• 제목/요약/키워드: Biological feed additives

검색결과 28건 처리시간 0.028초

사료첨가제중(飼料添加劑中) Niacin의 미생물학적정량법(微生物學的定量法)과 화학적정량법(化學的定量法)의 비교시험(比較試驗) (Comparative Studies on Microbioassay and Chemical Procedure for Quantitative Determination of Niacin in Feed Additives)

  • 조종후;황대우;한수남
    • Applied Biological Chemistry
    • /
    • 제17권1호
    • /
    • pp.49-53
    • /
    • 1974
  • Mohan's aniline procedure for the quantitative determination of niacin in feed additives containing various vitamines and minerals was compared with microbiological procedure utilizing growth rate of Lactobacillus arabinosus 17-5. Microbioassay was more sensitive than chemical procedure to the detection of standard niacin and was applicable to the determination of minute amounts of niacin. while both microbioassay and chemical proce dure were discovered to be unsatisfactory by the recovery test for the determination of niacin in feed additives containing much interfering substances. But the possibility of the determination of niacin in feed additives on chemical prccedure together with microbioassay was proved.

  • PDF

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review

  • Neeraja, Recharla;Sungkwon, Park;Minji, Kim;Byeonghyeon, Kim;Jin Young, Jeong
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.640-653
    • /
    • 2022
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.

Advances and Future Directions in Poultry Nutrition: An Overview

  • Ravindran, Velmurugu
    • 한국가금학회지
    • /
    • 제39권1호
    • /
    • pp.53-62
    • /
    • 2012
  • In the past, poultry nutrition has focussed on increasing the production efficiency to meet the progress achieved in the genetic potential of broilers and layers. Future directions in poultry nutrition will be driven by not only by the need to maximise biological and economic performance of birds, but also by societal issues (environment, antibiotic growth promoters, welfare, traceability and use of genetically modified ingredients). Key advances in poultry nutrition are discussed and future directions, which can be expected, are highlighted. Given the tightening supply and ever-increasing cost of raw materials, there will be more pressure to extract every unit of energy and nutrients from feed ingredients. In this context, a number of feed additives are expected to play an increasingly significant role. Feed enzymes and crystalline amino acids, in particular, will have a profound effect on future sustainability of the poultry industry. Future nutritional research need to focus on identifying the barriers to effective digestion and utilisation of nutrients and, to achieve this objective, nutritionists must combine their expertise with those of specialising in other biological sciences, including immunology, microbiology, histology and molecular biology.

Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals

  • Tseten, Tenzin;Sanjorjo, Rey Anthony;Kwon, Moonhyuk;Kim, Seon-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.269-277
    • /
    • 2022
  • Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.

PAC 및 PAS 첨가에 따른 상업용 액상 종균제의 총균수 변화에 관한 연구 (A study on the total cell count variation of commercial liquid seed by adding PAC and PAS)

  • 박미자;박경식;김승재
    • 환경위생공학
    • /
    • 제16권2호
    • /
    • pp.79-90
    • /
    • 2001
  • Commercial liquid seeds are used for supplying active microbial flora to organic wastewater treatment plants of high feed-to-microorganism ratio and to maintain optimal microbial condition during unsteady state operation of the biological wastewater treatment plant. In addition to bacterial cells, the liquid weeds contain various additives for special purposes as well as organic substrates for energy supply. The additives give physical stability for the maintenance of microbial decomposition activity and ability to control the overgrowth of seed strains. In this work, the effects of addition of two kinds of typical substrate additives, poly aluminum chloride(PAC) and poly aluminum sulfate(PAS) on the consitutional total cell counts(CFU/ml) of four kinds of reorganization liquid seeds(RLS I, RLS II, RLS III and RLS IV) were studied experimentally. The addition of PAC and PAS gave negative effect on TCC constitution for the four seeds studied.

  • PDF

Effects of probiotic, prebiotic, and synbiotic with and without feed restriction on performance, hematological indices and carcass characteristics of broiler chickens

  • Abdel-Hafeez, Hassan M.;Saleh, Elham S.E.;Tawfeek, Samar S.;Youssef, Ibrahim M.I.;Abdel-Daim, Asmaa S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권5호
    • /
    • pp.672-682
    • /
    • 2017
  • Objective: This study was conducted to investigate the effects of probiotic, prebiotic and synbiotic with and without feed restriction on broilers performance, blood parameters, carcass characteristics, and feed cost of production from 1 to 56 days of age. Methods: Two hundred and forty unsexed one day-old chicks of Arbor Acres breed were used. Two trials, I and II, were conducted, with 120 birds in both. Each trial was divided into 4 equal groups. The birds in trial I were fed ad libitum throughout the experiment, while the chicks in trial II were fed ad libitum during the first week of age, then subjected to 5 hours/d of feed restriction from the beginning of the second week up to the end of the experiment. In both trials, the birds in group 1 were fed on a control diet while the other groups were given the same control diet supplemented either with a probiotic in group 2, prebiotic in group 3, or synbiotic in group 4. Results: It was found that chicks fed diets supplemented with probiotic, prebiotic and synbiotic (with and without feed restriction) exhibited higher body weight and feed efficiency than chicks fed the control diets. The feed additives in both trials did not affect hemoglobin, serum total protein, albumin, globulin, glucose, and total cholesterol, except the packed cell volume which was increased in the additive treatments with restriction at the end of the experiment. Moreover, the dietary treatments did not influence the carcass yield. However, the relative weights of liver, gizzard and proventriculus, small intestine and bursa of fabricius were found to be increased. The additives decreased the visible fat in the carcass, with more decreasing effect in the additive groups with restriction. The lowest feed cost per kg of weight gain was observed in the birds fed diets supplemented with synbiotic, probiotic and prebiotic. Feed restriction improved the feed conversion ratio, economic return, but decreased the feed intake, serum total cholesterol and visible fat in comparison with non-restricted groups. Conclusion: The biological feed additives could be routinely added to broiler diets, especially when a feed restriction program is followed. Finally, it can be recommended to restrict feed, and add probiotic or synbiotic to increase weight, improve feed conversion rate and reduce feed cost of production.

Thermal Stabilization of Aspergillus phytase by L-Arginine

  • Sunghoon Ryu;Park, Tae-Gwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제3권1호
    • /
    • pp.32-34
    • /
    • 1998
  • Phytase from Aspergillus species is a very heat unstable enzyme which inactivates to a great extent during the thermal processing of animal feed formulation. Various protein stabilization additives were tested to improve its heat stability. Among them, a basic amino acid, L-arginine remarkably increased the thermal stability of phytase in an aqueous solution state.

  • PDF

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen

  • Mitsumori, Makoto;Sun, Weibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권1호
    • /
    • pp.144-154
    • /
    • 2008
  • The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.

Beneficial roles of Song-Gang stone as a feed additive in aquaculture: a review

  • Yoo, Gwangyeol;Abediostad, Zeinab;Choi, Wonsuk;Bae, Jinho;Choi, Youn Hee;Lee, Seunghyung;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • 제24권12호
    • /
    • pp.394-399
    • /
    • 2021
  • Song-Gang® bio-stone (SGS) is a microporous crystalline hydrated aluminosilicate which has found various applications because of their very unique physiochemical characteristics such as ion exchange and absorptive-desorptive properties. Significant progress has been made in recent years on applications of these inorganic adsorbents in different industries including agriculture, aquaculture, water and wastewater treatment. This review article intends to summarize the published reports on the applications of SGS in aquaculture industry. SGS application as a feed additive to enhance fish growth and promote their health and nutritional parameters is the most important discussed areas. According to the technical data that are discussed in this review, SGS should be considered as a material with tremendous potential for application in the aquaculture industry. Considerable amounts of research works are under way to explore other opportunities for application of SGS to benefit aquaculture industry.

Expression of Nutritionally Well-balanced Protein, AmA1, in Saccharomyces cerevisiae

  • Kim, Tae-Geum;Kim, Ju;Kim, Dae-Hyuk;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권3호
    • /
    • pp.173-178
    • /
    • 2001
  • Food yeast, Saccharomyces cerevisiae, is a safe organism with a long history of use for the production of biomass rich in high quality proteins and vitamins. AmA1, a seed storage albumin from Amaranthus hypochondriacus, has a well-balanced amino acid composition and high levels of essential amino acids and offers the possibility of further improving food animal feed additives. In order to find an effective means of expressing AmA1 in yeast, the gene was cloned into an episomal shuttle vector. Four different promoters were tested: the glyceraldehyde-3-phosphate dehydrogenase promoter, galactose dehydrogenase 10 promoter, alcohol dehydrogenase II promoter, and a hybrid ADH2-GPD promoter. The recombinant AmA1 genes were then introduced into the yeast Saccharomyces cerevisiae 2805. Northern and Western blot analyses of the yeast under appropriate conditions revealed that AmA1 was expressed by all four promoters at varying levels. An enzyme-linked immunosorbent assay demonstrated that the amount of AmA1 protein in the recombinant yeast was 1.3-4.3% of the total soluble proteins. The highest expression level was obtained from the hybrid ADH2-GPD promoter.

  • PDF