Browse > Article

Review of Nanoparticles in Drinking Water: Risk Assessment and Treatment  

Kim, Seung-Hyun (경남대학교 토목공학과)
Hong, Seung-kwan (고려대학교 건축사회환경공학부)
Yoon, Je-Yong (서울대학교 화학생물공학과)
Kim, Doo-Il (단국대학교 토목환경공학과)
Lee, Sang-Ho (국민대학교)
Kweon, Ji-Hyang (건국대학교 환경공학과)
Kim, Hyung-Soo (성균관대학교 토목환경공학과)
ko, Seok-Dock (단국대학교 토목환경공학과)
Kuk, Ji-Hoon (고려대학교 건축사회환경공학부)
Publication Information
Journal of Korean Society of Water and Wastewater / v.25, no.2, 2011 , pp. 201-212 More about this Journal
Abstract
Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.
Keywords
Nanotechnology; Nano-particles; Toxicity; Treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hohr, D., Steinfartz Y., Schins R. P., Knaapen A. M., Martra G., Fubini B., Borm P. (2002) The Surface Area rather than the Surface Coating Determines the Acute Inflammatory Response after Instillation of Fine and Ultrafine $$TiO_{2}$$ in the rat, Int. J. Hyg. Environ. Health, 205. pp.239-244.   DOI   ScienceOn
2 Hyung H., Kim JH. (2008) Natural organic matter absorption to multi-walled carbon nano tubes: effect of NOM characteristics and water quality parameter, Environ. Sci. and Technol., 42, pp.4416-4421.   DOI   ScienceOn
3 Hyung, H; Kim, J. H. (2009) Dispersion of $$C_{60}$$ in natural water and removal by conventional drinking water treatment processes, Water Research, 43, pp.2463-2470.   DOI   ScienceOn
4 Jia yu Wang., Tokuyuki Teraji., Toshimichi Ito (2005) Fabrication of wrinkled carbon nano-films with excellent field emission characteristics, Diamond and Related Materials, 14, 11-12, pp.2074-2077.   DOI   ScienceOn
5 Jill R. Pan, Chihpin Huang, W. Jiang, Chiahsin Chen (2005) Treatment of wastewater containing nano-scale silica particles by dead-end microfiltration: evaluation of pretreatment methods, Desalination, 179, 1-3, pp.31-40.   DOI
6 Jin, Y. H., S. Kannan, M. Wu, J. X. J. Zhao. (2007) Toxicity of Luminescent Silica Nanoparticles to Living Cells, Chem. Res. Toxicol., 20, pp.1126-1133.   DOI   ScienceOn
7 John D. Fortner, Doo-Il Kim, Adina M. Boyd, Joshua C. Falkner, Sean Moran, Vicki L. Colvin, Joseph B. Hughes, and Jae-Hong Kim (2007) Reaction of Water-Stable C60 Aggregates with Ozone, Environ. Sci. Technol., 41(21), pp. 7497-7502.   DOI   ScienceOn
8 Kang, S., M. Herzberg, D. F. Rodrigues, M. Elimelech (2008) Antibacterial Effects of Carbon Nanotubes: Size Does Matter, Langmuir, 24, pp.6409-6413.   DOI   ScienceOn
9 Kiril Hristovski, Paul Westerhoff, John Crittenden (2008) An approach for evaluating nanomaterials for use as packed bed adsorber media: A case study of arsenate removal by titanate nanofibers, Journal of Hazardous Materials, 156, 1-3, pp.604-611.   DOI
10 Larisa Belyanskaya, Pius Manser, Philipp Spohn, Arie Bruinink, Peter Wick (2007) The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction, Carbon, 45, 13, pp.2643-2648.   DOI   ScienceOn
11 Lee, J., Y. Mackeyev, M. Cho, D. Li, J.-H. Kim, L. J. Wilson, P. J. J. Alvarez (2009) Photochemical and Antimicrobial Properties of Novel C60 Derivatives in Aqueous Systems, Environ. Sci. Technol., 43(17), pp.6604-6610.   DOI   ScienceOn
12 Lee, K. J., P. D. Nallathamby, L. M. Browning, C. J. Osgood, X. H. N. Xu. (2007) In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos, ACS Nano, 1, pp.133-143.   DOI   ScienceOn
13 Leshuai W. Zhang, Jianzhong Yang, Andrew R. Barron, Nancy A. Monteiro-Riviere (2009) Endocytic mechanisms and toxicity of a functionalized fullerene in human cells, Toxicology Letters, 191, 2-3, pp.149-157.   DOI
14 Lyon, D. Y., P. J. J. Alvarez (2008) Fullerene Water Suspension ($nC_{60}$) Exerts Antibacterial Effects Via ROS-Independent Protein Oxidation, Environ. Sci. Technol., 42, pp.8127-8132.   DOI   ScienceOn
15 M. C. Roco (2001) International Strategy for nano-technology research and development, Journal of nanoparticle Research, 3, 5-6, pp.353-360.   DOI
16 Mark R. Wiesner, Greg V. Lowry, Pedro Alvarez. (2006) Assessing the Risks of Manufactured Nanomaterials, Environ. Sci. Technol., 40, 14, pp 4336-4345.   DOI   ScienceOn
17 Marquis, B. J., S. A. Love, K. L. Braun, C. L. Haynes. (2009) Analytical Methods to Assess Nanoparticle Toxicity, Analyst, 134, pp.425-439.   DOI   ScienceOn
18 Meghan E. Samberg, Steven J. Oldenburg, Nancy A. Monteiro-Riviere (2010) Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro, Environmental Health Perspectives, 118, 3, pp.407-413.
19 Mingfei Zhao, Zhaobin Tang, Peng Liu (2008) Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite, Journal of Hazardous Materials, 158, 1, pp.43-51.   DOI   ScienceOn
20 Monterio-Riviere, N., A. Inman (2006) Challenges for Assessing Carbon Nanomaterial Toxicity to the Skin, Carbon, 44, pp.1070-1078.   DOI   ScienceOn
21 Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J. Yacaman (2005) The Bactericidal Effect of Silver Nanoparticles, Nanotech., 16, pp.2345-2353.
22 Nadine Wong Shi Kam, Hongjie Dai (2005) Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality, J. AM. CHEM. SOC., 127, pp.6021-6026.   DOI   ScienceOn
23 Bondarenko O., A. Ivask, N. Jepihhina, A. Kahru (2010) Profiling of oxidative damage potential of CuO, ZnO and Ag nanoparticles using recombinant luminescent bacterial sensors and superoxide dismutase defective strains, Toxicology Letters, 196, 1, pp.274.
24 Oberdorster, G, Ferin J, Lehnert B. E. (1994) Correlation Between Particle Size, in vivo Particle Persistence, and Lung Injury, Environ. Health. Perspect, 102, pp.173-179.   DOI
25 Pan, Y., S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen-Dechent. (2007) Size-Dependent Cytotoxicity of Gold Nanoparticles, Small, 3, pp.1941-1949.   DOI   ScienceOn
26 Porter, A. E., M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, M. Welland (2007) Nat. Nanotechnol., 2, pp.713-717.   DOI   ScienceOn
27 Arora, S., J. Jain, J.M. Rajwade, K.M. Paknikar (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells Original Research Article, Toxicology and Applied Pharmacology, 236, 3, pp.310-318.   DOI   ScienceOn
28 Fiorito, S., A. Serafino., F. Andreola., P. Bernier (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages, Carbon, 44, 6, pp.1100-1105.   DOI   ScienceOn
29 Hussain, S.M., K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicology in Vitro, 19, 7, pp.975-983.   DOI   ScienceOn
30 Sato, Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, K. Tohji (2005) Influence of Length on Cytotoxicity of Multi-Walled Carbon Nanotubes against Human Acute Monocytic Leukemia Cell Line THP-1 in vitro and Subcutaneous Tissue of Rats in vivo, Mol. Biosyst. 1, pp.176-182.   DOI   ScienceOn
31 Shenoy, D., W. Fu, J. Li, C. Crasto, G. Jones, C. Dimarzio, S. Sridhar, M. Amiji (2006) Surface Functionalization of Gold Nanoparticles Using Hetero-Bifunctional Poly(Ethylene Glycol) Spacer for Intracellular Tracking and Delivery, Int. J. Nanomed. 1, pp.51-57.
32 Steven D. Perrault and Warren C. W. Chan. (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging, PNAS., 107, 25, pp.11194-11199.   DOI   ScienceOn
33 Shukla, R., V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry (2005) Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview, Langmuir, 21, pp.10644-10654.   DOI   ScienceOn
34 Shvedova, A., V. Castranova, E. Kisin, D. Schwegler-Berry, A. Murray, V. Gandelsman, A. Maynard, P. Baron (2003) Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells, J. Toxic ol. Environ. Health Part A. 66, pp.1909-1926.   DOI   ScienceOn
35 Sondi, I., B. S. Sondi (2004) Silver Nanoparticles as Antimicrobial Agent : A Case Study on E.coli as a Model for Gram-Negative Bacteria, J. Coll. Interface Sci., 275, pp.177-182.   DOI   ScienceOn
36 T. Coccini, E. Roda, D.A. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, L. Manzo (2010) Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells, Toxicology, 269, 1, pp.41-53.   DOI   ScienceOn
37 Tian, F. R., D. X. Cui, H. Schwarz, G. G. Estrada, H. Kobayashi (2006) Cytotoxicity of Single-Wall Carbon Nanotubes on Human Fibroblasts, Toxicol. InVitro, 20, pp.1202-1212.   DOI   ScienceOn
38 Tkachenko, A., H. Xie, D. Coleman, W. Glomm, J. Ryan, M. Anderson, S. Franzen, D. Feldheim (2003) Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting, J. Am. Chem. Soc., 125, pp.4700-4701.   DOI   ScienceOn
39 Tom J. Battin, Frank v.d. Kammer, Andreas Weilhartner, Stephanie Ottofuelling, Thilo Hofmann (2009) Nanostructured TiO2: Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions, Environ. Sci. Technol., 43(21), pp.8098-8104.   DOI   ScienceOn
40 U.S EPA(2007) Nanotechnology white paper
41 Wick, P., P. Manser, L. Limbach, U. Dettlaff-Weglikowska, F. Krumeich, S. Roth, W. Stark, A. Bruinink (2007) The Degree and Kind of Agglomeration Affect Carbon Nanotube Cytotoxicity, Toxicol. Lett., 168, 121-131.   DOI   ScienceOn
42 국가과학기술위원회(2005) 제2기나노기술종합발전계획
43 Won Hyuk Suh, Kenneth S. Suslick, Galen D. Stucky, Yoo-Hun Suh (2009) Nanotechnology, nanotoxicology, and neuroscience Review Article, Progress in Neurobiology, 87, 3, pp.133-170.   DOI   ScienceOn
44 Yang Zhang, Yongsheng Chen, Paul Westerhoff, Kiril Hristovski, John C Crittenden (2008) Stability of commercial metal oxide nanoparticles in water, Water Research, 42, 8-9, pp.2204-2212.   DOI
45 Zhang, C., B. Wangler, B. Morgenstern, H. Zentgraf, M. Eisenhut, H. Untenecker, R. Kruger, R. Huss, C. Seliger, W. Semmler, F. Kiessling. (2007) Silica and Alkoxysilane Coated Ultrasmall Superparamagnetic Iron Oxide Particles: A Promising Tool To Label Cells for Magnetic Resonance Imaging, Langmuir, 23, pp.1427-1434.   DOI   ScienceOn
46 과학기술부(2005) 나노기술영향평가
47 과학기술부(2008) 나노기술개발촉진법
48 제43회 종합과학기술회의(2006) 나노기술재료관련예산
49 제53회 종합과학기술회의(2005) 나노기술재료관련예산
50 지식경제부(2005) 나노기술종합발전계획
51 한국과학기술평가원(2005) 나노기술영향평가보고서
52 한국과학기술정보연구원(2006) 나노과학기술용어
53 한국과학기술정보연구원(2007) 나노기술연감
54 한국과학기술정보연구원(2007) 나노산업화동향
55 한국과학기술정보연구원(2007) 세계나노기술정책동향
56 Asharani, P. V., Y. L. Wu, Z. Y. Gona, S. Valiyaveettil (2008) Toxicity of Silver Nanoparticles in Zebrafish Models, Nanotechnology, 19, pp.255102.   DOI   ScienceOn
57 Benn, T. and Westerhoff, P. (2008) Nanoparticle Silver released into water from commercially available sock fabrics, Environmental Science and Technology, 42, 11, pp. 4133-4139.   DOI   ScienceOn
58 Bottini, M., S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, T. Mustelin (2006) Multi-walled Carbon Nanotubes Induce T Lymphocyte Apoptosis, Toxicol. Lett., 160, pp.121-126.   DOI   ScienceOn
59 Chen, Z., H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma, L. Wan (2006) Acute Toxicological Effects of Copper Nanoparticles in vivo, Toxicol. Lett., 163, pp.109-120.   DOI   ScienceOn
60 Chithrani, B. D., A. A. Ghazani, W. C. W. Chan (2006) Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Lett., 6, pp.662-668.   DOI   ScienceOn
61 Connor, E., J. Mwamuka, A. Gole, C. Murphy, M. Wyatt (2005) Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity, Small, 1, pp.325-327.   DOI   ScienceOn
62 Choi, O., Z. Hu (2008) Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria, Environ. Sci. Tech., 42, pp.4583-4588.   DOI   ScienceOn
63 Christie M. Sayes, Feng Liang, Jared L. Hudson, Joe Mendez, Wenhua Guo, Jonathan M. Beach, Valerie C. Moore, Condell D. Doyle, Jennifer L. West, W. Edward Billups, Kevin D. Ausman, Vicki L. Colvin (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicology Letters, 161, 2, pp.135-142.   DOI   ScienceOn
64 Christie M. Sayes., Andre M. Gobin., Kevin D. Ausman., Joe Mendez., Jennifer L. West., Vicki L. Colvin (2005) Nano-C60 cytotoxicity is due to lipid peroxidation, Biomaterials, 26, 36, pp.7587-7595.   DOI   ScienceOn
65 Craig A. Poland., Rodger Duffin., Ian Kinloch., Andrew Maynard., William A. H. Wallace., Anthony Seaton., Vicki Stone., Simon Brown., William MacNee., Ken Donaldson (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nature Nanotechnology, 3, pp.423-428.   DOI   ScienceOn
66 Daxiang Cui, Furong Tian, Cengiz S. Ozkan, Mao Wang, Huajian Gao (2005) Effect of single wall carbon nanotubes on human HEK293 cells, Toxicology Letters, 155, 1, pp.73-85.   DOI   ScienceOn
67 Fischer, H. C., L. C. Liu, K. S. Pang, W. C. W. Chan (2006) Pharmacokinetics of Nanoscale Quantum Dots: In Vivo Distribution, Sequestration, and Clearance in the Rat, Adv. Funct. Mater., 16, pp.1299-1305.   DOI   ScienceOn
68 Gao, X., Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie. (2004) In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, pp.969-976.   DOI   ScienceOn
69 Gianni Ciofani, Serena Danti, Delfo D'Alessandro, Stefania Moscato, Arianna Menciassi (2010) Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay, Biochemical and Biophysical Research Communications, 394, 2, pp.405-411.   DOI   ScienceOn
70 Goodman, C., C. McCusker, T. Yilmaz, V. Rotello (2004) Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains, Bioconjugate. Chem., 15, pp.897-900.   DOI   ScienceOn