Browse > Article
http://dx.doi.org/10.5713/ajas.2008.r01

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen  

Mitsumori, Makoto (National Institute of Livestock and Grassland Science)
Sun, Weibin (College of Animal Science and Technology, Northwest Agriculture and Forestry University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.21, no.1, 2008 , pp. 144-154 More about this Journal
Abstract
The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.
Keywords
Methane; Rumen; Rumen Microorganisms; Methanogens;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Ueno, Y., K. Yamada, N. Yoshida, S. Maruyama and Y. Isozaki. 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature. 440:516- 519.   DOI   ScienceOn
2 Skillman, L. C., P. N. Evans, C. Strompl and K. N. Joblin. 2006. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett. Appl. Microbiol. 42:222-228.   DOI   ScienceOn
3 Ulyatt, M. J., K. R. Lassey, I. D. Shelton and C. F. Walker. 2002. Seasonal variation in methane emission from dairy cows and breeding ewes grazing ryegrass/white clover pasture in New Zealand. New Zealand J. Agri. Res. 45:217-226.   DOI   ScienceOn
4 Yan, T., R. E. Agnew, F. J. Gordon and M. G. Porter. 2000. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci. 64:253-263.   DOI   ScienceOn
5 Whitelaw, F. G., J. M. Eadie, L. A. Bruce and W. J. Shand. 1984. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Br. J. Nutr. 52:261-275.   DOI   ScienceOn
6 Williams, A. G. and G. S. Coleman. 1997. The rumen protozoa, In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 73-139.
7 Wolin, M. J. 1979. The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. Adv. Microbial. Ecol. 3:49-77.
8 Wolin, M. J., T. L. Miller and C. S. Stewart. 1997. Microbemicrobe interactions In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 467-491.
9 Wright, A. D., P. Kennedy, C. J. O'Neill, A. F. Toovey, S. Popovski, S. M. Rea, C. L. Pimm and L. Klein. 2004a. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine. 22:3976-3985.   DOI   ScienceOn
10 Stewart, C. S. 1977. Factors Affecting the Cellulolytic Activity of Rumen Contents. Appl. Environ. Microbiol. 33:497-502.
11 Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 10-72.
12 Swain, R. A., J. V. Nolan and A. V. Klieve AV. 1996. Natural variability and diurnal fluctuations within the bacteriophage population of the rumen. Appl. Environ. Microbiol. 62:994- 997.
13 Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774.   DOI   ScienceOn
14 Shibata, M., F. Terada, M. Kurihara, T. Nishida and K. Iwasaki. 1993. Estimation of methane production in ruminants. Anim. Sci. Technol. 64:790-796.
15 Shima, S., E. Warkentin, R. K. Thauer and U. Ermler. 2002. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J. Biosci. Bioeng. 93:519-530.   DOI
16 Shu, Q., M. A. Hillard, B. M. Bindon, E. Duan, Y. Xu, S. H. Bird, J. B. Rowe, V. H. Oddy and H. S. Gill. 2000. Effects of various adjuvants on efficacy of a vaccine against Streptococcus bovis and Lactobacillus spp. in cattle. Am. J. Vet. Res. 61:839-843.   DOI   ScienceOn
17 Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 140-195.
18 Ushida, K. and J. P. Jouany. 1996. Methane production associated with rumen-ciliated protozoa and its effect on protozoan activity. Lett. Appl. Microbiol. 23:129-132.   DOI   ScienceOn
19 Ungerfeld, E. M., S. R. Rust and R. Burnett. 2003. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod. Nutr. Dev. 43:189-202.   DOI   ScienceOn
20 Ungerfeld, E. M., S. R. Rust, D. R. Boone and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 97:520-526.   DOI   ScienceOn
21 Vogels, G. D., W. F. Hoppe and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608-612.
22 Wallace, R. J. 2004. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63:621-629.   DOI   ScienceOn
23 Weimer, P. J. 1998. Manipulating ruminal fermentation: a microbial ecological perspective. J. Anim. Sci. 76:3114-3122.   DOI
24 Miller, T. L. and M. J. Wolin. 2001. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl-SCoA reductase inhibitors. J. Dairy Sci. 84:1445-1448.   DOI   ScienceOn
25 Lee, S. S., J. T. Hsu, H. C. Mantovani and J. B. Russell. 2002. The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217:51-55.   DOI
26 Regensbogenova, M., N. R. McEwan, P. Javorsky, S. Kisidayova, T. Michalowski, C. J. Newbold, J. H. Hackstein and P. Pristas. 2004. A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol. Lett. 238:307-313.   DOI   ScienceOn
27 Russell, J. B. and A. J. Houlihan. 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol. Rev. 27:65-74.   DOI   ScienceOn
28 Russell, J. B. and D. B. Dombrowski. 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 39:604-610.
29 Russell, J. B. and R. J. Wallace. 1997. Energy-yielding and energy-consuming reactions. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 246-282.
30 Russell, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81:3222-3230.   DOI   ScienceOn
31 Satter, L. D., J. W. Suttie and B. R. Baumgardt. 1964. Dietary induced changes in volatile fatty acid formation from cellulose-C14 and hemicellulose-C14. J. Dairy Sci. 47:1365- 1370.   DOI
32 Shibata, M., F. Terada, K. Iwasaki, M. Kurihara and T. Nishida. 1992. Methane Production in heifers, sheep and goats consuming diets of various hay-concentrations, Anim. Sci. Technol. 63:1221-1227.
33 Lila, Z. A., N. Mohammed, S. Kanda, T. Kamada and H. Itabashi. 2003. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J. Dairy Sci. 86:3330-3336.   DOI   ScienceOn
34 Lila, Z. A., N. Mohammed, T. Yasui, Y. Kurokawa, S. Kanda and H. Itabashi. 2004. Effects of a twin strain of saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 82:1847-1854.   DOI
35 McCaughey, W. P., K. Wittenberg and D. Corrigan. 1997. Methane production by steers on pasture. Can. J. Anim. Sci. 77:519-524.   DOI   ScienceOn
36 Lovett, D. K., D. McGilloway, A. Bortolozzo, M. Hawkins, J. Callan, B. Flynn and F. P. O'Mara. 2006. In vitro fermentation patterns and methane production as influenced by cultivar and season of harvest of Lolium perenne L. Grass and Forage Sci. 61:9-21.   DOI   ScienceOn
37 Luton, P. E., J. M. Wayne, R. J. Sharp and P. W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol. 148:3521-3530.   DOI
38 Martin, S. A., D. J. Nisbet and R. G. Dean. 1989. Influence of a commercial yeast supplement on the in-vitro ruminal fermentation. Nutr. Rep. Int. 40:395-403.
39 Machmuller, A., C. R. Soliva and M. Kreuzer. 2003. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reprod. Nutr. Dev. 43:41-55.   DOI   ScienceOn
40 McCrabb, G. J., K. T. Berger, T. Magner, C. May and R. A. Hunter. 1997. Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust. J. Agric. Res. 48:323-329.   DOI   ScienceOn
41 Kurihara, M., M. Shibata, T. Nishida, A. Purnomoadi and F. Terada. 1997. Methane production and its dietary manipulation in ruminants. In: Ruminal Microbes and Digestive Physiology in Ruminants (Ed. R. Onodera et al.) Japan Scientific Societies Press, Tokyo, Japan. pp 199-208.
42 Kurihara, M., T. Nishida, A. Purnomoadi, M. Shibata and F. Terada. 2002. The prediction of methane conversion rate from dietary factors. In: Greenhouse Gases and Animal Agriculture. (Ed. J. Takahashi and B. A. Young), Elsevier, Amsterdam. pp. 171-174.
43 Hino, T., K. Takeshi, M. Kanda and S. Kumazawa. 1993. Effects of aibellin, a novel peptide antibiotic, on rumen fermentation in vitro. J. Dairy Sci. 76:2213-2221.   DOI   ScienceOn
44 Gill, H. S., Q. Shu and R. A. Leng. 2000. Immunization with Streptococcus bovis protects against lactic acidosis in sheep. Vaccine. 18:2541-2548.   DOI   ScienceOn
45 Gomez, J. A., M. L. Tejido and M. D. Carro. 2005. Influence of disodium malate on microbial growth and fermentation in rumen-simulation technique fermenters receiving medium- and high-concentrate diets. Br. J. Nutr. 93:479-484.   DOI   ScienceOn
46 Hegarty, R. S. 2002. Strategies for mitigating methane emissions from livestock-Australian options and opportunities. In: Greenhouse Gases and Animal Agriculture (Ed. J. Takahashi and B. A. Young). Elsevier, Amsterdam. pp. 61-65.
47 Hino, T., H. Saitoh, T. Miwa, M. Kanda and S. Kumazawa. 1994. Effect of aibellin, a peptide antibiotic, on propionate production in the rumen of goats. J. Dairy Sci. 77:3426-3431.   DOI   ScienceOn
48 Hoogenraad, N. J., F. J. Hirk, I. Holmes and N. F. Millis. 1967. Bacteriophages in rumen contents of sheep. J. Gen. Virol. 1:575-576.   DOI   ScienceOn
49 Leng, R. A. 1993. Quantitative ruminant nutrition-A green science. Aust. J. Agric. Res. 44:363-380.   DOI   ScienceOn
50 Hu, W. L., Y. M. Wu, J. X. Liu, Y. Q. Guo and J. A. Ye. 2005. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid. J. Zhejiang Univ. Sci. 6B:787-792.   DOI   ScienceOn
51 Iwamoto, M., N. Asanuma and T. Hino. 1999. Effects of nitrate combined with fumarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro. Anim. Sci. J. 70:471-478.
52 Irbis, C. and K. Ushida. 2004. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J. Gen. Appl. Microbiol. 50:203-212.   DOI   ScienceOn
53 Hungate, R. E. 1966. The rumen and its microbes. Acad. Press, New York, USA.
54 Hungate, R. E., W. Smith, T. Bauchop, Ida Yu and J. C. Rabinowitz. 1970. Formate as an Intermediate in the Bovine Rumen Fermentation. J. Bacteriol. 102:389-397
55 Jarvis, G. N., C. Strompl, D. M. Burgess, L. C. Skillman, E. R. B. Moore and K. N. Joblin. 2000. Isolation and identification of ruminal methanogens from grazing cattle. Curr. Microbiol. 40:327-332.   DOI   ScienceOn
56 Kajikawa, H., C. Valdes, K. Hillman, R. J. Wallace and C. J. Newbold. 2003. Methane oxidation and its coupled electronsink reactions in ruminal fluid. Lett. Appl. Microbiol. 36:354- 357.   DOI   ScienceOn
57 Klieve, A. V. and R. S. Hegarty. 1999. Opportunities for biological control of ruminal methanogenesis. Aust. J. Agric. Res. 50: 1315-1320.   DOI
58 Kume, S. 2002. Establishment of profitable dairy farming system on control of methane production in Hokkaido region. In: Greenhouse Gases and Animal Agriculture. (Ed. J. Takahashi and B. A. Young), Elsevier, Amsterdam. pp. 87-94.
59 Garcia-Martinez, R., M. J. Ranilla, M. L. Tejido and M. D. Carro. 2005. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio. Br. J. Nutr. 94:71-77.   DOI   ScienceOn
60 Carro, M. D. and M. J. Ranilla. 2003a. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br. J. Nutr. 89:181-188.   DOI   ScienceOn
61 Carro, M. D. and M. J. Ranilla. 2003b. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen microorganisms in vitro. Br. J. Nutr. 90:617-623.   DOI   ScienceOn
62 Chalupa, W. 1977. Manipulating rumen fermentation. J. Anim. Sci. 46:585-599.
63 Counotte, G. H. M., R. A. Prins, R. H. A. M. Janssen and M. J. A. deBie. 1981. Role of Megasphaera elsdenii in the Fermentation of dl-[2-13C]lactate in the Rumen of Dairy Cattle. Appl. Environ. Microbiol. 42:649-655.
64 Czerkawski, J. W. 1969. Methane production in ruminants and its significance. World Review of Ruminants and Dietetics 11:240-282.
65 Dawson, K. A., M. A. Rasmussen and M. J. Allison. 1997. Digestive disorders and nutritional toxicity. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 633-660.
66 Dennis, S. M., T. G. Nagaraja and A. D. Dayton. 1986. Effect of lasalocid, monensin and thiopeptin on rumen protozoa. Res. Vet. Sci. 41:251-256.
67 Dohme, F., A. Machmüller, A. Wasserfallen and M. Kreuzer. 2000. Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can. J. Anim. Sci. 80:473-484.   DOI   ScienceOn
68 Busquet, M., S. Calsamiglia, A. Ferret and C. Kamel. 2006. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89:761-771.   DOI   ScienceOn
69 Dohme, F., A. Machmüller, A. Wasserfallen and M. Kreuzer. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32:47-51.   DOI   ScienceOn
70 Asanuma, N., M. Iwamoto and T. Hino. 1999a. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787.   DOI   ScienceOn
71 Dong Y., H. D. Bae, T. A. McAllister, G. W. Mathison and K.-J. Cheng. 1997. Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Can. J. Anim. Sci. 77:269-278.   DOI   ScienceOn
72 Ermler, U., W. Grabarse, S. Shima, M. Goubeaud and R. K. Thauer. 1997. Crystal structure of methyl coenzyme M reductase: the key enzyme of biological methane formation. Sci. 278:1457-1462.   DOI   ScienceOn
73 Fahey, G. C. Jr., L. D. Bourquin, E. C. Titgemeyer and D. G. Atwell. 1993. Postharvest treatment of fibrous feedstuffs to improve their nutritive value. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph), American Society of Agronomy, Madison, Wisconsin, USA. pp. 715-766.
74 Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. P. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117:157- 161.   DOI   ScienceOn
75 Friedrich, M. W. 2005. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol. 397:428-442.   DOI   ScienceOn
76 Blaxter, K. L. and J. L. Clapperton. 1965. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19:511-522.   DOI   ScienceOn
77 Asanuma, N., M. Iwamoto and T. Hino. 1999b. The production of formate, a substrate for methanogenesis, from compounds related with the glyoxylate cycle by mixed ruminal microbes. Anim. Sci. J. 70:67-73.
78 Asanuma, N. and T. Hino. 2000a. Effects of pH and energy supply on activity and amount of pyruvate formate-lyase in Streptococcus bovis. Appl. Environ. Microbiol. 66:3773-3777.   DOI   ScienceOn
79 Asanuma, N. and T. Hino. 2000b. Activity and properties of fumarate reductase in ruminal bacteria. J. Gen. Appl. Microbiol. 46:119-125.   DOI   ScienceOn
80 Busquet, M., S. Calsamiglia, A. Ferret, P. W. Cardozo and C. Kamel. 2005. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 88:2508-2516.   DOI   ScienceOn
81 Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Sci. 292:1119-1122.   DOI   ScienceOn
82 Wright, A. D., A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers and K. D. Smith. 2004b. Molecular diversity of rumen methanogens from sheep in Western Australia. Appl. Environ. Microbiol. 70:1263-1270.   DOI   ScienceOn
83 Newbold, C. J., R. J. Wallace and N. D. Walker. 1993. The effect of tetronasin and monensin on fermentation, microbial numbers and the development of ionophore-resistant bacteria in the rumen. J. Appl. Bacteriol. 75:129-134.   DOI
84 Newbold, C. J., B. Lassalas and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21:230-234.   DOI   ScienceOn
85 Newbold, C. J., K. Ushida, B. Morvan, G. Fonty and J. P. Jouany. 1996a. The role of ciliate protozoa in the lysis of methanogenic archaea in rumen fluid. Lett. Appl. Microbiol. 23:421-425.   DOI   ScienceOn
86 Newbold, C. J., R. J. Wallace and F. M. McIntosh. 1996b. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76:249-261.   DOI   ScienceOn
87 Newbold, C. J., S. Lopez, N. Nelson, J. O. Ouda, R. J. Wallace and A. R. Moss. 2005. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br. J. Nutr. 94:27-35.   DOI   ScienceOn
88 Newbold, C. J. and L. M. Rode. 2006. Dietary additives to control methanogenesis in the rumen. The 2nd International Conference on Greenhouse Gases and Animal Agriculture GGAA2005-Working papers. pp. 60-70.
89 Slyter, L. L. 1986. Ability of pH-Selected Mixed Ruminal Microbial Populations to Digest Fiber at Various pHs. Appl. Environ. Microbiol. 52:390-391.
90 Yoshii T., N. Asanuma and T. Hino. 2005. Effect of ethanol on nitrate and nitrite reduction and methanogenesis in the ruminal microbiota. Anim. Sci. J. 76:37-42.   DOI   ScienceOn
91 Denman, S. E., N. Tomkins and C. S. McSweeney. 2006. Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. The 2nd International Conference on Greenhouse Gases and Animal Agriculture GGAA2005-Working papers. pp. 112-114.
92 Klieve, A. V., P. A. Bain, M. T. Yokoyama, D. Ouwerkerk, R. J. Forster and A. F. Turner. 2004. Bacteriophages that infect the cellulolytic ruminal bacterium Ruminococcus albus AR67. Lett. Appl. Microbiol. 38:333-338.   DOI   ScienceOn
93 Mackie, R. I. and F. M. Gilchrist. 1979. Changes in lactateproducing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a highconcentrate diet. Appl. Environ. Microbiol. 38:422-430.
94 Nagaraja, T. G., C. J. Newbold, C. J. Van Nevel and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 523-632.
95 Mitsumori, M., N. Ajisaka, K. Tajima, H. Kajikawa and M. Kurihara. 2002a. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 35:251-255.   DOI   ScienceOn
96 Mitsumori, M., K. Tajima and H. Itabashi. 2002b. Detection of methanogens from the rumen by PCR-based techniques In: Greenhouse Gases and Animal Agriculture (Ed. J. Takahashi and B. A. Young), Elsevier, Amsterdam. pp. 125-128.
97 Mohammed, N., N. Ajisaka, Z. A. Lila, K. Hara, K. Mikuni, K. Hara, S. Kanda and H. Itabashi. 2004. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci. 82:1839-1846.   DOI
98 Takahashi, J., B. Mwenya, B. Santoso, C. Sar, K. Umetsu, T. Kishimoto, K. Nishizaki, K. Kimura and O. Hamamoto. 2005. Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Aust. J. Anim. Sci. 18:1199-1208.   과학기술학회마을   DOI
99 Tedeschi, L. O., D. G. Fox and T. P. Tylutki. 2003. Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 32:1591-1602.   DOI   ScienceOn
100 Tokura, M., I. Chagan, K. Ushida and Y. Kojima. 1999. Phylogenetic study of methanogens associated with rumen ciliates. Curr. Microbiol. 39:123-128.   DOI   ScienceOn
101 Tatsuoka, N., N. Mohammed, M. Mitsumori, K. Hara, M. Kurihara and H. Itabashi. 2004. Phylogenetic analysis of methyl coenzyme-M reductase detected from the bovine rumen. Lett. Appl. Microbiol. 39:257-260.   DOI   ScienceOn