DOI QR코드

DOI QR Code

The pattern of coding sequences in the chloroplast genome of Atropa belladonna and a comparative analysis with other related genomes in the nightshade family

  • Received : 2022.07.26
  • Accepted : 2022.12.12
  • Published : 2022.12.31

Abstract

Atropa belladonna is a valuable medicinal plant and a commercial source of tropane alkaloids, which are frequently utilized in therapeutic practice. In this study, bioinformatic methodologies were used to examine the pattern of coding sequences and the factors that might influence codon usage bias in the chloroplast genome of Atropa belladonna and other nightshade genomes. The chloroplast engineering being a promising field in modern biotechnology, the characterization of chloroplast genome is very important. The results revealed that the chloroplast genomes of Nicotiana tabacum, Solanum lycopersicum, Capsicum frutescens, Datura stramonium, Lyciumbarbarum, Solanum melongena, and Solanum tuberosum exhibited comparable codon usage patterns. In these chloroplast genomes, we observed a weak codon usage bias. According to the correspondence analysis, the genesis of the codon use bias in these chloroplast genes might be explained by natural selection, directed mutational pressure, and other factors. GC12 and GC3S were shown to have no meaningful relationship. Further research revealed that natural selection primarily shaped the codon usage in A. belladonna and other nightshade genomes for translational efficiency. The sequencing properties of these chloroplast genomes were also investigated by investing the occurrences of palindromes and inverted repeats, which would be useful for future research on medicinal plants.

Keywords

Acknowledgement

The research leading to these results received funding from the Science and Engineering Research Board, DST, Govt. of India, under the fixed grant scheme MATRICS [File No: MTR/2019/000274]. The author gratefully thanks financial support from the Science and Engineering Research Board, DST, Govt. of India.

References

  1. Hao DC, Gu XJ, Xiao PG. Medicinal Plants: Chemistry, Biology and Omics. Cambridge: Woodhead Publishing, 2015. pp. 49-96.
  2. Richter U, Rothe G, Fabian AK, Rahfeld B, Drager B. Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot 2005;56:645-652. https://doi.org/10.1093/jxb/eri067
  3. Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 2004;21:809-818.
  4. Zhang Y, Zhang A, Li X, Lu C. The role of chloroplast gene expression in plant responses to environmental stress. Int J Mol Sci 2020;21:6082.
  5. Salim HM, Cavalcanti AR. Factors influencing codon usage bias in genomes. J Braz Chem Soc 2008;19:257-262.
  6. Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci U S A 1988;85:2653-2657. https://doi.org/10.1073/pnas.85.8.2653
  7. Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 1986;24:28-38. https://doi.org/10.1007/BF02099948
  8. Lobry JR, Gautier C. Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res 1994;22: 3174-3180. https://doi.org/10.1093/nar/22.15.3174
  9. Liu H, He R, Zhang H, Huang Y, Tian M, Zhang J. Analysis of synonymous codon usage in Zea mays. Mol Biol Rep 2010;37:677-684. https://doi.org/10.1007/s11033-009-9521-7
  10. Zhang D, Hu P, Liu T, Wang J, Jiang S, Xu Q, et al. GC bias lead to increased small amino acids and random coils of proteins in cold-water fishes. BMC Genomics 2018;19:315.
  11. Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A 1999;96:4482-4487. https://doi.org/10.1073/pnas.96.8.4482
  12. Xie T, Ding D. The relationship between synonymous codon usage and protein structure. FEBS Lett 1998;434:93-96. https://doi.org/10.1016/S0014-5793(98)00955-7
  13. Osawa S, Ohama T, Yamao F, Muto A, Jukes TH, Ozeki H, et al. Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous two-codon sets. Proc Natl Acad Sci U S A 1988;85:1124-1128. https://doi.org/10.1073/pnas.85.4.1124
  14. Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 1994;136: 927-935. https://doi.org/10.1093/genetics/136.3.927
  15. Sharp PM, Stenico M, Peden JF, Lloyd AT. Codon usage: mutational bias, translational selection, or both? Biochem Soc Trans 1993;21:835-841. https://doi.org/10.1042/bst0210835
  16. Li G, Pan Z, Gao S, He Y, Xia Q, Jin Y, et al. Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis. Genes Genomics 2019;41:1173-1181. https://doi.org/10.1007/s13258-019-00847-1
  17. Wang HC, Hickey DA. Rapid divergence of codon usage patterns within the rice genome. BMC Evol Biol 2007;7 Suppl 1:S6.
  18. Wang L, Xing H, Yuan Y, Wang X, Saeed M, Tao J, et al. Genome-wide analysis of codon usage bias in four sequenced cotton species. PLoS One 2018;13:e0194372.
  19. Bennetzen JL, Hall BD. Codon selection in yeast. J Biol Chem 1982;257:3026-3031.
  20. Carbone A, Zinovyev A, Kepes F. Codon adaptation index as a measure of dominating codon bias. Bioinformatics 2003;19: 2005-2015. https://doi.org/10.1093/bioinformatics/btg272
  21. Das S, Roymondal U, Sahoo S. Analyzing gene expression from relative codon usage bias in yeast genome: a statistical significance and biological relevance. Gene 2009;443:121-131. https://doi.org/10.1016/j.gene.2009.04.022
  22. Das S, Roymondal U, Chottopadhyay B, Sahoo S. Gene expression profile of the cynobacterium synechocystis genome. Gene 2012;497:344-352.
  23. Fox JM, Erill I. Relative codon adaptation: a generic codon bias index for prediction of gene expression. DNA Res 2010;17:185-196. https://doi.org/10.1093/dnares/dsq012
  24. Khandia R, Singhal S, Kumar U, Ansari A, Tiwari R, Dhama K, et al. Analysis of nipah virus codon usage and adaptation to hosts. Front Microbiol 2019;10:886.
  25. Roymondal U, Das S, Sahoo S. Predicting gene expression level from relative codon usage bias: an application to Escherichia coli genome. DNA Res 2009;16:13-30. https://doi.org/10.1093/dnares/dsn029
  26. Supek F, Vlahovicek K. Comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinformatics 2005;6:182.
  27. Sharp PM, Li WH. The codon Adaptation Index: a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987;15:1281-1295. https://doi.org/10.1093/nar/15.3.1281
  28. Wright F. The 'effective number of codons' used in a gene. Gene 1990;87:23-29.
  29. Sueoka N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 1995;40:318-325. https://doi.org/10.1007/BF00163236
  30. Sahoo S, Das S. Analyzing gene expression and codon usage bias in diverse genomes using a variety of models. Curr Bioinform 2014;9:102-112.
  31. Sahoo S, Das S. Analyzing gene expression and codon usage bias in Metallosphaera sedula. J Bioinform Intell Control 2014;3:72-80. https://doi.org/10.1166/jbic.2014.1069
  32. Das S, Chottopadhyay B, Sahoo S. Comparative analysis of predicted gene expression among crenarchaeal genomes. Genomics Inform 2017;15:38-47.
  33. Sahoo S, Das SS, Rakshit R. Codon usage pattern and predicted gene expression in Arabidopsis thaliana. Gene X 2019;2:100012.
  34. Chen Y. A comparison of synonymous codon usage bias patterns in DNA and RNA virus genomes: quantifying the relative importance of mutational pressure and natural selection. Biomed Res Int 2013;2013:406342.
  35. Greenacre MJ. Theory and Applications of Correspondence Analysis. London: Academic Press, 1984.
  36. Perriere G, Thioulouse J. Use and misuse of correspondence analysis in codon usage studies. Nucleic Acids Res 2002;30:4548-4555. https://doi.org/10.1093/nar/gkf565
  37. Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM. The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 2002;19:1602-1612. https://doi.org/10.1093/oxfordjournals.molbev.a004222
  38. Zhao F, Yu CH, Liu Y. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res 2017;45:8484-8492. https://doi.org/10.1093/nar/gkx501
  39. Zhou Z, Dang Y, Zhou M, Li L, Yu CH, Fu J, et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 2016;113:E6117-E6125.
  40. Wu W, Yan Y. Chloroplast proteome analysis of Nicotiana tabacum overexpressing TERF1 under drought stress condition. Bot Stud 2018;59:26.
  41. Murchie AI, Lilley DM. The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion. Nucleic Acids Res 1987;15:9641-9654. https://doi.org/10.1093/nar/15.23.9641
  42. Lilley DM. The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci U S A 1980;77:6468-6472. https://doi.org/10.1073/pnas.77.11.6468
  43. Higgins DG, Thompson JD, Gibson TJ. Using CLUSTAL for multiple sequence alignments. Methods Enzymol 1996;266:383-402. https://doi.org/10.1016/S0076-6879(96)66024-8
  44. Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 2013;30:1229-1235. https://doi.org/10.1093/molbev/mst012
  45. Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, et al. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep 2006;25:1369-1379. https://doi.org/10.1007/s00299-006-0196-4