Browse > Article
http://dx.doi.org/10.4014/jmb.2202.02019

Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals  

Tseten, Tenzin (Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University)
Sanjorjo, Rey Anthony (Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University)
Kwon, Moonhyuk (Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University)
Kim, Seon-Won (Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.3, 2022 , pp. 269-277 More about this Journal
Abstract
Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.
Keywords
Global warming; methane; ruminants; rumen microbiome; methanogenesis; direct-fed microbials;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Soliva CR, Amelchanka SL, Duval SM, Kreuzer M. 2011. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Br. J. Nutr. 106: 114-122.   DOI
2 Busquet M, Calsamiglia S, Ferret A, Carro MD, Kamel C. 2005. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 88: 4393-4404.   DOI
3 Yang WZ, Benchaar C, Ametaj BN, Chaves AV, He ML, McAllister TA. 2007. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 90: 5671-5681.   DOI
4 Vijn S, Compart DP, Dutta N, Foukis A, Hess M, Hristov AN, et al. 2020. Key considerations for the use of seaweed to reduce enteric methane emissions from cattle. Front. Vet. Sci. 7: 597430.   DOI
5 Min BR, Parker D, Brauer D, Waldrip H, Lockard C, Hales K, et al. 2021. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: challenges and opportunities. Anim. Nutri. 7: 1371-1387.   DOI
6 Li X, Norman HC, Kinley RD, Laurence M, Wilmot M, Bender H, et al. 2016. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 58: 681-688.   DOI
7 McCann JC, Wickersham TA, Loor JJ. 2014. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights 8: BBI-S15389.
8 Hook SE, Wright ADG, McBride BW. 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010: 945785.   DOI
9 Alazzeh AY, Sultana H, Beauchemin KA, Wang Y, Holo H, Harstad OM, et al. 2012. Using strains of Propionibacteria to mitigate methane emissions in vitro. Acta Agric. Scand. A-Anim. Sci. 62: 263-272.
10 EPA. 2008. http://www.epa.gov/. Accessed May 15, 2008.
11 Carmean BR, Johnson DE. 1990. Persistence of monensin-induced changes in methane emissions and ruminal protozoa numbers in cattle. J. Anim. Sci. 68(Suppl 1): 517.
12 Richard SH, Thomas EH. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.   DOI
13 Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, Tomkins NW. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 259: 120836.   DOI
14 Le Van TD, Robinson JA, Ralph J, Greening RC, Smolenski WJ, Leedle JA, et al. 1998. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Appl. Environ. Microbiol. 64: 3429-3436.   DOI
15 Henderson G, Naylor GE, Leahy SC, Janssen PH. 2010. Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl. Environ. Microbiol. 76: 2058-2066.   DOI
16 Morvan B, Bonnemoy F, Fonty G, Gouet P. 1996. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr. Microbiol. 32: 129-133.   DOI
17 Lopez S, McIntosh FM, Wallace RJ, Newbold CJ. 1999. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim. Feed Sci. Technol. 78: 1-9.   DOI
18 Khatri K, Mohite J, Pandit P, Bahulikar RA, Rahalkar MC. 2021. Isolation, description and genome analysis of a putative novel Methylobacter Species ('Ca. Methylobacter coli') isolated from the faeces of a blackbuck (Indian antelope). Microbiol. Res. 12: 513-523.   DOI
19 Valdes C, Newbold CJ, Hillman K, Wallace RJ. 1996. Evidence for methane oxidation in rumen fluid in vitro. In Annales De Zootechnie. Vol. 45. pp. 351-351.   DOI
20 Stocks PK, McCleskey CS. 1964. Morphology and physiology of Methanomonas methanooxidans. J. Bacteriol. 88: 1071-1077.   DOI
21 Maia MR, Fonseca AJ, Oliveira HM, Mendonca C, Cabrita AR. 2016. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep. 6: 32321.   DOI
22 Zhang ZW, Cao ZJ, Wang YL, Wang YJ, Yang HJ, Li SL. 2018. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: a review. Anim. Feed Sci. Technol. 236: 107-114.   DOI
23 Alemu AW, Pekrul LK, Shreck AL, Booker CW, McGinn SM, Kindermann M, et al. 2021. 3-nitrooxypropanol decreased enteric methane production from growing beef cattle in a commercial feedlot: implications for sustainable beef cattle production. Front. Anim. Sci. 2: 641590.   DOI
24 Roque BM, Venegas M, Kinley RD, de Nys R, Duarte TL, Yang X, et al. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS One 16: e0247820.   DOI
25 Roque BM, Salwen JK, Kinley R, Kebreab E. 2019. Inclusion of Asparagopsis armata in lactating dairy cows' diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 234: 132-138.   DOI
26 Dalton H. 1992. Methane oxidation by methanotrophs. In Methane and methanol utilizers (pp. 85-114). Springer. Boston, MA. USA.
27 Pandey VC, Singh JS, Singh DP, Singh RP. 2014. Methanotrophs: promising bacteria for environmental remediation. Int. J. Environ. Sci Technol. 11: 241-250.   DOI
28 Sazinsky MH, Lippard SJ. 2015. Methane monooxygenase: functionalizing methane at iron and copper. Met. Ions Life Sci. 15: 205-256.   DOI
29 Kalyuzhnaya MG, Puri AW, Lidstrom ME. 2015. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29: 142-152.   DOI
30 Kajikawa H, Valdes C, Hillman K, Wallace RJ, J. Newbold C. 2003. Methane oxidation and its coupled electron-sink reactions in ruminal fluid. Lett. Appl. Microbiol. 36: 354-357.   DOI
31 Finn D, Ouwerkerk D, Klieve A. 2012. Methanotrophs from natural ecosystems as biocontrol agents for ruminant methane emissions. Govt. report. Australia. The University of Queensland.
32 Roy D, Tomar SK, Sirohi SK, Kumar V, Kumar M. 2014. Efficacy of different essential oils in modulating rumen fermentation in vitro using buffalo rumen liquor. Vet. World 7: 213-218.   DOI
33 Gunal M, Pinski B, AbuGhazaleh AA. 2017. Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions. Ital. J. Anim. Sci. 16: 500-506.   DOI
34 LaabouriI F, Guerouali A, Alali S, Remmal A, Ajbilou M. 2017. Effect of a natural food additive rich in thyme essential oil on methane emissions in dairy cows. Rev. Mar.Sci. Agron. Vet. 5: 287-292.
35 Vakili AR, Khorrami B, Mesgaran MD, Parand E. 2013. The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Austral. J. Anim. Sci. 26: 935-944.   DOI
36 Kebreab E, Strathe A, Fadel J, Moraes L, France J. 2010. Impact of dietary manipulation on nutrient flows and greenhouse gas emissions in cattle. R. Bras. Zootec. 39: 458-464.   DOI
37 Man KY, Chow KL, Man YB, Mo WY, Wong MH. 2021. Use of biochar as feed supplements for animal farming. Crit. Rev. Environ. Sci. Technol. 51: 187-217.   DOI
38 Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6: 579-591.   DOI
39 McAllister TA, Newbold CJ. 2008. Redirecting rumen fermentation to reduce methanogenesis. Austral. J. Exp. Agric. 48: 7-13.   DOI
40 Ungerfeld EM. 2020. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front. Microbiol. 11: 589.   DOI
41 Benchaar C, Pomar C, Chiquette J. 2001. Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Can. J. Anim. Sci. 81: 563-574.   DOI
42 Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K, Johnson DE. 1998. Mitigating agricultural emissions of methane. Clim. Change 40: 39-80.   DOI
43 Huntington GB. 1997. Starch utilization by ruminants: from basics to the bunk. J. Anim. Sci. 75: 852-867.   DOI
44 Cobellis G, Petrozzi A, Forte C, Acuti G, Orru M, Marcotullio MC, et al. 2015. Evaluation of the effects of mitigation on methane and ammonia production by using Origanum vulgare L. and Rosmarinus officinalis L. essential oils on in vitro rumen fermentation systems. Sustainability 7: 12856-12869.   DOI
45 Patra AK, Yu Z. 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 78: 4271-4280.   DOI
46 Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, et al. 2020. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J. Dairy Sci. 103: 2303-2314.   DOI
47 Benchaar C. 2020. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J. Dairy Sci. 103: 1516-1527.   DOI
48 Beauchemin KA, McAllister TA, McGinn SM. 2009. Dietary mitigation of enteric methane from cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Natur. Resour. 4: 1-8.
49 Martinez-Fernandez G, Duval S, Kindermann M, Schirra HJ, Denman SE, McSweeney CS. 2018. 3-NOP vs. halogenated compound: methane production, ruminal fermentation and microbial community response in forage fed cattle. Front. Microbiol. 9: 1582.   DOI
50 Lopes JC, De Matos LF, Harper MT, Giallongo F, Oh J, Gruen D, et al. 2016. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. J. Dairy Sci. 99: 5335-5344.   DOI
51 Russell JB, Strobel H. 1989. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55: 1-6.   DOI
52 Ball DM, Collins M, Lacefield GD, Martin NP, Mertens DA, Olson KE, et al. 2001. Understanding forage quality. pp. 1-21. American Farm Bureau Federation Publication.
53 Hills JL, Wales WJ, Dunshea FR, Garcia SC, Roche JR. 2015. Invited review: an evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. J. Dairy Sci. 98: 1363-1401.   DOI
54 Krehbiel CR, Rust SR, Zhang G, Gilliland SE. 2003. Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. J. Anim. Sci. 81: E120-132.
55 Ungerfeld EM. 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front. Microbiol. 6: 37.   DOI
56 Ogata T, Kim YH, Masaki T, Iwamoto E, Ohtani Y, Orihashi T, et al. 2019. Effects of an increased concentrate diet on rumen pH and the bacterial community in Japanese Black beef cattle at different fattening stages. J. Vet. Med. Sci. 81: 968-974.   DOI
57 Thivend P, Jouany JP. 1983. Effect of lasalocid sodium on rumen fermentation and digestion in sheep. Reprod. Nutr. Dev. 23: 817-828.   DOI
58 Marques RD, Cooke RF. 2021. Effects of ionophores on ruminal function of beef cattle. Animals 11: 2871.   DOI
59 Guan H, Wittenberg KM, Ominski KH, Krause DO. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84: 1896-1906.   DOI
60 Patra A, Park T, Kim M, Yu Z. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8: 13.   DOI
61 Hwang HS, Ok JU, Lee SJ, Chu GM, Kim KH, Oh YK, et al. 2012. Effects of halogenated compounds on in vitro fermentation characteristics in the rumen and methane emissions. J. Life Sci. 22: 1187-1193.   DOI
62 Sallam SM, Bueno IC, Brigide P, Godoy PB, Vitti DM, Abdalla AL. 2009. Efficacy of eucalyptus oil on in vitro ruminal fermentation and methane production. Options Mediter. 85: 267-272.
63 Agle M, Hristov AN, Zaman S, Schneider C, Ndegwa PM, Vaddella VK. 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. J. Dairy Sci. 93: 4211-4222.   DOI
64 Stein DR, Allen DT, Perry EB, Bruner JC, Gates KW, Rehberger TG, et al. 2006. Effects of feeding Propionibacteria to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci 89: 111-125.   DOI
65 Benchaar C, Greathead H. 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 166: 338-355.   DOI
66 Wang B, Jia M, Fang L, Jiang L, Li Y. 2018. Effects of eucalyptus oil and anise oil supplementation on rumen fermentation characteristics, methane emission, and digestibility in sheep. J. Anim. Sci. 96: 3460-3470.
67 Vallejo-Hernandez LH, Elghandour MM, Greiner R, Anele UY, Rivas-Caceres RR, Barros-Rodriguez M, et al. 2018. Environmental impact of yeast and exogenous xylanase on mitigating carbon dioxide and enteric methane production in ruminants. J. Clean. Prod. 189: 40-46.   DOI
68 Van Zijderveld SM, Gerrits WJ, Apajalahti JA, Newbold JR, Dijkstra J, Leng RA, et al. 2010. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93: 5856-5866.   DOI
69 Callaway TR, Edrington TS, Rychlik JL, Genovese KJ, Poole TL, Jung YS, et al. 2003. Ionophores: their use as ruminant growth promotants and impact on food safety. Curr. Issues Intest. Microbiol. 4: 43-51.
70 Chen H, Gan Q, Fan C. 2020. Methyl-coenzyme M reductase and its post-translational modifications. Front. Microbiol. 11: 578356.   DOI
71 Haisan J, Sun Y, Guan LL, Beauchemin KA, Iwaasa A, Duval S, et al. 2014. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 97: 3110-3119.   DOI
72 Woodward SL, Waghorn GC, Ulyatt MJ, Lassey KR. 2001. Early indications that feeding Lotus will reduce methane emissions from ruminants. In Proceedings-New Zealand Society of Animal Production. Vol. 61. pp. 23-26.
73 Vyas D, McGeough EJ, McGinn SM, McAllister TA, Beauchemin KA. 2014. Effect of Propionibacterium spp. on ruminal fermentation, nutrient digestibility, and methane emissions in beef heifers fed a high-forage diet. J. Anim. Sci. 92: 2192-2201.   DOI
74 Mitsumori M, Ajisaka N, Tajima K, Kajikawa H, Kurihara M. 2002. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 35: 251-255.   DOI
75 Yadeghari S, Malecky M, Banadaky MD, Navidshad B. 2015. Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis. In Veterinary Research Forum. Vol. 6. pp. 285. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
76 Appuhamy JR, Strathe AB, Jayasundara S, Wagner-Riddle C, Dijkstra J, France J, et al. 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. J. Dairy Sci. 96: 5161-5173.   DOI
77 Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, et al. 2020. Seaweed and seaweed bioactives for mitigation of enteric methane: challenges and opportunities. Animals 10: 2432.   DOI
78 Ozkan CO, Kamalak A, Atalay AI, Tatliyer A, Kaya E. 2015. Effect of peppermint (Mentha piperita) essential oil on rumen microbial fermentation of barley grain. J. Appl. Anim. Res. 43: 287-290.   DOI
79 Beyzi SB. 2020. Effect of lavender and peppermint essential oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Buffalo Bull. 39: 311-321.
80 Guyader J, Eugene M, Doreau M, Morgavi DP, Gerard C, Martin C. 2017. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. J. Dairy Sci. 100: 1845-1855.   DOI
81 Animut G, Puchala R, Goetsch AL, Patra AK, Sahlu T, Varel VH, et al. 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 144: 212-227.   DOI
82 Leng RA, Preston TR, Inthapanya S. 2012. Biochar reduces enteric methane and improves growth and feed conversion in local "Yellow" cattle fed cassava root chips and fresh cassava foliage. Livest Res. Rural Dev. 24: 199.
83 Lee C, Beauchemin KA. 2014. A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 94: 557-570.   DOI
84 Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, et al. 2012. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481: 98-101.   DOI
85 Tong JJ, Zhang H, Jia WA, Yun LI, Mao SY, Xiong BH, Jiang LS. 2020. Effects of different molecular weights of chitosan on methane production and bacterial community structure in vitro. J. Integr. Agric. 19: 1644-1655.   DOI
86 Hackmann TJ, Spain JN. 2010. Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J. Dairy Sci. 93: 1320-1334.   DOI
87 Zanferari F, Vendramini TH, Rentas MF, Gardinal R, Calomeni GD, Mesquita LG, et al. 2018. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. J. Dairy Sci. 101: 10939-10952.   DOI
88 Jiao HP, Dale AJ, Carson AF, Murray S, Gordon AW, Ferris CP. 2014. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 97: 7043-7053.   DOI
89 Romero-Perez A, Okine EK, McGinn SM, Guan LL, Oba M, Duval SM, et al. 2015. Sustained reduction in methane production from long-term addition of 3-nitrooxypropanol to a beef cattle diet. J. Anim. Sci. 93: 1780-1791.   DOI
90 Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, Laconi EB, et al. 2018. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital. J. Anim. Sci. 17: 650-656.   DOI
91 Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi K, Kobayashi Y, et al. 2012. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br. J. Nutr. 108: 482-491.   DOI
92 Kobayashi Y. 2010. Abatement of methane production from ruminants: trends in the manipulation of rumen fermentation. Asian-Austral. J. Anim. Sci. 23: 410-416.   DOI
93 Boadi D, Benchaar C, Chiquette J, Masse D. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can. J. Anim. Sci. 84: 319-335.   DOI
94 Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, et al. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 145: 209-228.   DOI
95 Bergen WG, Bates DB. 1984. Ionophores: their effect on production efficiency and mode of action. J. Anim. Sci. 58: 1465-1483.   DOI
96 Owens FN, Secrist DS, Hill WJ, Gill DR. 1998. Acidosis in cattle: a review. J. Anim. Sci. 76: 275-286.   DOI
97 Halmemies-Beauchet-Filleau A, Rinne M, Lamminen M, Mapato C, Ampapon T, Wanapat M, et al. 2018. Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal 12: s295-309.   DOI
98 Richardson LF, Raun AP, Potter EL, Cooley CO, Rathmacher RP. 1976. Effect of monensin on rumen fermentation in vitro and in vivo. J. Anim. Sci. 43: 657-664.   DOI
99 Singh GP, Mohini M. 1999. Effect of different levels of rumensin in diet on rumen fermentation, nutrient digestibility and methane production in cattle. Asian-Austral. J. Anim. Sci. 12: 1215-1221.   DOI
100 Odongo NE, Bagg R, Vessie G, Dick P, Or-Rashid MM, Hook SE, et al. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. J. Dairy Sci. 90: 1781-1788.   DOI
101 McGuffey RK, Richardson LF, Wilkinson JI. 2001. Ionophores for dairy cattle: current status and future outlook. J. Dairy Sci. 84: E194-203.   DOI
102 Salter AM. 2017. Improving the sustainability of global meat and milk production. Proc. Nutr. Soc. 76: 22-27.   DOI
103 Heilig GK. 1994. The greenhouse gas methane (CH 4): sources and sinks, the impact of population growth, possible interventions. Popul. Environ. 16: 109-137.   DOI
104 Cammack KM, Austin KJ, Lamberson WR, Conant GC, Cunningham HC. 2018. Ruminant nutrition symposium: tiny but mighty: the role of the rumen microbes in livestock production. J. Anim. Sci. 96: 752-770.
105 FAO. 2006. In: Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (eds) Livestock's long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, ISBN: 978-92-5-105571-7.
106 Giger-Reverdin S, Sauvant D. 2000. Methane production in sheep in relation to concentrate feed composition from bibliographic data. Cah. Options Mediterr. 52: 43-46.
107 Lascano CE, Cardenas E. 2010. Alternatives for methane emission mitigation in livestock systems. R. Bras. Zootec. 39: 175-182.   DOI
108 Clauss M, Hofmann RR. 2014. The digestive system of ruminants, and peculiarities of (wild) cattle. Ecology, evolution and behaviour of wild cattle: Implications for conservation. pp. 57-62.
109 Russell JB, Houlihan AJ. 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol. Rev. 27: 65-74.   DOI
110 Dong Y, Bae HD, McAllister TA, Mathison GW, Cheng KJ. 1999. Effects of exogenous fibrolytic enzymes, α-bromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Can. J. Anim. Sci. 79: 491-498.   DOI
111 Counotte GH, Prins RA, Janssen RH, DeBie MJ. 1981. Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Appl. Environ. Microbiol. 42: 649-655.   DOI
112 Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94: 223-253.   DOI
113 Davoodi SM, Mesgaran MD, Vakili AR, Valizadeh R, Pirbalouti AG. 2019. In vitro effect of essential oils on rumen fermentation and microbial nitrogen yield of high concentrate dairy cow diet. Biosci. Biotechnol. Res. Asia 16: 333-341.   DOI
114 Mead LJ, Jones GA. 1981. Isolation and presumptive identification of adherent epithelial bacteria ("epimural" bacteria) from the ovine rumen wall. Appl. Environ. Microbiol. 41: 1020-1028.   DOI
115 Mathison GW, Okine EK, McAllister TA, Dong Y, Galbraith J, Dmytruk OI. 1998. Reducing methane emissions from ruminant animals. J. Appl. Anim. Res. 14: 1-28.   DOI
116 Islam M, Lee SS. 2019. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. J. Anim. Sci. Technol. 61: 122-137.   DOI
117 Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG. 2016. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 11: 12.
118 US EPA. 2013. Global mitigation of non-CO2 greenhouse gases: 2010-2030.
119 Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, et al. 2013. Greenhouse gas emissions from ruminant supply chains-A global life cycle assessment. Food and agriculture organization of the United Nations.
120 Rate NM. 2017. World Population Prospects: The 2017 Revision, United Nations Population Division. UN Data.
121 Chen J, Harstad OM, McAllister T, Dorsch P, Holo H. 2020. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agric. Scand. A-Anim. Sci. 69: 169-175.
122 Janssen PH, Kirs M. 2008. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74: 3619-3625.   DOI
123 De la Fuente G, Yanez-Ruiz DR, Seradj AR, Balcells J, Belanche A. 2019. Methanogenesis in animals with foregut and hindgut fermentation: a review. Anim. Prod. Sci. 59: 2109-2122.   DOI
124 Jeyanathan J, Martin C, Morgavi DP. 2014. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8: 250-261.   DOI
125 Vyas D, McGeough EJ, Mohammed R, McGinn SM, McAllister TA, Beauchemin KA. 2014. Effects of Propionibacterium strains on ruminal fermentation, nutrient digestibility and methane emissions in beef cattle fed a corn grain finishing diet. Animal 8: 1807-1815.   DOI
126 Vyas D, Alazzeh A, McGinn SM, McAllister TA, Harstad OM, Holo H, et al. 2015. Enteric methane emissions in response to ruminal inoculation of Propionibacterium strains in beef cattle fed a mixed diet. Anim. Prod. Sci. 56: 1035-1040.   DOI
127 Jeyanathan J, Martin C, Eugene M, Ferlay A, Popova M, Morgavi DP. 2019. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Anim. Sci. Biotechnol. 10: 41.   DOI
128 Drake HL, Gossner AS, Daniel SL. 2008. Old acetogens, new light. Annal. NY Acad. Sci. 1125: 100-128.   DOI
129 Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F. 2007. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl. Environ. Microbiol. 73: 6391-6403.   DOI
130 Ribeiro Pereira LG, Machado FS, Campos MM, Guimaraes Junior R, Tomich TR, Reis LG, et al. 2015. Enteric methane mitigation strategies in ruminants: a review. Rev. Colom. Cienc. Pecu. 28: 124-143.
131 Johnson KA, Johnson DE. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483-2492.   DOI
132 Wang Y, McAllister TA. 2002. Rumen microbes, enzymes and feed digestion-a review. Asian-Australas. J. Anim. Sci. 15: 1659-1676.   DOI
133 Bergman EN, Reid RS, Murray MG, Brockway JM, Whitelaw FG, 1965. Interconversions and production of volatile fatty acids in the sheep rumen. Biochem. J. 97: 53-55.   DOI
134 Poulsen M, Schwab C, Borg Jensen B, Engberg RM, Spang A, Canibe N, et al. 2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4: 1428.   DOI
135 Sun K, Liu H, Fan H, Liu T, Zheng C. 2021. Research progress on the application of feed additives in ruminal methane emission reduction: a review. PeerJ. 9: e11151.   DOI
136 Matthews C, Crispie F, Lewis E, Reid M, O'Toole PW, Cotter PD. 2019. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 10: 115-132.   DOI
137 Iqbal MF, Cheng YF, Zhu WY, Zeshan B. 2008. Mitigation of ruminant methane production: current strategies, constraints and future options. World J. Microbiol. Biotechnol. 24: 2747-2755.   DOI
138 Toprak NN. 2015. Do fats reduce methane emission by ruminants? - A review. Anim. Sci. Pap. Rep. 33: 305-321.
139 Ragsdale SW, Pierce E. 2008. Acetogenesis and the wood-ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784: 1873-1898.   DOI
140 Seankamsorn A, Cherdthong A, Wanapat M. 2020. Combining crude glycerin with chitosan can manipulate in vitro ruminal efficiency and inhibit methane synthesis. Animals 10: 37.   DOI
141 Haque MN. 2018. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60: 15.   DOI