Wang, C., Li, F., Li, Z., Chen, M., Wang, Y., Qiao, X. and Zhang, H. 2013. Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon. J. Microbiol. 51:477-483.  https://doi.org/10.1007/s12275-013-2586-y
  132. Watanabe, S., Kumakura, K., Izawa, N., Nagayama, K., Mitachi, T., Kanamori, M., Teraoka, T. and Arie, T. 2007. Mode of action of Trichoderma asperellum SKT-1, a biocontrol agent against Gibberella fujikuroi. J. Pestic. Sci. 32:222-228.  https://doi.org/10.1584/jpestics.G06-35
  133. Wiemann, P., Sieber, C. M. K., von Bargen, K. W., Studt, L., Niehaus, E.-M., Espino, J. J., Huss, K., Michielse, C. B., Albermann, S., Wagner, D., Bergner, S. V., Connolly, L. R., Fischer, A., Reuter, G., Kleigrewe, K., Bald, T., Wingfield, B. D., Ophir, R., Freeman, S. Hippler, M., Smith, K. M., Brown, D. W., Proctor, R. H., Munsterkotter, M., Freitag, M., Humpf, H.-U., Guldener, U. and Tudzynski, B. 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog. 9:e1003475. 
  134. Wu, J. Y., Sun, Y. N., Zhou, X. J. and Zhang, C. Q. 2019. A new mutation genotype of K218T in myosin-5 confers resistance to phenamacril in rice bakanae disease in the field. Plant Dis. 104:1151-1157.  https://doi.org/10.1094/pdis-05-19-1031-re
  135. Wulff, E. G., Sorensen, J. L., Lubeck, M., Nielsen, K. F., Thrane, U. and Torp, J. 2010. Fusarium spp. associated with rice bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environ. Microbiol. 12:649-657.  https://doi.org/10.1111/j.1462-2920.2009.02105.x
  136. Yadav, J., Bashyal, B. M., Sinha, P. and Aggarwal, R. 2020. Effect of different abiotic factors on symptom expression and severity of bakanae disease of rice (Oryza sativa). Indian J. Agric. Sci. 90:386-391.  https://doi.org/10.56093/ijas.v90i2.99028
  137. Yamashita, T., Eguchi, N., Akanuma, R. and Saito, Y. 2000. Control of seed borne diseases of rice plants by hot water treatment of rice seeds. Ann. Rep. Kanto-Tosan Plant Prot. Soc. 47:7-11. 
  138. Yang, C.-D., Guo, L.-B., Li, X.-M., Ji, Z.-J., Ma, L.-Y. and Qian, Q. 2006. Analysis of QTLs for resistance to rice bakanae disease. Chin. J. Rice Sci. 20:657. 
  139. Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., Hernandez-Clemente, R., Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, V., North, P. R. J., Landa, B. B., Boscia, D., Saponari, M. and Navas-Cortes, J. A. 2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4:432-439.  https://doi.org/10.1038/s41477-018-0189-7
  140. Zhang, S.-M., Wang, Y.-X., Meng, L.-Q., Li, J., Zhao, X.-Y., Cao, X., Chen, X.-L., Wang, A.-X. and Li, J.-F. 2012. Isolation and characterization of antifungal lipopeptides produced by endophytic Bacillus amyloliquefaciens TF28. Afr. J. Microbiol. Res. 6:1747-1755.