• Title/Summary/Keyword: Bioinformatic

Search Result 173, Processing Time 0.027 seconds

A Comparative Analysis of Monofunctional Biosynthetic Peptidoglycan Transglycosylase (MBPT) from Pathogenic and Non-pathogenic Bacteria

  • Baker, Andrew T.;Takahashi, Natsumi;Chandra, Sathees B.
    • Genomics & Informatics
    • /
    • v.8 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • Monofunctional biosynthetic peptidoglycan transglycosylase (MBPT) catalyzes the formation of the glycan chain in bacterial cell walls from peptidoglycan subunits: N-acetylglucosamine (NAG) and acetylmuramic acid (NAM). Bifunctional glycosyltransferases such as the penicillin binding protein (PBP) have peptidoglycan glycosyltransferase (PGT) on their C terminal end which links together the peptidoglycan subunits while transpeptidase (TP) on the N terminal end cross-links the peptide moieties on the NAM monosaccharide of the peptide subunits to create the bacterial cell wall. The singular function of MBPT resembles the C terminal end of PBP as it too contains and utilizes a similar PGT domain. In this article we analyzed the infectious and non infectious protein sequences of MBPT from 31 different strains of bacteria using a variety of bioinformatic tools. Motif analysis, dot-plot comparison, and phylogenetic analysis identified a number of significant differences between infectious and non-infectious protein sequences. In this paper we have made an attempt to explain, analyze and discuss these differences from an evolutionary perspective. The results of our sequence analysis may open the door for utilizing MBPT as a new target to fight a variety of infectious bacteria.

Biochemical Characterization of a Glycosyltransferase Homolog from an Oral Pathogen Fusobacterium nucleatum as a Human Glycan-Modifying Enzyme

  • Kim, Seong-Hun;Oh, Doo-Byoung;Kwon, Oh-Suk;Jung, Jae-Kap;Lee, Yun-Mi;Ko, Ki-Sung;Ko, Jeong-Heon;Kang, Hyun-Ah
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.859-865
    • /
    • 2008
  • Bacterial glycosyltransferases have drawn growing attention as economical enzymes for oligosaccharide synthesis, with their easy expression and relatively broad substrate specificity. Here, we characterized a glycosyltransferase homolog (Fnu_GT) from a human oral pathogen, Fusobacterium nucleatum. Bioinformatic analysis showed that Fnu_GT belongs to the glycosyltransferases family II. The recombinant Fnu_GT (rFnu_GT) expressed in Escherichia coli displayed the highest glycosylation activity when UDP-galactose (Gal) was used as a donor nucleotide-sugar with heptose or N-acetylglucosamine (GlcNAc) as an acceptor sugar. Interestingly, rFnu_GT transferred the galactose moiety of UDP-Gal to a nonreducing terminal GlcNAc attached to the trimannosyl core glycan, indicating its potential as an enzyme for human-type N-glycan synthesis.

Role of Helix 8 in Dopamine Receptor Signaling

  • Yang, Han-Sol;Sun, Ningning;Zhao, Xiaodi;Kim, Hee Ryung;Park, Hyun-Ju;Kim, Kyeong-Man;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.514-521
    • /
    • 2019
  • G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished ${\beta}$-arrestin-mediated desensitization, resulting in increased Gs signaling.

Proteomic Analysis on Exosomes Derived from Patients, Sera Infected with Echinococcus granulosus

  • Wang, Wen;Zhou, Xiaojing;Cui, Fang;Shi, Chunli;Wang, Yulan;Men, Yanfei;Zhao, Wei;Zhao, Jiaqing
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.489-497
    • /
    • 2019
  • Cystic echinococcosis (CE), a zoonotic disease caused by Echinococcus granulosus at the larval stage, predominantly develops in the liver and lungs of intermediate hosts and eventually results in organ malfunction or even death. The interaction between E. granulosus and human body is incompletely understood. Exosomes are nanosized particles ubiquitously present in human body fluids. Exosomes carry biomolecules that facilitate communication between cells. To the best of our knowledge, the role of exosomes in patients with CE is not reported. Here, we isolated exosomes from the sera of patients with CE (CE-exo) and healthy donors and subjected them to liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis identified 49 proteins specifically expressed in CE-exo, including 4 proteins of parasitic origin. The most valuable parasitic proteins included tubulin alpha-1C chain and histone H4. And 8 proteins were differentially regulated in CE-exo (fold change>1.5), as analyzed with bioinformatic methods such as annotation and functional enrichment analyses. These findings may improve our understanding about the interaction between E. granulosus and human body, and may contribute to the diagnosis and prevention of CE.

Recent next-generation sequencing and bioinformatic analysis methods for food microbiome research (식품 미생물 균총 연구를 위한 최신 마이크로바이옴 분석 기술)

  • Kwon, Joon-Gi;Kim, Seon-Kyun;Lee, Ju-Hoon
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.220-228
    • /
    • 2019
  • Rapid development of next-generation sequencing (NGS) technology is available to study microbes in genomic level. This NGS has been widely used in DNA/RNA sequencing for genome sequencing, metagenomics, and transcriptomics. The food microbiology area could be categorized into three groups. Food microbes including probiotics and food-borne pathogens are studied in genomic level using NGS for microbial genomics. While food fermentation or food spoilage are more complicated, their genomic study needs to be done with metagenomics using NGS for compositional analysis. Furthermore, because microbial response in food environments are also important to understand their roles in food fermentation or spoilage, pattern analysis of RNA expression in the specific food microbe is conducted using RNA-Seq. These microbial genomics, metagenomics, and transcriptomics for food fermentation and spoilage would extend our knowledge on effective utilization of fermenting bacteria for health promotion as well as efficient control of food-borne pathogens for food safety.

COEX-Seq: Convert a Variety of Measurements of Gene Expression in RNA-Seq

  • Kim, Sang Cheol;Yu, Donghyeon;Cho, Seong Beom
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.36.1-36.3
    • /
    • 2018
  • Next generation sequencing (NGS), a high-throughput DNA sequencing technology, is widely used for molecular biological studies. In NGS, RNA-sequencing (RNA-Seq), which is a short-read massively parallel sequencing, is a major quantitative transcriptome tool for different transcriptome studies. To utilize the RNA-Seq data, various quantification and analysis methods have been developed to solve specific research goals, including identification of differentially expressed genes and detection of novel transcripts. Because of the accumulation of RNA-Seq data in the public databases, there is a demand for integrative analysis. However, the available RNA-Seq data are stored in different formats such as read count, transcripts per million, and fragments per kilobase million. This hinders the integrative analysis of the RNA-Seq data. To solve this problem, we have developed a web-based application using Shiny, COEX-seq (Convert a Variety of Measurements of Gene Expression in RNA-Seq) that easily converts data in a variety of measurement formats of gene expression used in most bioinformatic tools for RNA-Seq. It provides a workflow that includes loading data set, selecting measurement formats of gene expression, and identifying gene names. COEX-seq is freely available for academic purposes and can be run on Windows, Mac OS, and Linux operating systems. Source code, sample data sets, and supplementary documentation are available as well.

Knockdown of Circ_0000144 Suppresses Cell Proliferation, Migration and Invasion in Gastric Cancer Via Sponging MiR-217

  • Ji, Fengcun;Lang, Chao;Gao, Pengfei;Sun, Huanle
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.784-793
    • /
    • 2021
  • Previous studies have uncovered the role of circ_0000144 in various tumors. Here, we investigated the function and mechanism of circ_0000144 in gastric cancer (GC) progression. The expression of circ_0000144 in GC tissues and cells was detected through quantitative real-time polymerase chain reaction (qRT-PCR) method. Gain- and loss-of-function experiments including colony formation, wound healing and transwell assays were performed to examine the role of circ_0000144 in GC cells. Furthermore, western blot was conducted to determine the expressions of epithelial mesenchymal transition (EMT)-related proteins. The interaction between circ_0000144 and miR-217 was analyzed by bioinformatic analysis and luciferase reporter assays. The circ_0000144 expression was obviously upregulated in GC tissues and cells. Silencing of circ_0000144 inhibited cell proliferation, migration and invasion of GC cells, but ectopic expression of circ_0000144 showed the opposite results. Moreover, circ_0000144 sponged miR-217, and rescue assays revealed that silencing miR-217 expression reversed the inhibitory effect of circ_0000144 knockdown on the progress of GC. Our findings reveal that circ_0000144 inhibition suppresses GC cell proliferation, migration and invasion via absorbing miR-217, providing a new biomarker and potential therapeutic target for treatment of GC.

Functional annotation of uncharacterized proteins from Fusobacterium nucleatum: identification of virulence factors

  • Kanchan Rauthan;Saranya Joshi;Lokesh Kumar;Divya Goel;Sudhir Kumar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.21.1-21.14
    • /
    • 2023
  • Fusobacterium nucleatum is a gram-negative bacteria associated with diverse infections like appendicitis and colorectal cancer. It mainly attacks the epithelial cells in the oral cavity and throat of the infected individual. It has a single circular genome of 2.7 Mb. Many proteins in F. nucleatum genome are listed as "Uncharacterized." Annotation of these proteins is crucial for obtaining new facts about the pathogen and deciphering the gene regulation, functions, and pathways along with discovery of novel target proteins. In the light of new genomic information, an armoury of bioinformatic tools were used for predicting the physicochemical parameters, domain and motif search, pattern search, and localization of the uncharacterized proteins. The programs such as receiver operating characteristics determine the efficacy of the databases that have been employed for prediction of different parameters at 83.6%. Functions were successfully assigned to 46 uncharacterized proteins which included enzymes, transporter proteins, membrane proteins, binding proteins, etc. Apart from the function prediction, the proteins were also subjected to string analysis to reveal the interacting partners. The annotated proteins were also put through homology-based structure prediction and modeling using Swiss PDB and Phyre2 servers. Two probable virulent factors were also identified which could be investigated further for potential drug-related studies. The assigning of functions to uncharacterized proteins has shown that some of these proteins are important for cell survival inside the host and can act as effective drug targets.

The pattern of coding sequences in the chloroplast genome of Atropa belladonna and a comparative analysis with other related genomes in the nightshade family

  • Satyabrata Sahoo;Ria Rakshit
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.43.1-43.18
    • /
    • 2022
  • Atropa belladonna is a valuable medicinal plant and a commercial source of tropane alkaloids, which are frequently utilized in therapeutic practice. In this study, bioinformatic methodologies were used to examine the pattern of coding sequences and the factors that might influence codon usage bias in the chloroplast genome of Atropa belladonna and other nightshade genomes. The chloroplast engineering being a promising field in modern biotechnology, the characterization of chloroplast genome is very important. The results revealed that the chloroplast genomes of Nicotiana tabacum, Solanum lycopersicum, Capsicum frutescens, Datura stramonium, Lyciumbarbarum, Solanum melongena, and Solanum tuberosum exhibited comparable codon usage patterns. In these chloroplast genomes, we observed a weak codon usage bias. According to the correspondence analysis, the genesis of the codon use bias in these chloroplast genes might be explained by natural selection, directed mutational pressure, and other factors. GC12 and GC3S were shown to have no meaningful relationship. Further research revealed that natural selection primarily shaped the codon usage in A. belladonna and other nightshade genomes for translational efficiency. The sequencing properties of these chloroplast genomes were also investigated by investing the occurrences of palindromes and inverted repeats, which would be useful for future research on medicinal plants.

Evolutionary Analyses of SSII-1 Gene Provides Insight into Its Domestication Signatures in Collected Rice Accessions

  • Thant Zin Maung;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.215-215
    • /
    • 2022
  • Starch synthase proteins (SSI, SSII and SSIII) in rice are mainly involved in amylopectin synthesis mediating its chain elongation, and the functional loss of SSII can increase amylose accumulation through decreasing of amylopectin chain proportions. For purposes of identifying functional haplotypes and evolutionary analyses of this gene, SSII-1, we investigated 374 rice accessions belonging to different subgroups of origins. We subsequently performed bioinformatic analyses on their variations through haplotyping, resequencing and structuring based on different classified populations. Haplotyping of cultivated rice accessions using genetic variations within SSII-1 genomic region of chromosome 10 revealed a total of 8 haplotypes, representing 6 functional haplotypes by 4 non-synonymous SNPs of three different exons (1, 4 and 10), which effect on protein structure. Higher nucleotide diversity value was found in wild group (0.0055) compared to any of cultivated subpopulations, of which aus showed the most reduction of diversity value (0.0003). Tajima's D analysis exhibits the most Tajima's D value only in admixture group (0.3600) which appears to be the cause of a sudden population contraction by rare alleles scarcity. A clear separation of some wild accessions from the admixed cultivated subpopulations was observed in PCA and phylogenetic analysis. Similar admixed pattern of population structure was estimated with an increased K values of 2 to 8 where genetic components of almost all cultivated subpopulations were shared with the wild which can also be subsequently estimated by very low FST-values by -0.011 (wild-aromatic) and -0.003 (wild-admixture).

  • PDF