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Introduction 

Fusobacterium nucleatum strain ATCC 25586 is an anaerobic, gram-negative, and oppor-
tunistic pathogen which belongs to Bacteroidaceae family. Fusobacterium mostly inhabits 
the oral cavity and throat of the diseased as well as normal individuals by adhering 
(through FadA protein) and invading the epithelial cells of mouth and gut. This bacteri-
um forms a biofilm and alters the host immune response through the process of adhesion 
and invasion of critical organs like head, neck, lung, liver, heart, and brain. Fusobacterium 
infection can cause diseases like periodontitis, gingivitis, and appendicitis [1]. 

It has been reported that Fusobacterium crosses the placenta and causes preterm and 
still birth in women having pregnancy-associated gingivitis [2]. This bacterium is also 
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found to be associated with colorectal cancer progression in those 
patients who have been suffering from long-term intestinal bowel 
disease [3]. Antibiotics therapy and surgical treatment (in some 
cases) are used to treat several diseases caused by F. nucleatum. 
Continuous administration of these antibiotics can cause antimi-
crobial resistance in bacteria. Therefore, the identification of new 
therapeutic target and development of new drugs against this bac-
terium can help in reducing the burden of disease. 

Shotgun genome sequencing of F. nucleatum strain ATCC 
25586 reveals 2.17 Mb of genome containing a single circular 
chromosome having 27% GC content and 2,067 open reading 
frames [4]. Some of these open reading frames have been listed as 
“hypothetical” or “uncharacterized” proteins. These hypothetical 
proteins (HPs) are functionally and structurally uncharacterized 
and are classified into uncharacterized protein families and domain 
of unknown function classes. While many proteins are character-
ized during the sequencing itself, some of them remain uncharac-
terized due to lack of better sequence homolog or structurally re-
lated protein. It is therefore important to revisit such uncharacter-
ized proteins and assign them functions in the context of new sci-
entific knowledge. These previously uncharacterized proteins may 
yield interesting results and shed some light on functionality of a 
cell [5]. Many researchers have used this computer guided ap-
proach to functionally annotate the uncharacterized protein or HP 
from different organisms [6-8]. In the present study, we have at-
tempted the functional annotation of uncharacterized proteins 
present in the genome of F. nucleatum strain ATCC 25586. Out of 
398 uncharacterized proteins listed in F. nucleatum genome, we 
have assigned functions to 39 sequences with high confidence and 
another 7 with relatively low confidence. The receiver operating 
characteristics (ROC) analysis performed to evaluate the method-
ology adopted, yielded an average accuracy of 83 % across the pa-
rameters. 

Methods 

Sequence retrieval 
Proteome data of F. nucleatum strain ATCC 25586 was download-
ed using Proteome ID UP000002521 format from UniProt data-
base. Proteome of F. nucleatum strain ATCC 25586 contains 2,046 
proteins, out of which 398 proteins are listed as ‘uncharacterized 
proteins’. FASTA sequences of these 398 uncharacterized proteins 
were used for further analysis. 

Physicochemical properties 
Physical and chemical properties of a protein such as molecular 

weight, extinction coefficient, isoelectric point, grand average of 
hydropathicity, etc. were estimated through Expasy’s ProtParam 
program [9]. ProtParam computes physicochemical properties us-
ing the protein sequence only. Negative grand average value of hy-
dropathicity (GRAVY) shows the hydrophilic nature of protein 
and vice-versa. The instability index of less than 40 indicates a sta-
ble protein. 

Sub-cellular localization 
Prediction of protein localization was done through Cello server. 
It uses a hybrid approach i.e., support vector machines model and 
a structural homology approach for localization prediction [10]. 
SignalP 5.0 was used for predicting signal peptide and cleavage site 
in a protein’s sequence. Signal peptide is a small sequence present 
on the protein which directs them for movement to target position 
in the cell. Signal peptides are generally cleaved by signal pepti-
dases after the translocation. SignalP 5.0 uses a deep neural net-
work-based approach to identify the signal peptides [11]. 
TMHMM server was used for predicting the presence of trans-
membrane helices in a protein [12]. 

Domain identification 
The protein sequences were then subjected to domain identifica-
tion using the InterProScan, Motif, Smart, HMMER, NCBI 
CDART (Conserved Domain Architecture Retrieval Tool), and 
BlastP programs.  

InterProScan server classifies the protein sequences into homol-
ogous superfamily and identifies the functional domain based on 
information compiled from different databases. Besides this, Inter-
ProScan can also identify the presence of signal peptide and trans-
membrane helices in protein sequences [13]. Motif server was 
used for identification of motifs in a protein sequence which is 
available in GenomeNet database. SMART (Simple Modular Ar-
chitecture Research Tool) web server in combination with Uni-
Prot, Ensembl, and String database analyze the domain architec-
ture using per-species protein clustering procedure (normal mode) 
and completely sequenced genome (genomic mode) [14]. HM-
MER web server uses jack-hmmer algorithm for the annotation of 
protein sequence based on identified domain [15]. NCBI CDART 
performs an RPS-BLAST against Entrez protein database for do-
main similarity in query protein sequence [16]. BlastP uses heuris-
tic approach to identify the sequence similarity between input se-
quences and database sequences [17]. 

Performance assessment 
ROC, a web-based calculator was used to check the accuracy, sen-
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sitivity, and specificity of the different servers used in this study 
(Supplementary Table 1) [18]. About 50 proteins with known 
functions were randomly selected from F. nucleatum (Supplemen-
tary Table 1) and their functions were predicted against the same 
databases as used for the prediction of HPs in this study. Six-level 
classification of predictions were done using binary (0,1) format 
in which 0 represents true negative and 1 represents true positive. 
Integers ‘2’, ‘3’, ‘4’, and ‘5’ were used for the diagnosis of efficacy, 
higher the integer, higher the efficacy. ROC web server generates a 
ROC curve between sensitivity and 1-specificity, where area under 
the curve represents the effective measures of accuracy ranging 
from 0 to 1. The average accuracy and ROC area of the used data-
base/s were determined to be 83.6% and 0.90, respectively (Sup-
plementary Table 2). 

String analysis 
The functional partners reveal important information about a pro-
tein and its function. To search for such information, we subjected 
the 46 annotated proteins to the string database search [19]. After 
preliminary analysis, proteins with a confidence score of >1 were 
listed. 

Homology detection with the human proteins 
All the 46 annotated proteins were searched in BLASTp program 
against the human proteins (taxon id: 9606) in non-redundant da-
tabase. These proteins were also searched in DrugBank database 
for identification of any similar druggable candidates [20]. 

Structure prediction and modeling 
Homology-based structural modeling was carried out for the an-
notated proteins using Swiss PDB [21] and Phyre2 servers [22]. 
Templates with most sequence coverage were subsequently used 
for model building. Structure models were predicted for 25 anno-
tated proteins with identity ranging from 14% to 97%. Based on 
the annotations, we identified several proteins which might play 
important role in cell survival and therefore, can be a potential 
drug target. Models of some of these proteins were explored fur-
ther. The structure models were uploaded on PDBSum [23] page 
and their structural quality was assessed by PROCHECK [24]. 

Virulence prediction 
The annotated protein sequences were analyzed for virulence fac-
tor prediction using the VICMPred [25] and VirulentPred [26] 
softwares. Proteins which were determined as virulent factors by 
both programs were analyzed further.  

The characterization of the previously uncharacterized proteins 

employed a large number of available programs and servers which 
predict the essential parameters such as localization, domains, mo-
tifs, interactions, etc. The inference of the probable function for 
these proteins is based on the collective results of all these pro-
grams (Fig. 1). 

Fig. 1. Flowchart of methodology. The methodology adopted for 
functional annotation of uncharacterized proteins of Fusobacterium 
nucleatum included the servers for sequential characterization, 
sub-cellular location, domain and motif identification, structure 
prediction, and virulence factor identification. Only the results with 
high confidence are taken and the rest are excluded.
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Results and Discussion 

Physico-chemical parameters 
Assigning the function of HPs bridges the gap in the knowledge of 
protein structure-function relationship and may reveal informa-
tion about novel pathways responsible for pathogenesis. Based on 
the structural and functional information, they can be used as a 
drug targets or biomarkers for disease identification. Using differ-
ent online servers, we tried to annotate the HPs present in genome 
of Fusobacterium nucleatum subsp. nucleatum. Predicted physi-
co-chemical parameters of all uncharacterized protein/HP are tab-
ulated in Supplementary Table 3. These parameters provide an in-
sight into the protein, such as pI value, extinction coefficient, etc. 
HPs with following accession IDs Q8RDL8, Q8REK2, Q8RH50, 
and Q8RIC0 have not shown extinction coefficient value due to 
absence of cysteine, tryptophan, and tyrosine residue. Most of the 
proteins are hydrophilic in nature as they have low GRAVY value. 
Forty-three percent of the total uncharacterized proteins had the 
acidic pH (pH < 7) while the rest 57% were basic (pH ≥ 7) in na-
ture. 

Localization 
Cello server does not rely solely on the homology of the sequences 
but on the combination of two-level support vector machine clas-
sifiers to determine the subcellular location and thus, reduces the 
bias while increasing the accuracy [10]. Among 398 uncharacter-
ized proteins, most of the proteins (74%) were predicted to be lo-
calized in cytoplasm whereas 12% and 7% of proteins were local-

ized in the inner and outer membrane of the cell respectively. Only 
1% of the proteins were found to be localized extracellular and 6% 
of proteins were localized in periplasm (Fig. 2, Supplementary Ta-
ble 4). Presence of a signal peptide in a protein determines the 
translocation of protein inside or outside the cell. Signal peptide 
prediction was done using the SignalP 5.0 server which predicts its 
presence along with the location of their cleavage sites in bacterial 
proteins [27]. A total of 47 proteins were predicted to have signal 
peptide at their N-terminal, among which 30 proteins have stan-
dard signal peptide cleaved by signal peptidase I and the rest (17) 
have lipoprotein signal peptide cleaved by signal peptidase II 
(SPII) (Supplementary Table 4). One hundred forty-one proteins 
were predicted to be transmembrane proteins which might be in-
volved in transport and signal transduction. Transmembrane pro-
teins, especially the outer membrane proteins of the gram-negative 
bacteria behave as virulence factors and also help the pathogen in 
escaping defence mechanism of host [28]. 

Domain identification 
Annotation of uncharacterized proteins using InterProScan, Motif, 
SMART, HMMER, NCBI CDART, and BlastP search led to the 
identification of 90 proteins having functional domains (Supple-
mentary Table 5). For increasing the accuracy of the results, we as-
signed the probable function to only those protein sequences 
whose conserved domains were predicted by two or more databas-
es. As per this convention, out of 90 HPs with functional domains, 
functions were successfully assigned to 39 proteins with high con-
fidence (Table 1) and other 7 proteins with relatively low confi-

Fig. 2. Sub-cellular localization. Pie-chart depicting the localization of uncharacterized proteins in Fusobacterium nucleatum as determined 
by the Cello server.
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dence (Table 2).  

Predicted function  
We could predict the function of 46 HPs out of which 17 proteins 
(37%) are enzymes, 5 (13%) are binding proteins, 10 regulatory 

proteins (21%), 3 transport proteins (6%), 2 are phage related 
(4%), 2 are membrane proteins (4%), and 7 proteins are involved 
in other functions (15%) (Fig. 3). 

Enzymes 
Enzymes are the proteins that catalyze various metabolic pathways 
essential for the survival of an organism. F. nucleatum uncharacter-
ized proteins with the following accession ID were identified as 
enzymes: Q8R669, Q8REG3, Q8REM4, Q8RFF3, Q8RFU1, 
Q8RGP8, Q8RH78, Q8RHS6, Q8RII7, Q8RE80, Q8RF13, 
Q8RFA9, Q8RHH4, Q8RI95, Q8RER1, Q8REJ6, and Q8REI4. 

Q8R669 belongs to a nucleoside phosphorylase superfamily in-
volved in S-adenosylmethionine mediated reaction. Enzymes of 
this family play a vital role in biofilm formation and pathogenesis 
of an organism. Q8R699 might be involved in these functions and 
can be used as a drug target for antimicrobial treatment [29]. 

Q8REG3 is D-component of 2-hydroxyglutaryl-CoA dehy-
dratase (HGD-D) which undergoes dehydration to form enoyl 
CoA for the fermentation of α-amino acid. HGD consist of 2 com-
ponents: component A which acts as an activator and component 
D which is a dehydratase enzyme. component A transfers electron 
to component D which in turn transfers electron to its substrate 
and thus perform the elimination of hydroxyl group [30]. 

Q8REM4 is a PGAP-1 like protein which encodes for glycosyl-
phosphatidylinositol (GPI) inositol deacylase responsible for 
deacylation and transport of GPI-anchored protein from endo-
plasmic reticulum to Golgi [31]. 

Q8RFF3 and Q8RF13 are L,D-transpeptidase (LDT) enzymes 
which catalyze the peptide bond formation between two adjacent 
meso-diaminopimelic acid resulting in peptide cross-linking 
during synthesis of peptidoglycan cell wall. LDT can be used as a 
drug target as it has a role in cell wall synthesis which is essential 
for survivability of bacteria [32]. 

Q8RFU1 is a LpxI metal dependent hydrolase that catalyzes wa-
ter mediated hydrolysis of β-phosphate of UDP-2,3-diacylglucos-

Table 1. List of Fusobacterium nucleatum uncharacterized proteins 
annotated with high confidence

S. No. Accession ID Identified protein
1 Q8RDP1 Kelch-repeat superfamily Protein
2 Q8RDY5 Translocon component of type III secretion system
3 Q8RE69 Glycine zipper domain containing protein
4 Q8REC7 Cas7 or DevR protein
5 Q8REG3 2-Hydroxyglutaryl-CoA dehydratase (HGD-D)
6 Q8REM4 PGAP-1 like protein
7 Q8RER4 Colicin V protein
8 Q8RFD4 RelB regulatory protein
9 Q8RFF3 L,D-transpeptidase
10 Q8RFU1 LpxI metal dependent hydrolase
11 Q8RGC0 PelG protein
12 Q8RGM7 Adhesion protein FadA
13 Q8RGP8 Arginine deiminase
14 Q8RGQ9 Four-carbon acid sugar kinase family protein
15 Q8RH78 Acyl-coenzyme A:6-aminopenicillanic acid 

acyl-transferase (AAT)
16 Q8RHE9 PilN protein
17 Q8RHQ2 Macro domain family protein
18 Q8RHR3 HEAT/Armadillo repeat protein
19 Q8RHS6 Type II S Restriction endonuclease
20 Q8RII7 YmdB like protein
21 Q8RE80 O-antigen ligase protein
22 Q8REK7 DNA binding winged-helix-turn-helix protein
23 Q8REQ3 SatD family protein
24 Q8RIP2 Adhesion protein FadA
25 Q8RF13 L,D-transpeptidase
26 Q8REC4 Phage resistance protein
27 Q8RFA9 DNA repair enzyme
28 Q8RHH4 PD-(D/E) XK nuclease
29 Q8REE9 FtsL/DivC protein
30 Q8REB2 Phage resistance protein
31 Q8RER1 Flavodoxin protein
32 Q8REJ6 Thioredoxin
33 Q8RGB9 PagP β-barrel protein
34 Q8RF83 Tetratricopeptide (TPR) repeat protein
35 Q8REI4 Cysteine protease PrP
36 Q8REC6 CRISPR-Cas protein
37 Q8RGG0 RseC/MucC protein
38 Q8RF29 DNA binding winged-helix-turn-helix protein
39 Q8R6K0 Adhesion protein FadA

Table 2. List of Fusobacterium nucleatum uncharacterized proteins 
with low confidence

S. No. Accession ID Identified protein
1 Q8R669 Nucleoside phosphorylase
2 Q8RF86 DNA helicase
3 Q8RG23 ParD antitoxin protein
4 Q8RID9 RecG helicase
5 Q8RG53 Tetratricopeptide (TPR) repeat protein
6 Q8RI95 Permuted papain-like amidase
7 Q8RH12 ABC transporter family protein
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amine into lipidX in lipid A biosynthesis. Lipid A is essential for 
pathogenesis and viability of bacteria, thus, making Q8RFU1 a 
therapeutic target [33,34]. 

Q8RGP8 was identified as arginine deiminase, a homolog of 
DDAH (N,N-dimethylarginine dimethylaminohydrolases) which 
belongs to superfamily amidinotransferase. Arginine deiminase is 
involved in arginine metabolism in which NH4

+ is produced. This 
NH4

+ protects the bacteria from host acidic environment by rais-
ing the cytoplasmic pH. Based on the above function, this enzyme 
can be used as a probable drug target [35,36]. Q8RH78 is predict-
ed to be an acyl-coenzyme A:6-aminopenicillanic acid acyl-trans-
ferase, known as the last enzyme that catalyzes the synthesis of an-
tibiotic in penicillin biosynthesis pathway [37]. 

Q8RHS6 was characterized as a type IS restriction endonucle-
ase that protects bacterial cell by recognizing and cleaving asym-
metric sequences of bacteriophage DNA [38]. Q8RII7 was identi-
fied as a YmdB-like protein which belongs to calcineurin-like 
phosphatase/phosphodiesterase family. YmdB contains binuclear 
metal center which helps in biofilm formation and motility regu-
lon expression [39]. 

Q8RE80 is an O-antigen ligase required for O-antigen ligation 
reaction in which lipid A attaches to core oligosaccharide and O 
antigen for the formation of lipopolysaccharide layer [40]. 

Q8RFA9 is a DNA repair enzyme protecting cell from the cyto-
toxic and mutagenic alkylating agents [41]. 

Q8RHH4 belongs to the PD-(D/E)XK nuclease superfamily 9 
involved in a variety of functions such as DNA restriction, repair, 
modification, tRNA splicing, transposon excision, Holliday junc-
tion resolving, Pol I termination, etc. [42].  

Q8RI95 is a permuted papain-like amidase enzyme thought to 
be involved in host-pathogen interactions and could be a potential 

drug target [43]. Q8RER1 is identified as small electron transfer 
protein known as flavodoxin. Flavodoxin proteins contain a 
non-covalently bonded flavin mononucleotide molecule as co-fac-
tor which also acts as a redox site [44]. This protein is involved in 
different metabolic pathways like nitrogen fixation and has the po-
tential to be used as a therapeutic target [45]. 

Q8REJ6 was characterized as a thioredoxin protein having a 
conserved ‘thioredoxin motif ’. Thioredoxins are involved in trans-
ferring of electrons from NADPH to thioredoxin via thioredoxin 
reductase. Thioredoxins have a role in DNA synthesis, protein re-
pair, sulfur assimilation and in oxidative stress [46]. Q8REI4 is a 
cysteine protease PrP, responsible for cleaving L27 protein for effi-
cient functioning of ribosome. Defective PrP leads to uncleaved 
L27 protein resulting in inhibition of bacterial growth [47]. 

Regulatory proteins 
A total of 10 proteins (Q8RDY5, Q8REC7, Q8RFD4, Q8RG23, 
Q8RHQ2, Q8RID9, Q8REK7, Q8RGG0, Q8RF29, and Q8REE9) 
were identified as regulatory proteins performing different functions. 

Q8RDY5 is a translocon component of type I secretion system 
which enhances the serine sensitivity in a cell as serine is known to 
cause the inhibition of bacterial growth [48]. Q8REC7 was identi-
fied as a Cas7 or DevR protein which along with DevS has a regu-
latory role in fruiting body development in Myxococcus xanthus 
[49]. Q8RFD4 may act as a RelB regulatory protein which is an 
anti-toxin component of type I toxin-antitoxin complex. RelB in-
hibits RelE (toxin) functioning and binds to Rel operator thus al-
lowing the transcriptional auto regulation [50]. Q8RG23 protein 
was identified as a ParD antitoxin protein, cognate of ParDE tox-
in-antitoxin system. ParE toxin inhibit the DNA synthesis and cell 
growth of bacteria. This activity of ParE is prevented by ParD anti-

Fig. 3. Probable functions of uncharacterized proteins. Chart shows the probable functions of uncharacterized proteins predicted based on 
domain and motif identification.
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toxin which performs dual function. N-terminal domain of ParD 
binds to DNA by Ribbon-Helix-Helix fold whereas C-terminal 
domain binds to its cognate part i.e., ParE antitoxin [51,52]. 

Q8RHQ2 protein belongs to a macro domain family, mainly 
present in pathogenic bacteria, archaea, single stranded viruses, and 
eukaryotes. Proteins with this domain, have diverse roles in regula-
tion of ADP-ribosylation, DNA repair, and transcriptional regula-
tion. Bacterial exotoxin mediates the ADP-ribosylation in target 
protein of host cell, thus contributing to the onset of infection [2]. 

Q8RID9 was predicted to be a RecG helicase which is a dou-
ble-stranded DNA translocase. RecG regulates DNA transcription 
and avoids origin-independent pathological DNA synthesis by 
targeting Holliday junctions, three strand junction, R-loops, and 
D-loops [53,54]. This protein also possesses a Schlafen domain 
which binds to DNA and is involved in various functions such as 
DNA metabolism, DNA repair, and protecting cell from foreign 
elements [55]. Q8RF29 and Q8REK7 are the transcriptional re-
pressor DNA binding winged-helix-turn-helix proteins belonging 
to Rrf2 transcriptional regulator family. Transcriptional repressor 
proteins contain [2Fe-2S]+ cluster which can repress the expres-
sion of the gene encoding for the Fe-S cluster assembly protein 
[56]. RseC/MucC is a transcriptional regulator localized in the in-
ner membrane of the cell. Q8RGG0 is identified as RseC/MucC 
protein which positively regulates the sigma (RpoE) transcription 
factor. RpoE plays important role in regulating the gene expression 
of proteins having extracellular functions [57]. 

Q8REE9 is a FtsL/DivC protein involved in bacterial cell divi-
sion. FtsL is a short protein which forms complex with 11 other 
proteins engaged in the synthesis of peptidoglycan wall [58]. 

Binding proteins 
We have identified five proteins (Q8RDP1, Q8RF86, Q8RGQ9, 
Q8RG53, and Q8RF83) involved in DNA, RNA, and protein 
binding. Q8RDP1 has a β-propeller domain that belongs to 
Kelch-repeat superfamily. Based on the function of Kelch-repeat, 
this protein is involved in a range of functions such as transcrip-
tional and cytoskeletal regulation, signal trafficking and can also 
act as a substrate adapter for E3 ubiquitin ligase [59]. Q8RF86 was 
identified as a DNA helicase that catalyzes the separation of dou-
ble stranded DNA when bound to a specific sequence in an ATP- 
dependent process [60]. Q8RGQ9 protein catalyzes ATP-depen-
dent phosphorylation of 4-carbon acid sugars and nucleotides by 
binding them through N & C terminal domains respectively [61]. 
Q8RG53 and Q8RF83 contain a tetratricopeptide repeat and it 
has been identified that proteins with this repeat are involved in 
virulence related functions [6,62]. 

Transport proteins 
Q8RGC0, Q8RHR3, and Q8RH12 were predicted as transport 
proteins. Q8RGC0 is a PelG protein involved in transport of poly-
saccharides outside the cell for the synthesis of the biofilm. Forma-
tion of biofilm causes resistance to anti-microbial treatment and 
host defense mechanism thus increasing the survival chance of 
bacteria [63]. Q8RGC0 can also serve as a therapeutic target 
against F. nucleatum infection. Q8RHR3 contains a HEAT/Arma-
dillo repeat which is present in nuclear protein transport complex 
[64]. Q8RH12 belongs to an ABC transporter family that trans-
ports nickel and cobalt. These transition metals act as cofactor for 
prokaryotic enzymes which are involved in various metabolic pro-
cesses [65]. 

Membrane proteins 
Q8RE69 and Q8RGB9 are the only proteins that were identified 
as membrane proteins. Q8RE69 possesses a glycine zipper domain 
responsible for right-handed helix packing in the structure of 
membrane protein [66] whereas Q8RGB9 was predicted as a 
PagP β-barrel outer membrane protein of gram-negative bacteria. 
OMPLA and PagP are the two β-barrel protein enzymes involved 
in bacterial lipid metabolism. PagP-mediated lipid metabolism 
promotes infection by providing the resistance to antimicrobial 
peptides [67]. 

Phage-related protein 
Q8REC4 and Q8REB2 proteins were recognized as the phage re-
sistance proteins. These proteins may form a part of abortive infec-
tion system which is involved in degradation of phage mRNA. 
This degradation of phage mRNA is brought about by halting the 
synthesis of phage proteins or by activation of the intracellular sen-
sors that activate other proteins of further pathways for the abol-
ishment of phage infection [68,69]. 

Other proteins 
Q8REQ3 protein of F. nucleatum belongs to SatD (secretion and 
acid tolerance) family having a role in acid resistance. This acid resis-
tance may act as a virulence factor for survival of cariogenic bacteria 
[70,71]. Proteins Q8R6K0, Q8RGM7, and Q8RIP2 were predicted 
to be adhesion protein FadA, which is known to be involved in at-
tachment and invasion of the host cells [72]. 

Q8RER4 was found to be involved in biosynthesis of colicin V, a 
bacteriocin, secreted by some bacteria for the intake of essential 
nutrients by inhibiting the growth of related strains [73]. Q8REC6 
belongs to the CRISPR-Cas’s system involved in defense mecha-
nism of prokaryotes against foreign substances [49]. Q8RHE9 
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protein was identified as a PilN, subunit of type IV pili which is 
well known for cell attachment, biofilm formation, twitching mo-
tility, and pathogenesis. PilN subunit upon binding with PilM 
causes a structural change in PilM and induces the type IV pilus 
system function [74].  

String analysis  
String database contains the information on the functional and physi-
cal partners of the protein in a cell. Out of the 40 proteins searched on 
the string database, we got 30 with the confidence score > 1. Out of 
these 30 proteins, 9 had the confidence score ≥ 2.5 and had the maxi-
mum interacting partners. 

Q8RDP1, Q8REC7, Q8RER4, Q8RFU1, Q8RGC0, Q8RHE9, 
Q8RHQ2, and Q8RE80 showed the maximum interacting partners 
with Q8RHQ2 having 29 interactions (Supplementary Table 6). 

Homology detection with the human proteins 
Using protein BLAST to search for the homologous proteins in 
humans (Homo sapiens [taxid:9606]) revealed that out of the 36 
annotated uncharacterized proteins only 1 (Q8RHQ2) has ho-
mology with any human protein. Rest 45 proteins have no similar-
ity and can be used as probable drug target. Interestingly, on 
searching the DrugBank database for target sequences, out of all 
annotated proteins, only one protein which had similarity to F. nu-
cleatum protein Q8RHQ2 showed interaction with several drugs. 
No other protein was listed in the DrugBank database. 

Structure prediction and modeling 
Out of the 25 proteins (Table 3) for which we could find templates 
for homology modeling, we analyzed the structure of few import-
ant proteins. Three proteins Q8RGM7, Q8RHQ2, and Q8RII7 
shared maximum homology with their respective templates (93%, 
49%, and 50%, respectively). Another six functionally important 
proteins based on their annotation were also modeled. 

Q8RGM7 shares about 93% identity with the template protein 
and the model was prepared with 99.75% confidence. The struc-
ture showed two large α-helices running antiparallel to each other 
joined by a loop. FadA exists in two forms in F. nucleatum; as 129 
amino acid long non-secreted pre-FadA and 111 amino acid long 
mature secreted FadA. Ramachandran analysis shows all residues 
of the model in favorable region (Fig. 4A). 

Q8RHQ2 was identified as macrodomain containing protein 
with a function in ADP ribosylation. The structural modeling with 
Phyre2 returned the template as 4IQY which records the structure 
of a human protein-proximal ADP-ribosyl-hydrolase MacroD2 
[75]. Q8RHQ2 shares 49% sequence identity with the template 

protein. The final structure model comprised 172 amino acids 
containing 5 α helices and 6 β sheets. Ramachandran plot analysis 
showed 98.7% residues in allowed regions (Fig. 4B). 

Q8RII7 is annotated as YmdB-like protein belonging to calci-
neurin-like phosphatase/phosphodiesterase family which helps in 
biofilm production. Phyre2 search identified crystal structure of 
Bacillus subtilis YmdB (4B2O) [39] as the template for the model-
ing with 50% identity to the query sequence. Similar to the tem-
plate structure, the Q8RII7 model contained the conserved αββα 
architecture which is crucial for the co-ordination of two divalent 
metal ions. PROCHECK analysis showed 99.6 % residues in al-
lowed regions and only 0.4% in disallowed region of Ramachan-
dran plot (Fig. 4C). 

Q8RFU1 was modeled based on template with PDB id 4GGM 
(LpxI from Caulobacter crescentus) [33]. The prediction model 
was seen as a dimer. Q8RGP8 structure was obtained using the 
structure of ArgZ (PDB id: 6JUY), an arginine dehydrolase en-

Table 3. List of protein structures from Protein Data Bank used as 
templates for homology modeling of the uncharacterized proteins of 
Fusobacterium nucleatum

S. No. Accession Id Template Sequence identity
1 Q8RDP1 5YY8 18.9
2 Q8RE69 7MUS 33.9
3 Q8REC7 7TR9 17.8
4 Q8REM4 6WPY 15.5
5 Q8RF86 3LMM 14.1
6 Q8RFD4 4HV0 19.1
7 Q8RFU1 4GGM 26.1
8 Q8RG23 7ETR 26.8
9 Q8RGM7 3ETW 97.3
10 Q8RGP8 6JUY 17.2
11 Q8RGQ9 4XFM 22.4
12 Q8RH78 2X1C 17.1
13 Q8RHQ2 4IQY 49.7
14 Q8RHR3 4RV1 16.2
15 Q8RHS6 2EWF 19.2
16 Q8RID9 3LMM 19.3
17 Q8RII7 4B20 50.4
18 Q8REK7 7BOC 19.1
19 Q8RIP2 3ETW 27.9
20 Q8RER1 5MJI 19.5
21 Q8REI4 2G0I 20.9
22 Q8RH12 4HZU 22.8
23 Q8RGG0 6RAJ 20.3
24 Q8RF29 7B0C 22.4
25 Q8R6K0 3ETW 19.6
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Fig. 4. Structure modeling. Homology structure modeling and Ramachandran analysis of 3D structure using the Swiss-Model and 
PROCHECK were done for Q8RGM7 (A), Q8RHQ2 (B), and Q8RII7 (C).

AA

BB

CC

Q8RGM7

Q8RHQ2

Q8RII7

9 / 14https://doi.org/10.5808/gi.22065

Genomics & Informatics 2023;21(2):e21

https://doi.org/10.5808/gi.22065


zyme found in the ornithine-ammonia cycle in cyanobacteria [76]. 
Q8RGP8 also takes the 5-fold-pseudosymmetric structural ar-
rangement which is the signature motif of guandino-group modi-
fying enzyme superfamily. Our annotation has identified Q8RGP8 
as arginine deaminase enzyme. Q8RHS6 homology model was 
prepared using the template PDB 2EWF containing the structure 
of the larger subunit N.BspD6I of restriction endonuclease of Ba-
cillus sp. [77]. Q8REI4 model was based on the PDB 2G0I show-
ing the crystal structure of protein SMU.848 having unknown 
function from Streptococcus mutans [78]. Q8RFD4 has been anno-
tated as a regulatory protein and its structure was predicted using a 
homologous structure of AvtR, a novel transcriptional regulator 
from a hyperthermophilic archaeal Lipothrixvirus (PDB 4HV0) 
[79]. Q8RG23 was modelled on the structure of ParE SO Cop-A 
SO toxin-antitoxin system (PDB 7ETR) of Shewanella oneidensis 
[80] (Supplementary Fig. 1A–1F). 

Virulence prediction 
Q8RGP8 and Q8REQ3 were the common proteins listed as viru-
lence factors by both VICMpred and VirulentPred software. 
Q8RGP8 is annotated as Arginine deiminase which is important 

for defence mechanism of the bacteria. Arginine deiminase in-
creased expression has been found to be associated with the antibi-
otic resistance in Streptococcus bacteria by regulating the pH [81]. It 
has also been found to be important for survival of bacteria causing 
oral and dental infections [82,83]. String analysis of these two pro-
teins revealed their interacting partners. Q8RGP8 interacts with 
three other neighboring proteins namely Q8RGQ3 (FN0235) 
which is an ABC transporter ATP binding protein, Q8RGQ0 
(FN0236), an ATP transporter substrate binding protein and final-
ly Q8RGP9 (FN0237), an ABC transporter permease protein (Fig. 
5A). Arginine is known to be transported through a specialized 
ATP dependent transport system in Escherichia coli [84]. Similar 
system could also be present in the F. nucleatum which can be a lu-
crative drug target. Q8REQ3 is identified as SatD family protein 
having a role in acid resistance. Acid tolerance is essential for the 
survival of the cariogenic bacteria which forms a biofilm on teeth 
[71,85]. String analysis of Q8REQ3 displayed many interacting 
partners with this protein. Q8RE18 (FN1313) is one such protein 
which is an oligopeptide binding protein oppA which is involved 
in quorum sensing (Fig. 5B). Social behavior of the bacteria in bio-
films is found to be regulated by quorum sensing proteins and thus 

Fig. 5. Interaction analysis. STRING database was searched to identify the interacting partners of the Q8RGP8 (A) and Q8REQ3 (B). The 
colored nodes indicate the query proteins and the first shell of interactors, the white nodes indicate the second shell of interactors, the 
empty nodes represent proteins with an unknown three-dimensional structure, and the filled nodes represent proteins with a known or 
predicted three-dimensional structure.

AA BB
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the interaction of Q8REQ3 with the oppA protein is of much sig-
nificance [86]. The homology model of Q8RGP8 has already 
been discussed in section above. 

The functional annotation of non-characterized genes using re-
cent software and programs provides new insight into the probable 
functions of previously uncharacterized proteins. F. nucleatum 
strain ATCC 25586 genome has 398 uncharacterized proteins and 
we annotated 46 out of them. Physico-chemical parameter deter-
mination was done for all the uncharacterized proteins leading to 
prediction of their pI and approximate molecular weight. About 
43% of the proteins were shown to be acidic with pH of less than 7 
while 53% have pH of more than 7. Subcellular location of the 
proteins is an important determinant of its function, and it was 
predicted using the Cello, SignalP 5.0, and TMHMM servers. The 
majority of the proteins (75%) were seen to be localized in cyto-
plasm while 12% were outer membrane proteins. Searching for 
conserved sequential and structural features (domains and motifs) 
using the combined results obtained from InterProScan, Motif, 
SMART, HMMER, and NCBI-CDART programs identified 17 
proteins as enzymes, 10 have regulatory roles, 5 as binding pro-
teins and final 7 have other functions as transport, membrane pro-
teins, etc. Another seven proteins were also annotated based on 
the result of at least three of these programs. ROC analysis of the 
software and programs used for annotation show a reliable confi-
dence on the approach. Structural modeling was performed for 9 
proteins for which suitable templates with good homology were 
obtained using the Swiss-Model and Phyre2 servers. Two probable 
virulence-related proteins (Q8RGP8 and Q8REQ3) were also 
identified which provide excellent opportunity for their further 
detailed analysis as potent drug targets. This study has resulted in 
the identification of many interesting proteins which were previ-
ously mentioned as uncharacterized and can provide deep under-
standing of the biology of the pathogen with related experimental 
study. 
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