Browse > Article
http://dx.doi.org/10.11614/KSL.2016.49.2.067

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem  

Park, Ho-Dong (Department of Environmental Sciences, Faculty of Science, Shinshu University)
Han, Jisun (Department of Environmental Sciences, Faculty of Science, Shinshu University)
Jeon, Bong-seok (Department of Environmental Sciences, Faculty of Science, Shinshu University)
Publication Information
Abstract
Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.
Keywords
cyanotoxin; cyanobacteria bloom; dynamics of microcystin; methods of cyanotoxins removal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, R., W.W. Carmichael, S. Brittain, G.K. Eaglesham, G.R. Shaw, L. Yongding and M.M. Watanabe. 2001. First report of the cyanotoxins cylindrospermopsin and deoxycylindrospermopsin from Raphidiopsis curvata (cyanobacteria). Journal of Phycology 37: 1121-1126.   DOI
2 Li, X.Y., S.H. Wang, C.Y. Wang, X. Bai and J.G. Ma. 2016. Exposure to crude microcystins via intraperitoneal injection, but not oral gavage, causes hepatotoxicity in ducks. African Journal of Biotechnology 11: 10894-10898.
3 MacKintosh, C., K.A. Beattie, S. Klumpp, P. Cohen and G.A. Codd. 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Letters 264:187-192.   DOI
4 Maruyama, T., H. Park, K. Ozawa, Y. Tanaka, T. Sumino, K. Hamana, A. Hiraishi and K. Kato. 2006. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology 56: 58-59.
5 Matsunaga, H., K.I. Harada, M. Senma, Y. Ito, N. Yasuda, S. Ushida and Y. Kimura. 1999. Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan:sudden appearance of toxic cyanobacteria. Natural Toxins 7: 81-84.   DOI
6 Nakamura, K., K. Watanabe, K. Ishikawa, M. Kumagai, Y. Miyabara, R. Inuzuka, K. Yokota, K. Oguma and H. Park. 2013. Accumulation of microcystin-LR in dead domestic duck at Iso harbor, Lake Biwa, Japan (in Japanese). Japanese Journal of Ornithology 62: 153-165.   DOI
7 Park, H., M.F. Watanabe, K. Harada, H. Nagai, M. Suzuki, M. Watanabe and H. Hayashi. 1993. Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Natural Toxins 1: 353-360.   DOI
8 Park, H., Y. Sasaki, T. Maruyama, E. Yanagisawa, A. Hiraishi and K. Kato. 2001. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environmental Toxicology 16:337-343.   DOI
9 Park, H., B. Kim, E. Kim and T. Okino. 1998. Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes. Environmental Toxicology and Water Quality 13: 225-234.   DOI
10 Park, H., Y. Sasaki, T. Maruyama, E. Yanagisawa, A. Hiraishi and K. Kato. 2001. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environmental Toxicology 16:337-343.   DOI
11 Park, H. 2005. Dynamics and bioaccumulation of microcystin in aquatic ecosystem (in Japanese). Kaiyo Monthly 37: 325-334.
12 Park, H. 2008. Dynamics of the microcystin in aquatic ecosystem (in Japanese). Bulletin of the Plankton Society of Japan 55: 58-62.
13 Park, H. 2014. Studies on the Toxins Produecd by Blue-Green Algae (in Japanese). Journal of Japan Society on Water Environment 37: 169-174.   DOI
14 Peterson, H.G., S.E. Hrudey, I.A. Cantin, T.R. Perley and S.L. Kenefick. 1995. Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon flos-aquae after exposure to water treatment chemicals. Water Research 29: 1515-1523.   DOI
15 Rajadurai, M. and P.S.M. Prince. 2007. Preventive effect of naringin on isoproterenol-induced cardiotoxicity in Wistar rats: an in vivo and in vitro study. Toxicology 232: 216-225.   DOI
16 Tsuji, K., S. Naito, F. Kondo, N. Ishikawa, M.F. Watanabe, M. Suzuki and K. Harada. 1994. Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization. Environmental Science and Technology 28:173-177.   DOI
17 Rapala, J., K.A. Berg, C. Lyra, R.M. Niemi, W. Manz, S. Suomalainen, L. Paulin and K. Lahti. 2005. Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. International Journal of Systematic and Evolutionary Microbiology 55: 1563-1568.   DOI
18 Schembri, M.A., B.A. Neilan and C.P. Saint. 2001. Dentification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environmental Toxicology 16: 413-421.   DOI
19 Swanson, K.L., C.N. Allen, R.S. Aronstam, H. Rapoport and E.X. Albuquerque. 1986. Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-anatoxin-a. Molecular Pharmacology 29: 250-257.
20 Takenaka, S. and M.F. Watanabe. 1997. Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease. Chemosphere 34: 749-757.   DOI
21 Tsuji, K., T. Watanuki, F. Kondo, M.F. Watanabe, H. Nakazawa, M. Suzuki, H. Uchida and K. Harada. 1997. Stability of Microcystins from cyanobacteria-iv. Effect of chlorination on decomposition. Toxicon 35: 1033-1041.   DOI
22 WHO. 1998. Guidelines for drinking water quality. 2nd ed. Addendum to Volume 2, Health criteria and other supporting information. Geneva, Switzerland.
23 Xie, L., T. Hanyub, N. Futatsugi, M. Komatsuc, A.D. Steinmand and H. Park. 2014. Inhibitory effect of naringin on microcystin-LR uptake in the freshwater snail Sinotaia histrica. Environmental Toxicology and Pharmacology 38: 430-437.   DOI
24 Bourne, D.G., G.J. Jones, R.L. Blakerley, A. Jones, A.P. Negri and P. Riddles. 1996. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Applied and Environmental Microbiology 62: 4086-4094.
25 Yan, H., H. Wang, J. Wang, C. Yin, S. Ma, X. Liu and X. Yin. 2012. Cloning and expression of the first gene for biodegrading microcystin LR by Sphingopyxis sp. USTB-05. Journal of Environmental Sciences 24: 1816-1822.   DOI
26 Rositano, J., B.C. Nicholson and P. Pieronne. 1998. Destruction of cyanobacterial toxins by ozone. Ozone: Science and Engineering 20: 223-238.   DOI
27 Zhang, M., G. Pan and H. Yan. 2010. Microbial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05. Journal of Environmental Sciences 22: 168-175.   DOI
28 Zhang, M., H. Yan and G. Pan. 2011. Microbial degradation of microcystin-LR by Ralstonia solanacearum. Environmental Technology 32: 1779-1787.   DOI
29 Alamri, S.A. 2010. Biodegradation of microcystin by a new Bacillus sp. isolated from a Saudi freshwater lake. African Journal of Biotechnology 9: 6552-6559.
30 Banker, R., S. Carmeli, O. Hadas, B. Teltsch, R. Porat and A. Sukenik. 1997. Identification of cylindrospermopsin in the cyanobacterium Aphanizomenon ovalisporum (Cyanophyceae) isolated from lake Kinneret, Israel. Journal of Phycology 33: 613-616.   DOI
31 Bourne, D.G., P. Riddles, G.J. Jones, W. Smith and R.L. Blakeley. 2001. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environmental Toxicology 16: 523-534.   DOI
32 Carmichael, W. 1992. Cyanobacteria secondary metabolites-the cyanotoxins. Journal of Applied Microbiology 72: 445-459.
33 Dziga, D., M. Wasylewski, B. Wladyka, S. Nybom and J. Meriluoto. 2013. Microbial degradation of microcystins. Chemical Research in Toxicology 26: 841-852.   DOI
34 Chen, J., L. Hu, W. Zhou, S. Yan, J. Yang, Y. Xue and Z. Shi. 2010. Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China. International Journal of Molecular Sciences 11:896-911.   DOI
35 Chow, C.W.K., J.A. Van Leeuwen, M. Drikas, R. Fabris, K.M. Spark and D.W. Page. 1999. The impact of the character of natural organic matter in conventional treatment with alum. Water Science and Technology 40: 97-104.   DOI
36 Cooke, G.D., E.B. Welch, S. Peterson and S.A. Nichols. 2005. Restoration and management of lakes and reservoirs. CRC press.
37 Falconer, I.R. and A.R. Humpage. 2006. Cyanobacterial (bluegreen algal) toxins in water supplies: Cylindrospermop sins. Environmental Toxicology 21: 299-304.   DOI
38 Han, J., B. Jeon, N. Futatsuki and H. Park. 2013. The effect of alum coagulation for in-lake treatment of toxic Microcystis and other cyanobacteria related organisms in microcosm experiments. Ecotoxicology and Environmental Safety 96: 17-23.   DOI
39 Harada, K., I. Ohtani, K. Iwamoto, M. Suzuki, M.F. Watanabe, M. Watanabe and K. Terao. 1994. Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. Toxicon 32: 73-84.   DOI
40 Harada, K., H. Nagai, Y. Kimura, M. Suzuki, H. Park, M.F. Watanabe, R. Luukkainen, K. Sivonen and W.W. Carmichael. 1993. Liquid chromatography/mass spectrometric detection of anatoxin-a, a neurotoxin from cyanobacteria. Tetrahedron 49: 9251-9260.   DOI
41 Hawkins, P.R., M.T.C. Runnegar, A.R. Jackson and I.R. Falconer. 1985. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic supply reservoir. Applied and Environmental Microbiology 50: 1292-1295.
42 Ho, L., D. Hoefel, C.P. Saint and G. Newcombe. 2007. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Research 41:4685-4695.   DOI
43 Ho, L., T. Tang, P.T. Monis and D. Hoefel. 2012. Biodegradation of multiple cyanobacterial metabolites in drinking water supplies. Chemosphere 87: 1149-1154.   DOI
44 Hu, L., J. Yang, W. Zhou, Y. Yin, J. Chen and Z. Shi. 2009. Isolation of a Methylobacillus sp. that degrades microcystin toxins associated with cyanobacteria. New Biotechnology 26: 205-211.   DOI
45 Imanishi, S. and K.I. Harada. 2004. Proteomics approach on microcystin binding proteins in mouse liver for investigation of microcystin toxicity. Toxicon 43: 651-659.   DOI
46 Jeon, B., J. Han, K. Makino and H. Park. 2014. Degradation of microcystin and possible phosphorus removal mechanism by electrochemical treatment. Environmental Engineering Science 31: 525-531.   DOI
47 Kondo, F., Y. Ikai, H. Oka, M. Okumura, N. Ishikawa, K. Harada, K. Matsuura, H. Murata and M. Suzuki. 1992. Formation, Characterization, and Toxicity of the Glutathione and Cysteine Conjugates of Toxic Heptapeptide Microcystins. Chemical Research in Toxicology 5: 591-596.   DOI
48 Jia, Y., J. Du, F. Song, G. Zhao and X. Tian. 2012. A fungus capable of degrading microcystin-LR in the algal culture of Microcystis aeruginosa PCC7806. Applied Biochemistry and Biotechnology 166: 987-996.   DOI
49 Jiang, Y., J. Shao, X. Wu, Y. Xu and R. Li. 2011. Active and silent members in the mlr gene cluster of a microcystin-degrading bacterium isolated from Lake Taihu, China. FEMS Microbiology Letters 322: 108-114.   DOI
50 Katagami, Y., T. Tanaka, T. Honma, A. Yokoyama and H. Park, H. 2004. Bioaccumulation of a cyanobacterial toxin, microcystin, on Stenopsyche marmorata and the ecological implications for its impact on the ecosystem of the Tenryu River, Japan (in Japanese). Japanese Journal of Limnology 65: 1-12.   DOI
51 Lambert, T.W., C.F.B. Holmes and S.E. Hrudey. 1996. Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment. Water Research 30: 1411-1422.   DOI
52 Lawton, L.A. and P.K.J. Robertson. 1999. Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chemical Society Reviews 28: 217-224.   DOI
53 Lemes, G.A.F., R. Kersanach, L.S. Pinto, O.A. Dellagostin, J. Yunes and A. Matthiensen. 2008. Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon. Ecotoxicology and Environmental Safety 69: 358-365.   DOI
54 Jetoo, S., V.I. Grover and G. Krantzberg. 2015. The Toledo Drinking Water Advisory: Suggested Application of the Water Safety Planning Approach. Sustainability 7: 9787-9808.   DOI