DOI QR코드

DOI QR Code

Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals

  • Tseten, Tenzin (Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University) ;
  • Sanjorjo, Rey Anthony (Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University) ;
  • Kwon, Moonhyuk (Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University) ;
  • Kim, Seon-Won (Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University)
  • Received : 2022.02.15
  • Accepted : 2022.03.03
  • Published : 2022.03.28

Abstract

Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.

Keywords

Acknowledgement

This work was supported by the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01566401), Rural Development Administration, Republic of Korea, and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A5A8029490).

References

  1. Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG. 2016. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 11: 12.
  2. US EPA. 2013. Global mitigation of non-CO2 greenhouse gases: 2010-2030.
  3. Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, et al. 2013. Greenhouse gas emissions from ruminant supply chains-A global life cycle assessment. Food and agriculture organization of the United Nations.
  4. Islam M, Lee SS. 2019. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. J. Anim. Sci. Technol. 61: 122-137. https://doi.org/10.5187/jast.2019.61.3.122
  5. Rate NM. 2017. World Population Prospects: The 2017 Revision, United Nations Population Division. UN Data.
  6. Ribeiro Pereira LG, Machado FS, Campos MM, Guimaraes Junior R, Tomich TR, Reis LG, et al. 2015. Enteric methane mitigation strategies in ruminants: a review. Rev. Colom. Cienc. Pecu. 28: 124-143.
  7. Salter AM. 2017. Improving the sustainability of global meat and milk production. Proc. Nutr. Soc. 76: 22-27. https://doi.org/10.1017/S0029665116000276
  8. Heilig GK. 1994. The greenhouse gas methane (CH 4): sources and sinks, the impact of population growth, possible interventions. Popul. Environ. 16: 109-137. https://doi.org/10.1007/BF02208779
  9. EPA. 2008. http://www.epa.gov/. Accessed May 15, 2008.
  10. FAO. 2006. In: Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (eds) Livestock's long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, ISBN: 978-92-5-105571-7.
  11. Giger-Reverdin S, Sauvant D. 2000. Methane production in sheep in relation to concentrate feed composition from bibliographic data. Cah. Options Mediterr. 52: 43-46.
  12. Johnson KA, Johnson DE. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483-2492. https://doi.org/10.2527/1995.7382483x
  13. Lascano CE, Cardenas E. 2010. Alternatives for methane emission mitigation in livestock systems. R. Bras. Zootec. 39: 175-182. https://doi.org/10.1590/S1516-35982010001300020
  14. Hackmann TJ, Spain JN. 2010. Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J. Dairy Sci. 93: 1320-1334. https://doi.org/10.3168/jds.2009-2071
  15. Huntington GB. 1997. Starch utilization by ruminants: from basics to the bunk. J. Anim. Sci. 75: 852-867. https://doi.org/10.2527/1997.753852x
  16. Cammack KM, Austin KJ, Lamberson WR, Conant GC, Cunningham HC. 2018. Ruminant nutrition symposium: tiny but mighty: the role of the rumen microbes in livestock production. J. Anim. Sci. 96: 752-770.
  17. Clauss M, Hofmann RR. 2014. The digestive system of ruminants, and peculiarities of (wild) cattle. Ecology, evolution and behaviour of wild cattle: Implications for conservation. pp. 57-62.
  18. Wang Y, McAllister TA. 2002. Rumen microbes, enzymes and feed digestion-a review. Asian-Australas. J. Anim. Sci. 15: 1659-1676. https://doi.org/10.5713/ajas.2002.1659
  19. Matthews C, Crispie F, Lewis E, Reid M, O'Toole PW, Cotter PD. 2019. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 10: 115-132. https://doi.org/10.1080/19490976.2018.1505176
  20. McCann JC, Wickersham TA, Loor JJ. 2014. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights 8: BBI-S15389.
  21. Bergman EN, Reid RS, Murray MG, Brockway JM, Whitelaw FG, 1965. Interconversions and production of volatile fatty acids in the sheep rumen. Biochem. J. 97: 53-55. https://doi.org/10.1042/bj0970053
  22. Janssen PH, Kirs M. 2008. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74: 3619-3625. https://doi.org/10.1128/AEM.02812-07
  23. De la Fuente G, Yanez-Ruiz DR, Seradj AR, Balcells J, Belanche A. 2019. Methanogenesis in animals with foregut and hindgut fermentation: a review. Anim. Prod. Sci. 59: 2109-2122. https://doi.org/10.1071/AN17701
  24. Poulsen M, Schwab C, Borg Jensen B, Engberg RM, Spang A, Canibe N, et al. 2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4: 1428. https://doi.org/10.1038/ncomms2432
  25. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6: 579-591. https://doi.org/10.1038/nrmicro1931
  26. Van Zijderveld SM, Gerrits WJ, Apajalahti JA, Newbold JR, Dijkstra J, Leng RA, et al. 2010. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93: 5856-5866. https://doi.org/10.3168/jds.2010-3281
  27. Hook SE, Wright ADG, McBride BW. 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010: 945785. https://doi.org/10.1155/2010/945785
  28. McAllister TA, Newbold CJ. 2008. Redirecting rumen fermentation to reduce methanogenesis. Austral. J. Exp. Agric. 48: 7-13. https://doi.org/10.1071/EA07218
  29. Ungerfeld EM. 2020. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front. Microbiol. 11: 589. https://doi.org/10.3389/fmicb.2020.00589
  30. Haque MN. 2018. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60: 15. https://doi.org/10.1186/s40781-018-0175-7
  31. Kebreab E, Strathe A, Fadel J, Moraes L, France J. 2010. Impact of dietary manipulation on nutrient flows and greenhouse gas emissions in cattle. R. Bras. Zootec. 39: 458-464. https://doi.org/10.1590/S1516-35982010001300050
  32. Benchaar C, Pomar C, Chiquette J. 2001. Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Can. J. Anim. Sci. 81: 563-574. https://doi.org/10.4141/A00-119
  33. Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K, Johnson DE. 1998. Mitigating agricultural emissions of methane. Clim. Change 40: 39-80. https://doi.org/10.1023/A:1005338731269
  34. Ball DM, Collins M, Lacefield GD, Martin NP, Mertens DA, Olson KE, et al. 2001. Understanding forage quality. pp. 1-21. American Farm Bureau Federation Publication.
  35. Hills JL, Wales WJ, Dunshea FR, Garcia SC, Roche JR. 2015. Invited review: an evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. J. Dairy Sci. 98: 1363-1401. https://doi.org/10.3168/jds.2014-8475
  36. Beauchemin KA, McAllister TA, McGinn SM. 2009. Dietary mitigation of enteric methane from cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Natur. Resour. 4: 1-8.
  37. Agle M, Hristov AN, Zaman S, Schneider C, Ndegwa PM, Vaddella VK. 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. J. Dairy Sci. 93: 4211-4222. https://doi.org/10.3168/jds.2009-2977
  38. Jiao HP, Dale AJ, Carson AF, Murray S, Gordon AW, Ferris CP. 2014. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 97: 7043-7053. https://doi.org/10.3168/jds.2014-7979
  39. Ogata T, Kim YH, Masaki T, Iwamoto E, Ohtani Y, Orihashi T, et al. 2019. Effects of an increased concentrate diet on rumen pH and the bacterial community in Japanese Black beef cattle at different fattening stages. J. Vet. Med. Sci. 81: 968-974. https://doi.org/10.1292/jvms.19-0077
  40. Owens FN, Secrist DS, Hill WJ, Gill DR. 1998. Acidosis in cattle: a review. J. Anim. Sci. 76: 275-286. https://doi.org/10.2527/1998.761275x
  41. Halmemies-Beauchet-Filleau A, Rinne M, Lamminen M, Mapato C, Ampapon T, Wanapat M, et al. 2018. Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal 12: s295-309. https://doi.org/10.1017/s1751731118002252
  42. Russell JB, Strobel H. 1989. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55: 1-6. https://doi.org/10.1128/aem.55.1.1-6.1989
  43. Richardson LF, Raun AP, Potter EL, Cooley CO, Rathmacher RP. 1976. Effect of monensin on rumen fermentation in vitro and in vivo. J. Anim. Sci. 43: 657-664. https://doi.org/10.2527/jas1976.433657x
  44. Bergen WG, Bates DB. 1984. Ionophores: their effect on production efficiency and mode of action. J. Anim. Sci. 58: 1465-1483. https://doi.org/10.2527/jas1984.5861465x
  45. Thivend P, Jouany JP. 1983. Effect of lasalocid sodium on rumen fermentation and digestion in sheep. Reprod. Nutr. Dev. 23: 817-828. https://doi.org/10.1051/rnd:19830602
  46. Singh GP, Mohini M. 1999. Effect of different levels of rumensin in diet on rumen fermentation, nutrient digestibility and methane production in cattle. Asian-Austral. J. Anim. Sci. 12: 1215-1221. https://doi.org/10.5713/ajas.1999.1215
  47. Odongo NE, Bagg R, Vessie G, Dick P, Or-Rashid MM, Hook SE, et al. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. J. Dairy Sci. 90: 1781-1788. https://doi.org/10.3168/jds.2006-708
  48. Marques RD, Cooke RF. 2021. Effects of ionophores on ruminal function of beef cattle. Animals 11: 2871. https://doi.org/10.3390/ani11102871
  49. McGuffey RK, Richardson LF, Wilkinson JI. 2001. Ionophores for dairy cattle: current status and future outlook. J. Dairy Sci. 84: E194-203. https://doi.org/10.3168/jds.S0022-0302(01)70218-4
  50. Russell JB, Houlihan AJ. 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol. Rev. 27: 65-74. https://doi.org/10.1016/S0168-6445(03)00019-6
  51. Guan H, Wittenberg KM, Ominski KH, Krause DO. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84: 1896-1906. https://doi.org/10.2527/jas.2005-652
  52. Appuhamy JR, Strathe AB, Jayasundara S, Wagner-Riddle C, Dijkstra J, France J, et al. 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. J. Dairy Sci. 96: 5161-5173. https://doi.org/10.3168/jds.2012-5923
  53. Carmean BR, Johnson DE. 1990. Persistence of monensin-induced changes in methane emissions and ruminal protozoa numbers in cattle. J. Anim. Sci. 68(Suppl 1): 517.
  54. Patra A, Park T, Kim M, Yu Z. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8: 13. https://doi.org/10.1186/s40104-017-0145-9
  55. Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, et al. 2012. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481: 98-101. https://doi.org/10.1038/nature10663
  56. Callaway TR, Edrington TS, Rychlik JL, Genovese KJ, Poole TL, Jung YS, et al. 2003. Ionophores: their use as ruminant growth promotants and impact on food safety. Curr. Issues Intest. Microbiol. 4: 43-51.
  57. Chen H, Gan Q, Fan C. 2020. Methyl-coenzyme M reductase and its post-translational modifications. Front. Microbiol. 11: 578356. https://doi.org/10.3389/fmicb.2020.578356
  58. Hwang HS, Ok JU, Lee SJ, Chu GM, Kim KH, Oh YK, et al. 2012. Effects of halogenated compounds on in vitro fermentation characteristics in the rumen and methane emissions. J. Life Sci. 22: 1187-1193. https://doi.org/10.5352/JLS.2012.22.9.1187
  59. Mathison GW, Okine EK, McAllister TA, Dong Y, Galbraith J, Dmytruk OI. 1998. Reducing methane emissions from ruminant animals. J. Appl. Anim. Res. 14: 1-28. https://doi.org/10.1080/09712119.1998.9706212
  60. Dong Y, Bae HD, McAllister TA, Mathison GW, Cheng KJ. 1999. Effects of exogenous fibrolytic enzymes, α-bromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Can. J. Anim. Sci. 79: 491-498. https://doi.org/10.4141/A99-024
  61. Martinez-Fernandez G, Duval S, Kindermann M, Schirra HJ, Denman SE, McSweeney CS. 2018. 3-NOP vs. halogenated compound: methane production, ruminal fermentation and microbial community response in forage fed cattle. Front. Microbiol. 9: 1582. https://doi.org/10.3389/fmicb.2018.01582
  62. Zhang ZW, Cao ZJ, Wang YL, Wang YJ, Yang HJ, Li SL. 2018. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: a review. Anim. Feed Sci. Technol. 236: 107-114. https://doi.org/10.1016/j.anifeedsci.2017.12.010
  63. Alemu AW, Pekrul LK, Shreck AL, Booker CW, McGinn SM, Kindermann M, et al. 2021. 3-nitrooxypropanol decreased enteric methane production from growing beef cattle in a commercial feedlot: implications for sustainable beef cattle production. Front. Anim. Sci. 2: 641590. https://doi.org/10.3389/fanim.2021.641590
  64. Lopes JC, De Matos LF, Harper MT, Giallongo F, Oh J, Gruen D, et al. 2016. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. J. Dairy Sci. 99: 5335-5344. https://doi.org/10.3168/jds.2015-10832
  65. Haisan J, Sun Y, Guan LL, Beauchemin KA, Iwaasa A, Duval S, et al. 2014. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 97: 3110-3119. https://doi.org/10.3168/jds.2013-7834
  66. Romero-Perez A, Okine EK, McGinn SM, Guan LL, Oba M, Duval SM, et al. 2015. Sustained reduction in methane production from long-term addition of 3-nitrooxypropanol to a beef cattle diet. J. Anim. Sci. 93: 1780-1791. https://doi.org/10.2527/jas.2014-8726
  67. Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, Laconi EB, et al. 2018. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital. J. Anim. Sci. 17: 650-656. https://doi.org/10.1080/1828051x.2017.1404945
  68. Lee C, Beauchemin KA. 2014. A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 94: 557-570. https://doi.org/10.4141/cjas-2014-069
  69. Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi K, Kobayashi Y, et al. 2012. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br. J. Nutr. 108: 482-491. https://doi.org/10.1017/S0007114511005794
  70. Kobayashi Y. 2010. Abatement of methane production from ruminants: trends in the manipulation of rumen fermentation. Asian-Austral. J. Anim. Sci. 23: 410-416. https://doi.org/10.5713/ajas.2010.r.01
  71. Boadi D, Benchaar C, Chiquette J, Masse D. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can. J. Anim. Sci. 84: 319-335. https://doi.org/10.4141/A03-109
  72. Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, et al. 2020. Seaweed and seaweed bioactives for mitigation of enteric methane: challenges and opportunities. Animals 10: 2432. https://doi.org/10.3390/ani10122432
  73. Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, et al. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 145: 209-228. https://doi.org/10.1016/j.anifeedsci.2007.04.014
  74. Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94: 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  75. Davoodi SM, Mesgaran MD, Vakili AR, Valizadeh R, Pirbalouti AG. 2019. In vitro effect of essential oils on rumen fermentation and microbial nitrogen yield of high concentrate dairy cow diet. Biosci. Biotechnol. Res. Asia 16: 333-341. https://doi.org/10.13005/bbra/2749
  76. Benchaar C, Greathead H. 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 166: 338-355. https://doi.org/10.1016/j.anifeedsci.2011.04.024
  77. Iqbal MF, Cheng YF, Zhu WY, Zeshan B. 2008. Mitigation of ruminant methane production: current strategies, constraints and future options. World J. Microbiol. Biotechnol. 24: 2747-2755. https://doi.org/10.1007/s11274-008-9819-y
  78. Toprak NN. 2015. Do fats reduce methane emission by ruminants? - A review. Anim. Sci. Pap. Rep. 33: 305-321.
  79. Soliva CR, Amelchanka SL, Duval SM, Kreuzer M. 2011. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Br. J. Nutr. 106: 114-122. https://doi.org/10.1017/S0007114510005684
  80. Busquet M, Calsamiglia S, Ferret A, Carro MD, Kamel C. 2005. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 88: 4393-4404. https://doi.org/10.3168/jds.S0022-0302(05)73126-X
  81. Yang WZ, Benchaar C, Ametaj BN, Chaves AV, He ML, McAllister TA. 2007. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 90: 5671-5681. https://doi.org/10.3168/jds.2007-0369
  82. Gunal M, Pinski B, AbuGhazaleh AA. 2017. Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions. Ital. J. Anim. Sci. 16: 500-506. https://doi.org/10.1080/1828051X.2017.1291283
  83. LaabouriI F, Guerouali A, Alali S, Remmal A, Ajbilou M. 2017. Effect of a natural food additive rich in thyme essential oil on methane emissions in dairy cows. Rev. Mar.Sci. Agron. Vet. 5: 287-292.
  84. Vakili AR, Khorrami B, Mesgaran MD, Parand E. 2013. The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Austral. J. Anim. Sci. 26: 935-944. https://doi.org/10.5713/ajas.2012.12636
  85. Roy D, Tomar SK, Sirohi SK, Kumar V, Kumar M. 2014. Efficacy of different essential oils in modulating rumen fermentation in vitro using buffalo rumen liquor. Vet. World 7: 213-218. https://doi.org/10.14202/vetworld.2014.213-218
  86. Cobellis G, Petrozzi A, Forte C, Acuti G, Orru M, Marcotullio MC, et al. 2015. Evaluation of the effects of mitigation on methane and ammonia production by using Origanum vulgare L. and Rosmarinus officinalis L. essential oils on in vitro rumen fermentation systems. Sustainability 7: 12856-12869. https://doi.org/10.3390/su70912856
  87. Patra AK, Yu Z. 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 78: 4271-4280. https://doi.org/10.1128/AEM.00309-12
  88. Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, et al. 2020. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J. Dairy Sci. 103: 2303-2314. https://doi.org/10.3168/jds.2019-16611
  89. Benchaar C. 2020. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J. Dairy Sci. 103: 1516-1527. https://doi.org/10.3168/jds.2019-17230
  90. Sallam SM, Bueno IC, Brigide P, Godoy PB, Vitti DM, Abdalla AL. 2009. Efficacy of eucalyptus oil on in vitro ruminal fermentation and methane production. Options Mediter. 85: 267-272.
  91. Wang B, Jia M, Fang L, Jiang L, Li Y. 2018. Effects of eucalyptus oil and anise oil supplementation on rumen fermentation characteristics, methane emission, and digestibility in sheep. J. Anim. Sci. 96: 3460-3470.
  92. Yadeghari S, Malecky M, Banadaky MD, Navidshad B. 2015. Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis. In Veterinary Research Forum. Vol. 6. pp. 285. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
  93. Ozkan CO, Kamalak A, Atalay AI, Tatliyer A, Kaya E. 2015. Effect of peppermint (Mentha piperita) essential oil on rumen microbial fermentation of barley grain. J. Appl. Anim. Res. 43: 287-290. https://doi.org/10.1080/09712119.2014.963101
  94. Beyzi SB. 2020. Effect of lavender and peppermint essential oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Buffalo Bull. 39: 311-321.
  95. Guyader J, Eugene M, Doreau M, Morgavi DP, Gerard C, Martin C. 2017. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. J. Dairy Sci. 100: 1845-1855. https://doi.org/10.3168/jds.2016-11644
  96. Woodward SL, Waghorn GC, Ulyatt MJ, Lassey KR. 2001. Early indications that feeding Lotus will reduce methane emissions from ruminants. In Proceedings-New Zealand Society of Animal Production. Vol. 61. pp. 23-26.
  97. Animut G, Puchala R, Goetsch AL, Patra AK, Sahlu T, Varel VH, et al. 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 144: 212-227. https://doi.org/10.1016/j.anifeedsci.2007.10.014
  98. Man KY, Chow KL, Man YB, Mo WY, Wong MH. 2021. Use of biochar as feed supplements for animal farming. Crit. Rev. Environ. Sci. Technol. 51: 187-217. https://doi.org/10.1080/10643389.2020.1721980
  99. Leng RA, Preston TR, Inthapanya S. 2012. Biochar reduces enteric methane and improves growth and feed conversion in local "Yellow" cattle fed cassava root chips and fresh cassava foliage. Livest Res. Rural Dev. 24: 199.
  100. Vijn S, Compart DP, Dutta N, Foukis A, Hess M, Hristov AN, et al. 2020. Key considerations for the use of seaweed to reduce enteric methane emissions from cattle. Front. Vet. Sci. 7: 597430. https://doi.org/10.3389/fvets.2020.597430
  101. Roque BM, Venegas M, Kinley RD, de Nys R, Duarte TL, Yang X, et al. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS One 16: e0247820. https://doi.org/10.1371/journal.pone.0247820
  102. Maia MR, Fonseca AJ, Oliveira HM, Mendonca C, Cabrita AR. 2016. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep. 6: 32321. https://doi.org/10.1038/srep32321
  103. Min BR, Parker D, Brauer D, Waldrip H, Lockard C, Hales K, et al. 2021. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: challenges and opportunities. Anim. Nutri. 7: 1371-1387. https://doi.org/10.1016/j.aninu.2021.10.003
  104. Roque BM, Salwen JK, Kinley R, Kebreab E. 2019. Inclusion of Asparagopsis armata in lactating dairy cows' diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 234: 132-138. https://doi.org/10.1016/j.jclepro.2019.06.193
  105. Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, Tomkins NW. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 259: 120836. https://doi.org/10.1016/j.jclepro.2020.120836
  106. Li X, Norman HC, Kinley RD, Laurence M, Wilmot M, Bender H, et al. 2016. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 58: 681-688. https://doi.org/10.1071/an15883
  107. Tong JJ, Zhang H, Jia WA, Yun LI, Mao SY, Xiong BH, Jiang LS. 2020. Effects of different molecular weights of chitosan on methane production and bacterial community structure in vitro. J. Integr. Agric. 19: 1644-1655. https://doi.org/10.1016/s2095-3119(20)63174-4
  108. Seankamsorn A, Cherdthong A, Wanapat M. 2020. Combining crude glycerin with chitosan can manipulate in vitro ruminal efficiency and inhibit methane synthesis. Animals 10: 37. https://doi.org/10.3390/ani10010037
  109. Vallejo-Hernandez LH, Elghandour MM, Greiner R, Anele UY, Rivas-Caceres RR, Barros-Rodriguez M, et al. 2018. Environmental impact of yeast and exogenous xylanase on mitigating carbon dioxide and enteric methane production in ruminants. J. Clean. Prod. 189: 40-46. https://doi.org/10.1016/j.jclepro.2018.03.310
  110. Zanferari F, Vendramini TH, Rentas MF, Gardinal R, Calomeni GD, Mesquita LG, et al. 2018. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. J. Dairy Sci. 101: 10939-10952. https://doi.org/10.3168/jds.2018-14675
  111. Sun K, Liu H, Fan H, Liu T, Zheng C. 2021. Research progress on the application of feed additives in ruminal methane emission reduction: a review. PeerJ. 9: e11151. https://doi.org/10.7717/peerj.11151
  112. Krehbiel CR, Rust SR, Zhang G, Gilliland SE. 2003. Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. J. Anim. Sci. 81: E120-132.
  113. Ungerfeld EM. 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front. Microbiol. 6: 37. https://doi.org/10.3389/fmicb.2015.00037
  114. Stein DR, Allen DT, Perry EB, Bruner JC, Gates KW, Rehberger TG, et al. 2006. Effects of feeding Propionibacteria to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci 89: 111-125. https://doi.org/10.3168/jds.S0022-0302(06)72074-4
  115. Mead LJ, Jones GA. 1981. Isolation and presumptive identification of adherent epithelial bacteria ("epimural" bacteria) from the ovine rumen wall. Appl. Environ. Microbiol. 41: 1020-1028. https://doi.org/10.1128/aem.41.4.1020-1028.1981
  116. Counotte GH, Prins RA, Janssen RH, DeBie MJ. 1981. Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Appl. Environ. Microbiol. 42: 649-655. https://doi.org/10.1128/aem.42.4.649-655.1981
  117. Jeyanathan J, Martin C, Morgavi DP. 2014. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8: 250-261. https://doi.org/10.1017/S1751731113002085
  118. Vyas D, McGeough EJ, Mohammed R, McGinn SM, McAllister TA, Beauchemin KA. 2014. Effects of Propionibacterium strains on ruminal fermentation, nutrient digestibility and methane emissions in beef cattle fed a corn grain finishing diet. Animal 8: 1807-1815. https://doi.org/10.1017/S1751731114001657
  119. Alazzeh AY, Sultana H, Beauchemin KA, Wang Y, Holo H, Harstad OM, et al. 2012. Using strains of Propionibacteria to mitigate methane emissions in vitro. Acta Agric. Scand. A-Anim. Sci. 62: 263-272.
  120. Vyas D, Alazzeh A, McGinn SM, McAllister TA, Harstad OM, Holo H, et al. 2015. Enteric methane emissions in response to ruminal inoculation of Propionibacterium strains in beef cattle fed a mixed diet. Anim. Prod. Sci. 56: 1035-1040. https://doi.org/10.1071/an14801
  121. Chen J, Harstad OM, McAllister T, Dorsch P, Holo H. 2020. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agric. Scand. A-Anim. Sci. 69: 169-175.
  122. Vyas D, McGeough EJ, McGinn SM, McAllister TA, Beauchemin KA. 2014. Effect of Propionibacterium spp. on ruminal fermentation, nutrient digestibility, and methane emissions in beef heifers fed a high-forage diet. J. Anim. Sci. 92: 2192-2201. https://doi.org/10.2527/jas.2013-7492
  123. Jeyanathan J, Martin C, Eugene M, Ferlay A, Popova M, Morgavi DP. 2019. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Anim. Sci. Biotechnol. 10: 41. https://doi.org/10.1186/s40104-019-0342-9
  124. Drake HL, Gossner AS, Daniel SL. 2008. Old acetogens, new light. Annal. NY Acad. Sci. 1125: 100-128. https://doi.org/10.1196/annals.1419.016
  125. Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F. 2007. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl. Environ. Microbiol. 73: 6391-6403. https://doi.org/10.1128/AEM.00181-07
  126. Ragsdale SW, Pierce E. 2008. Acetogenesis and the wood-ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784: 1873-1898. https://doi.org/10.1016/j.bbapap.2008.08.012
  127. Le Van TD, Robinson JA, Ralph J, Greening RC, Smolenski WJ, Leedle JA, et al. 1998. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Appl. Environ. Microbiol. 64: 3429-3436. https://doi.org/10.1128/aem.64.9.3429-3436.1998
  128. Henderson G, Naylor GE, Leahy SC, Janssen PH. 2010. Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl. Environ. Microbiol. 76: 2058-2066. https://doi.org/10.1128/AEM.02580-09
  129. Morvan B, Bonnemoy F, Fonty G, Gouet P. 1996. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr. Microbiol. 32: 129-133. https://doi.org/10.1007/s002849900023
  130. Lopez S, McIntosh FM, Wallace RJ, Newbold CJ. 1999. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim. Feed Sci. Technol. 78: 1-9. https://doi.org/10.1016/S0377-8401(98)00273-9
  131. Richard SH, Thomas EH. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471. https://doi.org/10.1128/mr.60.2.439-471.1996
  132. Pandey VC, Singh JS, Singh DP, Singh RP. 2014. Methanotrophs: promising bacteria for environmental remediation. Int. J. Environ. Sci Technol. 11: 241-250. https://doi.org/10.1007/s13762-013-0387-9
  133. Sazinsky MH, Lippard SJ. 2015. Methane monooxygenase: functionalizing methane at iron and copper. Met. Ions Life Sci. 15: 205-256. https://doi.org/10.1007/978-3-319-12415-5_6
  134. Kalyuzhnaya MG, Puri AW, Lidstrom ME. 2015. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29: 142-152. https://doi.org/10.1016/j.ymben.2015.03.010
  135. Dalton H. 1992. Methane oxidation by methanotrophs. In Methane and methanol utilizers (pp. 85-114). Springer. Boston, MA. USA.
  136. Finn D, Ouwerkerk D, Klieve A. 2012. Methanotrophs from natural ecosystems as biocontrol agents for ruminant methane emissions. Govt. report. Australia. The University of Queensland.
  137. Kajikawa H, Valdes C, Hillman K, Wallace RJ, J. Newbold C. 2003. Methane oxidation and its coupled electron-sink reactions in ruminal fluid. Lett. Appl. Microbiol. 36: 354-357. https://doi.org/10.1046/j.1472-765X.2003.01317.x
  138. Mitsumori M, Ajisaka N, Tajima K, Kajikawa H, Kurihara M. 2002. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 35: 251-255. https://doi.org/10.1046/j.1472-765X.2002.01172.x
  139. Valdes C, Newbold CJ, Hillman K, Wallace RJ. 1996. Evidence for methane oxidation in rumen fluid in vitro. In Annales De Zootechnie. Vol. 45. pp. 351-351. https://doi.org/10.1051/animres:19960680
  140. Stocks PK, McCleskey CS. 1964. Morphology and physiology of Methanomonas methanooxidans. J. Bacteriol. 88: 1071-1077. https://doi.org/10.1128/jb.88.4.1071-1077.1964
  141. Khatri K, Mohite J, Pandit P, Bahulikar RA, Rahalkar MC. 2021. Isolation, description and genome analysis of a putative novel Methylobacter Species ('Ca. Methylobacter coli') isolated from the faeces of a blackbuck (Indian antelope). Microbiol. Res. 12: 513-523. https://doi.org/10.3390/microbiolres12020035