DOI QR코드

DOI QR Code

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong (Department of Environmental Sciences, Faculty of Science, Shinshu University) ;
  • Han, Jisun (Department of Environmental Sciences, Faculty of Science, Shinshu University) ;
  • Jeon, Bong-seok (Department of Environmental Sciences, Faculty of Science, Shinshu University)
  • Received : 2016.06.06
  • Accepted : 2016.06.29
  • Published : 2016.06.30

Abstract

Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

Keywords

References

  1. Alamri, S.A. 2010. Biodegradation of microcystin by a new Bacillus sp. isolated from a Saudi freshwater lake. African Journal of Biotechnology 9: 6552-6559.
  2. Banker, R., S. Carmeli, O. Hadas, B. Teltsch, R. Porat and A. Sukenik. 1997. Identification of cylindrospermopsin in the cyanobacterium Aphanizomenon ovalisporum (Cyanophyceae) isolated from lake Kinneret, Israel. Journal of Phycology 33: 613-616. https://doi.org/10.1111/j.0022-3646.1997.00613.x
  3. Bourne, D.G., G.J. Jones, R.L. Blakerley, A. Jones, A.P. Negri and P. Riddles. 1996. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Applied and Environmental Microbiology 62: 4086-4094.
  4. Bourne, D.G., P. Riddles, G.J. Jones, W. Smith and R.L. Blakeley. 2001. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environmental Toxicology 16: 523-534. https://doi.org/10.1002/tox.10013
  5. Carmichael, W. 1992. Cyanobacteria secondary metabolites-the cyanotoxins. Journal of Applied Microbiology 72: 445-459.
  6. Chen, J., L. Hu, W. Zhou, S. Yan, J. Yang, Y. Xue and Z. Shi. 2010. Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China. International Journal of Molecular Sciences 11:896-911. https://doi.org/10.3390/ijms11030896
  7. Chow, C.W.K., J.A. Van Leeuwen, M. Drikas, R. Fabris, K.M. Spark and D.W. Page. 1999. The impact of the character of natural organic matter in conventional treatment with alum. Water Science and Technology 40: 97-104. https://doi.org/10.1016/S0273-1223(99)00645-9
  8. Cooke, G.D., E.B. Welch, S. Peterson and S.A. Nichols. 2005. Restoration and management of lakes and reservoirs. CRC press.
  9. Dziga, D., M. Wasylewski, B. Wladyka, S. Nybom and J. Meriluoto. 2013. Microbial degradation of microcystins. Chemical Research in Toxicology 26: 841-852. https://doi.org/10.1021/tx4000045
  10. Falconer, I.R. and A.R. Humpage. 2006. Cyanobacterial (bluegreen algal) toxins in water supplies: Cylindrospermop sins. Environmental Toxicology 21: 299-304. https://doi.org/10.1002/tox.20194
  11. Han, J., B. Jeon, N. Futatsuki and H. Park. 2013. The effect of alum coagulation for in-lake treatment of toxic Microcystis and other cyanobacteria related organisms in microcosm experiments. Ecotoxicology and Environmental Safety 96: 17-23. https://doi.org/10.1016/j.ecoenv.2013.06.008
  12. Harada, K., H. Nagai, Y. Kimura, M. Suzuki, H. Park, M.F. Watanabe, R. Luukkainen, K. Sivonen and W.W. Carmichael. 1993. Liquid chromatography/mass spectrometric detection of anatoxin-a, a neurotoxin from cyanobacteria. Tetrahedron 49: 9251-9260. https://doi.org/10.1016/0040-4020(93)80011-H
  13. Harada, K., I. Ohtani, K. Iwamoto, M. Suzuki, M.F. Watanabe, M. Watanabe and K. Terao. 1994. Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. Toxicon 32: 73-84. https://doi.org/10.1016/0041-0101(94)90023-X
  14. Hawkins, P.R., M.T.C. Runnegar, A.R. Jackson and I.R. Falconer. 1985. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic supply reservoir. Applied and Environmental Microbiology 50: 1292-1295.
  15. Ho, L., D. Hoefel, C.P. Saint and G. Newcombe. 2007. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Research 41:4685-4695. https://doi.org/10.1016/j.watres.2007.06.057
  16. Ho, L., T. Tang, P.T. Monis and D. Hoefel. 2012. Biodegradation of multiple cyanobacterial metabolites in drinking water supplies. Chemosphere 87: 1149-1154. https://doi.org/10.1016/j.chemosphere.2012.02.020
  17. Hu, L., J. Yang, W. Zhou, Y. Yin, J. Chen and Z. Shi. 2009. Isolation of a Methylobacillus sp. that degrades microcystin toxins associated with cyanobacteria. New Biotechnology 26: 205-211. https://doi.org/10.1016/j.nbt.2009.09.001
  18. Imanishi, S. and K.I. Harada. 2004. Proteomics approach on microcystin binding proteins in mouse liver for investigation of microcystin toxicity. Toxicon 43: 651-659. https://doi.org/10.1016/j.toxicon.2004.02.026
  19. Jeon, B., J. Han, K. Makino and H. Park. 2014. Degradation of microcystin and possible phosphorus removal mechanism by electrochemical treatment. Environmental Engineering Science 31: 525-531. https://doi.org/10.1089/ees.2014.0136
  20. Jetoo, S., V.I. Grover and G. Krantzberg. 2015. The Toledo Drinking Water Advisory: Suggested Application of the Water Safety Planning Approach. Sustainability 7: 9787-9808. https://doi.org/10.3390/su7089787
  21. Jia, Y., J. Du, F. Song, G. Zhao and X. Tian. 2012. A fungus capable of degrading microcystin-LR in the algal culture of Microcystis aeruginosa PCC7806. Applied Biochemistry and Biotechnology 166: 987-996. https://doi.org/10.1007/s12010-011-9486-6
  22. Jiang, Y., J. Shao, X. Wu, Y. Xu and R. Li. 2011. Active and silent members in the mlr gene cluster of a microcystin-degrading bacterium isolated from Lake Taihu, China. FEMS Microbiology Letters 322: 108-114. https://doi.org/10.1111/j.1574-6968.2011.02337.x
  23. Katagami, Y., T. Tanaka, T. Honma, A. Yokoyama and H. Park, H. 2004. Bioaccumulation of a cyanobacterial toxin, microcystin, on Stenopsyche marmorata and the ecological implications for its impact on the ecosystem of the Tenryu River, Japan (in Japanese). Japanese Journal of Limnology 65: 1-12. https://doi.org/10.3739/rikusui.65.1
  24. Kondo, F., Y. Ikai, H. Oka, M. Okumura, N. Ishikawa, K. Harada, K. Matsuura, H. Murata and M. Suzuki. 1992. Formation, Characterization, and Toxicity of the Glutathione and Cysteine Conjugates of Toxic Heptapeptide Microcystins. Chemical Research in Toxicology 5: 591-596. https://doi.org/10.1021/tx00029a002
  25. Lambert, T.W., C.F.B. Holmes and S.E. Hrudey. 1996. Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment. Water Research 30: 1411-1422. https://doi.org/10.1016/0043-1354(96)00026-7
  26. Lawton, L.A. and P.K.J. Robertson. 1999. Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chemical Society Reviews 28: 217-224. https://doi.org/10.1039/a805416i
  27. Lemes, G.A.F., R. Kersanach, L.S. Pinto, O.A. Dellagostin, J. Yunes and A. Matthiensen. 2008. Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon. Ecotoxicology and Environmental Safety 69: 358-365. https://doi.org/10.1016/j.ecoenv.2007.03.013
  28. Li, R., W.W. Carmichael, S. Brittain, G.K. Eaglesham, G.R. Shaw, L. Yongding and M.M. Watanabe. 2001. First report of the cyanotoxins cylindrospermopsin and deoxycylindrospermopsin from Raphidiopsis curvata (cyanobacteria). Journal of Phycology 37: 1121-1126. https://doi.org/10.1046/j.1529-8817.2001.01075.x
  29. Li, X.Y., S.H. Wang, C.Y. Wang, X. Bai and J.G. Ma. 2016. Exposure to crude microcystins via intraperitoneal injection, but not oral gavage, causes hepatotoxicity in ducks. African Journal of Biotechnology 11: 10894-10898.
  30. MacKintosh, C., K.A. Beattie, S. Klumpp, P. Cohen and G.A. Codd. 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Letters 264:187-192. https://doi.org/10.1016/0014-5793(90)80245-E
  31. Maruyama, T., H. Park, K. Ozawa, Y. Tanaka, T. Sumino, K. Hamana, A. Hiraishi and K. Kato. 2006. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology 56: 58-59.
  32. Matsunaga, H., K.I. Harada, M. Senma, Y. Ito, N. Yasuda, S. Ushida and Y. Kimura. 1999. Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan:sudden appearance of toxic cyanobacteria. Natural Toxins 7: 81-84. https://doi.org/10.1002/(SICI)1522-7189(199903/04)7:2<81::AID-NT44>3.0.CO;2-O
  33. Nakamura, K., K. Watanabe, K. Ishikawa, M. Kumagai, Y. Miyabara, R. Inuzuka, K. Yokota, K. Oguma and H. Park. 2013. Accumulation of microcystin-LR in dead domestic duck at Iso harbor, Lake Biwa, Japan (in Japanese). Japanese Journal of Ornithology 62: 153-165. https://doi.org/10.3838/jjo.62.153
  34. Park, H., M.F. Watanabe, K. Harada, H. Nagai, M. Suzuki, M. Watanabe and H. Hayashi. 1993. Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Natural Toxins 1: 353-360. https://doi.org/10.1002/nt.2620010606
  35. Park, H., Y. Sasaki, T. Maruyama, E. Yanagisawa, A. Hiraishi and K. Kato. 2001. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environmental Toxicology 16:337-343. https://doi.org/10.1002/tox.1041
  36. Park, H., B. Kim, E. Kim and T. Okino. 1998. Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes. Environmental Toxicology and Water Quality 13: 225-234. https://doi.org/10.1002/(SICI)1098-2256(1998)13:3<225::AID-TOX4>3.0.CO;2-9
  37. Park, H., Y. Sasaki, T. Maruyama, E. Yanagisawa, A. Hiraishi and K. Kato. 2001. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environmental Toxicology 16:337-343. https://doi.org/10.1002/tox.1041
  38. Park, H. 2005. Dynamics and bioaccumulation of microcystin in aquatic ecosystem (in Japanese). Kaiyo Monthly 37: 325-334.
  39. Park, H. 2008. Dynamics of the microcystin in aquatic ecosystem (in Japanese). Bulletin of the Plankton Society of Japan 55: 58-62.
  40. Park, H. 2014. Studies on the Toxins Produecd by Blue-Green Algae (in Japanese). Journal of Japan Society on Water Environment 37: 169-174. https://doi.org/10.2965/jswe.37.169
  41. Peterson, H.G., S.E. Hrudey, I.A. Cantin, T.R. Perley and S.L. Kenefick. 1995. Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon flos-aquae after exposure to water treatment chemicals. Water Research 29: 1515-1523. https://doi.org/10.1016/0043-1354(94)00300-V
  42. Rajadurai, M. and P.S.M. Prince. 2007. Preventive effect of naringin on isoproterenol-induced cardiotoxicity in Wistar rats: an in vivo and in vitro study. Toxicology 232: 216-225. https://doi.org/10.1016/j.tox.2007.01.006
  43. Rapala, J., K.A. Berg, C. Lyra, R.M. Niemi, W. Manz, S. Suomalainen, L. Paulin and K. Lahti. 2005. Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. International Journal of Systematic and Evolutionary Microbiology 55: 1563-1568. https://doi.org/10.1099/ijs.0.63599-0
  44. Rositano, J., B.C. Nicholson and P. Pieronne. 1998. Destruction of cyanobacterial toxins by ozone. Ozone: Science and Engineering 20: 223-238. https://doi.org/10.1080/01919519808547273
  45. Schembri, M.A., B.A. Neilan and C.P. Saint. 2001. Dentification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environmental Toxicology 16: 413-421. https://doi.org/10.1002/tox.1051
  46. Swanson, K.L., C.N. Allen, R.S. Aronstam, H. Rapoport and E.X. Albuquerque. 1986. Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-anatoxin-a. Molecular Pharmacology 29: 250-257.
  47. Takenaka, S. and M.F. Watanabe. 1997. Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease. Chemosphere 34: 749-757. https://doi.org/10.1016/S0045-6535(97)00002-7
  48. Tsuji, K., S. Naito, F. Kondo, N. Ishikawa, M.F. Watanabe, M. Suzuki and K. Harada. 1994. Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization. Environmental Science and Technology 28:173-177. https://doi.org/10.1021/es00050a024
  49. Tsuji, K., T. Watanuki, F. Kondo, M.F. Watanabe, H. Nakazawa, M. Suzuki, H. Uchida and K. Harada. 1997. Stability of Microcystins from cyanobacteria-iv. Effect of chlorination on decomposition. Toxicon 35: 1033-1041. https://doi.org/10.1016/S0041-0101(96)00223-1
  50. WHO. 1998. Guidelines for drinking water quality. 2nd ed. Addendum to Volume 2, Health criteria and other supporting information. Geneva, Switzerland.
  51. Xie, L., T. Hanyub, N. Futatsugi, M. Komatsuc, A.D. Steinmand and H. Park. 2014. Inhibitory effect of naringin on microcystin-LR uptake in the freshwater snail Sinotaia histrica. Environmental Toxicology and Pharmacology 38: 430-437. https://doi.org/10.1016/j.etap.2014.07.006
  52. Yan, H., H. Wang, J. Wang, C. Yin, S. Ma, X. Liu and X. Yin. 2012. Cloning and expression of the first gene for biodegrading microcystin LR by Sphingopyxis sp. USTB-05. Journal of Environmental Sciences 24: 1816-1822. https://doi.org/10.1016/S1001-0742(11)61016-4
  53. Zhang, M., G. Pan and H. Yan. 2010. Microbial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05. Journal of Environmental Sciences 22: 168-175. https://doi.org/10.1016/S1001-0742(09)60089-9
  54. Zhang, M., H. Yan and G. Pan. 2011. Microbial degradation of microcystin-LR by Ralstonia solanacearum. Environmental Technology 32: 1779-1787. https://doi.org/10.1080/09593330.2011.556148