Review of Nanoparticles in Drinking Water: Risk Assessment and Treatment

나노입자의 현황조사 및 처리방안 마련을 위한 문헌연구

  • 김승현 (경남대학교 토목공학과) ;
  • 홍승관 (고려대학교 건축사회환경공학부) ;
  • 윤제용 (서울대학교 화학생물공학과) ;
  • 김두일 (단국대학교 토목환경공학과) ;
  • 이상호 (국민대학교) ;
  • 권지향 (건국대학교 환경공학과) ;
  • 김형수 (성균관대학교 토목환경공학과) ;
  • 독고석 (단국대학교 토목환경공학과) ;
  • 국지훈 (고려대학교 건축사회환경공학부)
  • Published : 2011.04.15

Abstract

Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.

Keywords

References

  1. 과학기술부(2005) 나노기술영향평가
  2. 과학기술부(2008) 나노기술개발촉진법
  3. 국가과학기술위원회(2005) 제2기나노기술종합발전계획
  4. 제43회 종합과학기술회의(2006) 나노기술재료관련예산
  5. 제53회 종합과학기술회의(2005) 나노기술재료관련예산
  6. 지식경제부(2005) 나노기술종합발전계획
  7. 한국과학기술평가원(2005) 나노기술영향평가보고서
  8. 한국과학기술정보연구원(2006) 나노과학기술용어
  9. 한국과학기술정보연구원(2007) 나노기술연감
  10. 한국과학기술정보연구원(2007) 나노산업화동향
  11. 한국과학기술정보연구원(2007) 세계나노기술정책동향
  12. Asharani, P. V., Y. L. Wu, Z. Y. Gona, S. Valiyaveettil (2008) Toxicity of Silver Nanoparticles in Zebrafish Models, Nanotechnology, 19, pp.255102. https://doi.org/10.1088/0957-4484/19/25/255102
  13. Benn, T. and Westerhoff, P. (2008) Nanoparticle Silver released into water from commercially available sock fabrics, Environmental Science and Technology, 42, 11, pp. 4133-4139. https://doi.org/10.1021/es7032718
  14. Bottini, M., S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, T. Mustelin (2006) Multi-walled Carbon Nanotubes Induce T Lymphocyte Apoptosis, Toxicol. Lett., 160, pp.121-126. https://doi.org/10.1016/j.toxlet.2005.06.020
  15. Chen, Z., H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma, L. Wan (2006) Acute Toxicological Effects of Copper Nanoparticles in vivo, Toxicol. Lett., 163, pp.109-120. https://doi.org/10.1016/j.toxlet.2005.10.003
  16. Chithrani, B. D., A. A. Ghazani, W. C. W. Chan (2006) Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Lett., 6, pp.662-668. https://doi.org/10.1021/nl052396o
  17. Choi, O., Z. Hu (2008) Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria, Environ. Sci. Tech., 42, pp.4583-4588. https://doi.org/10.1021/es703238h
  18. Christie M. Sayes, Feng Liang, Jared L. Hudson, Joe Mendez, Wenhua Guo, Jonathan M. Beach, Valerie C. Moore, Condell D. Doyle, Jennifer L. West, W. Edward Billups, Kevin D. Ausman, Vicki L. Colvin (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicology Letters, 161, 2, pp.135-142. https://doi.org/10.1016/j.toxlet.2005.08.011
  19. Christie M. Sayes., Andre M. Gobin., Kevin D. Ausman., Joe Mendez., Jennifer L. West., Vicki L. Colvin (2005) Nano-C60 cytotoxicity is due to lipid peroxidation, Biomaterials, 26, 36, pp.7587-7595. https://doi.org/10.1016/j.biomaterials.2005.05.027
  20. Connor, E., J. Mwamuka, A. Gole, C. Murphy, M. Wyatt (2005) Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity, Small, 1, pp.325-327. https://doi.org/10.1002/smll.200400093
  21. Craig A. Poland., Rodger Duffin., Ian Kinloch., Andrew Maynard., William A. H. Wallace., Anthony Seaton., Vicki Stone., Simon Brown., William MacNee., Ken Donaldson (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nature Nanotechnology, 3, pp.423-428. https://doi.org/10.1038/nnano.2008.111
  22. Daxiang Cui, Furong Tian, Cengiz S. Ozkan, Mao Wang, Huajian Gao (2005) Effect of single wall carbon nanotubes on human HEK293 cells, Toxicology Letters, 155, 1, pp.73-85. https://doi.org/10.1016/j.toxlet.2004.08.015
  23. Fischer, H. C., L. C. Liu, K. S. Pang, W. C. W. Chan (2006) Pharmacokinetics of Nanoscale Quantum Dots: In Vivo Distribution, Sequestration, and Clearance in the Rat, Adv. Funct. Mater., 16, pp.1299-1305. https://doi.org/10.1002/adfm.200500529
  24. Gao, X., Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie. (2004) In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, pp.969-976. https://doi.org/10.1038/nbt994
  25. Gianni Ciofani, Serena Danti, Delfo D'Alessandro, Stefania Moscato, Arianna Menciassi (2010) Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay, Biochemical and Biophysical Research Communications, 394, 2, pp.405-411. https://doi.org/10.1016/j.bbrc.2010.03.035
  26. Goodman, C., C. McCusker, T. Yilmaz, V. Rotello (2004) Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains, Bioconjugate. Chem., 15, pp.897-900. https://doi.org/10.1021/bc049951i
  27. Hohr, D., Steinfartz Y., Schins R. P., Knaapen A. M., Martra G., Fubini B., Borm P. (2002) The Surface Area rather than the Surface Coating Determines the Acute Inflammatory Response after Instillation of Fine and Ultrafine $$TiO_{2}$$ in the rat, Int. J. Hyg. Environ. Health, 205. pp.239-244. https://doi.org/10.1078/1438-4639-00123
  28. Hyung H., Kim JH. (2008) Natural organic matter absorption to multi-walled carbon nano tubes: effect of NOM characteristics and water quality parameter, Environ. Sci. and Technol., 42, pp.4416-4421. https://doi.org/10.1021/es702916h
  29. Hyung, H; Kim, J. H. (2009) Dispersion of $$C_{60}$$ in natural water and removal by conventional drinking water treatment processes, Water Research, 43, pp.2463-2470. https://doi.org/10.1016/j.watres.2009.03.011
  30. Jia yu Wang., Tokuyuki Teraji., Toshimichi Ito (2005) Fabrication of wrinkled carbon nano-films with excellent field emission characteristics, Diamond and Related Materials, 14, 11-12, pp.2074-2077. https://doi.org/10.1016/j.diamond.2005.05.006
  31. Jill R. Pan, Chihpin Huang, W. Jiang, Chiahsin Chen (2005) Treatment of wastewater containing nano-scale silica particles by dead-end microfiltration: evaluation of pretreatment methods, Desalination, 179, 1-3, pp.31-40. https://doi.org/10.1016/j.desal.2004.11.053
  32. Jin, Y. H., S. Kannan, M. Wu, J. X. J. Zhao. (2007) Toxicity of Luminescent Silica Nanoparticles to Living Cells, Chem. Res. Toxicol., 20, pp.1126-1133. https://doi.org/10.1021/tx7001959
  33. John D. Fortner, Doo-Il Kim, Adina M. Boyd, Joshua C. Falkner, Sean Moran, Vicki L. Colvin, Joseph B. Hughes, and Jae-Hong Kim (2007) Reaction of Water-Stable C60 Aggregates with Ozone, Environ. Sci. Technol., 41(21), pp. 7497-7502. https://doi.org/10.1021/es0708058
  34. Kang, S., M. Herzberg, D. F. Rodrigues, M. Elimelech (2008) Antibacterial Effects of Carbon Nanotubes: Size Does Matter, Langmuir, 24, pp.6409-6413. https://doi.org/10.1021/la800951v
  35. Kiril Hristovski, Paul Westerhoff, John Crittenden (2008) An approach for evaluating nanomaterials for use as packed bed adsorber media: A case study of arsenate removal by titanate nanofibers, Journal of Hazardous Materials, 156, 1-3, pp.604-611. https://doi.org/10.1016/j.jhazmat.2007.12.073
  36. Larisa Belyanskaya, Pius Manser, Philipp Spohn, Arie Bruinink, Peter Wick (2007) The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction, Carbon, 45, 13, pp.2643-2648. https://doi.org/10.1016/j.carbon.2007.08.010
  37. Lee, J., Y. Mackeyev, M. Cho, D. Li, J.-H. Kim, L. J. Wilson, P. J. J. Alvarez (2009) Photochemical and Antimicrobial Properties of Novel C60 Derivatives in Aqueous Systems, Environ. Sci. Technol., 43(17), pp.6604-6610. https://doi.org/10.1021/es901501k
  38. Lee, K. J., P. D. Nallathamby, L. M. Browning, C. J. Osgood, X. H. N. Xu. (2007) In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos, ACS Nano, 1, pp.133-143. https://doi.org/10.1021/nn700048y
  39. Leshuai W. Zhang, Jianzhong Yang, Andrew R. Barron, Nancy A. Monteiro-Riviere (2009) Endocytic mechanisms and toxicity of a functionalized fullerene in human cells, Toxicology Letters, 191, 2-3, pp.149-157. https://doi.org/10.1016/j.toxlet.2009.08.017
  40. Lyon, D. Y., P. J. J. Alvarez (2008) Fullerene Water Suspension ($nC_{60}$) Exerts Antibacterial Effects Via ROS-Independent Protein Oxidation, Environ. Sci. Technol., 42, pp.8127-8132. https://doi.org/10.1021/es801869m
  41. M. C. Roco (2001) International Strategy for nano-technology research and development, Journal of nanoparticle Research, 3, 5-6, pp.353-360. https://doi.org/10.1023/A:1013248621015
  42. Mark R. Wiesner, Greg V. Lowry, Pedro Alvarez. (2006) Assessing the Risks of Manufactured Nanomaterials, Environ. Sci. Technol., 40, 14, pp 4336-4345. https://doi.org/10.1021/es062726m
  43. Marquis, B. J., S. A. Love, K. L. Braun, C. L. Haynes. (2009) Analytical Methods to Assess Nanoparticle Toxicity, Analyst, 134, pp.425-439. https://doi.org/10.1039/b818082b
  44. Meghan E. Samberg, Steven J. Oldenburg, Nancy A. Monteiro-Riviere (2010) Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro, Environmental Health Perspectives, 118, 3, pp.407-413.
  45. Mingfei Zhao, Zhaobin Tang, Peng Liu (2008) Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite, Journal of Hazardous Materials, 158, 1, pp.43-51. https://doi.org/10.1016/j.jhazmat.2008.01.031
  46. Monterio-Riviere, N., A. Inman (2006) Challenges for Assessing Carbon Nanomaterial Toxicity to the Skin, Carbon, 44, pp.1070-1078. https://doi.org/10.1016/j.carbon.2005.11.004
  47. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J. Yacaman (2005) The Bactericidal Effect of Silver Nanoparticles, Nanotech., 16, pp.2345-2353.
  48. Nadine Wong Shi Kam, Hongjie Dai (2005) Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality, J. AM. CHEM. SOC., 127, pp.6021-6026. https://doi.org/10.1021/ja050062v
  49. Bondarenko O., A. Ivask, N. Jepihhina, A. Kahru (2010) Profiling of oxidative damage potential of CuO, ZnO and Ag nanoparticles using recombinant luminescent bacterial sensors and superoxide dismutase defective strains, Toxicology Letters, 196, 1, pp.274.
  50. Oberdorster, G, Ferin J, Lehnert B. E. (1994) Correlation Between Particle Size, in vivo Particle Persistence, and Lung Injury, Environ. Health. Perspect, 102, pp.173-179. https://doi.org/10.1289/ehp.94102s10173
  51. Pan, Y., S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen-Dechent. (2007) Size-Dependent Cytotoxicity of Gold Nanoparticles, Small, 3, pp.1941-1949. https://doi.org/10.1002/smll.200700378
  52. Porter, A. E., M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, M. Welland (2007) Nat. Nanotechnol., 2, pp.713-717. https://doi.org/10.1038/nnano.2007.347
  53. Arora, S., J. Jain, J.M. Rajwade, K.M. Paknikar (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells Original Research Article, Toxicology and Applied Pharmacology, 236, 3, pp.310-318. https://doi.org/10.1016/j.taap.2009.02.020
  54. Fiorito, S., A. Serafino., F. Andreola., P. Bernier (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages, Carbon, 44, 6, pp.1100-1105. https://doi.org/10.1016/j.carbon.2005.11.009
  55. Hussain, S.M., K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicology in Vitro, 19, 7, pp.975-983. https://doi.org/10.1016/j.tiv.2005.06.034
  56. Sato, Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, K. Tohji (2005) Influence of Length on Cytotoxicity of Multi-Walled Carbon Nanotubes against Human Acute Monocytic Leukemia Cell Line THP-1 in vitro and Subcutaneous Tissue of Rats in vivo, Mol. Biosyst. 1, pp.176-182. https://doi.org/10.1039/b502429c
  57. Shenoy, D., W. Fu, J. Li, C. Crasto, G. Jones, C. Dimarzio, S. Sridhar, M. Amiji (2006) Surface Functionalization of Gold Nanoparticles Using Hetero-Bifunctional Poly(Ethylene Glycol) Spacer for Intracellular Tracking and Delivery, Int. J. Nanomed. 1, pp.51-57.
  58. Shukla, R., V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry (2005) Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview, Langmuir, 21, pp.10644-10654. https://doi.org/10.1021/la0513712
  59. Shvedova, A., V. Castranova, E. Kisin, D. Schwegler-Berry, A. Murray, V. Gandelsman, A. Maynard, P. Baron (2003) Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells, J. Toxic ol. Environ. Health Part A. 66, pp.1909-1926. https://doi.org/10.1080/713853956
  60. Sondi, I., B. S. Sondi (2004) Silver Nanoparticles as Antimicrobial Agent : A Case Study on E.coli as a Model for Gram-Negative Bacteria, J. Coll. Interface Sci., 275, pp.177-182. https://doi.org/10.1016/j.jcis.2004.02.012
  61. Steven D. Perrault and Warren C. W. Chan. (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging, PNAS., 107, 25, pp.11194-11199. https://doi.org/10.1073/pnas.1001367107
  62. T. Coccini, E. Roda, D.A. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, L. Manzo (2010) Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells, Toxicology, 269, 1, pp.41-53. https://doi.org/10.1016/j.tox.2010.01.005
  63. Tian, F. R., D. X. Cui, H. Schwarz, G. G. Estrada, H. Kobayashi (2006) Cytotoxicity of Single-Wall Carbon Nanotubes on Human Fibroblasts, Toxicol. InVitro, 20, pp.1202-1212. https://doi.org/10.1016/j.tiv.2006.03.008
  64. Tkachenko, A., H. Xie, D. Coleman, W. Glomm, J. Ryan, M. Anderson, S. Franzen, D. Feldheim (2003) Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting, J. Am. Chem. Soc., 125, pp.4700-4701. https://doi.org/10.1021/ja0296935
  65. Tom J. Battin, Frank v.d. Kammer, Andreas Weilhartner, Stephanie Ottofuelling, Thilo Hofmann (2009) Nanostructured TiO2: Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions, Environ. Sci. Technol., 43(21), pp.8098-8104. https://doi.org/10.1021/es9017046
  66. U.S EPA(2007) Nanotechnology white paper
  67. Wick, P., P. Manser, L. Limbach, U. Dettlaff-Weglikowska, F. Krumeich, S. Roth, W. Stark, A. Bruinink (2007) The Degree and Kind of Agglomeration Affect Carbon Nanotube Cytotoxicity, Toxicol. Lett., 168, 121-131. https://doi.org/10.1016/j.toxlet.2006.08.019
  68. Won Hyuk Suh, Kenneth S. Suslick, Galen D. Stucky, Yoo-Hun Suh (2009) Nanotechnology, nanotoxicology, and neuroscience Review Article, Progress in Neurobiology, 87, 3, pp.133-170. https://doi.org/10.1016/j.pneurobio.2008.09.009
  69. Yang Zhang, Yongsheng Chen, Paul Westerhoff, Kiril Hristovski, John C Crittenden (2008) Stability of commercial metal oxide nanoparticles in water, Water Research, 42, 8-9, pp.2204-2212. https://doi.org/10.1016/j.watres.2007.11.036
  70. Zhang, C., B. Wangler, B. Morgenstern, H. Zentgraf, M. Eisenhut, H. Untenecker, R. Kruger, R. Huss, C. Seliger, W. Semmler, F. Kiessling. (2007) Silica and Alkoxysilane Coated Ultrasmall Superparamagnetic Iron Oxide Particles: A Promising Tool To Label Cells for Magnetic Resonance Imaging, Langmuir, 23, pp.1427-1434. https://doi.org/10.1021/la061879k