DOI QR코드

DOI QR Code

Proteomic Analysis on Exosomes Derived from Patients, Sera Infected with Echinococcus granulosus

  • Wang, Wen (School of Basic Medicine, Ningxia Medical University) ;
  • Zhou, Xiaojing (College of Clinical Medicine, Ningxia Medical University) ;
  • Cui, Fang (School of Basic Medicine, Ningxia Medical University) ;
  • Shi, Chunli (School of Basic Medicine, Ningxia Medical University) ;
  • Wang, Yulan (College of Clinical Medicine, Ningxia Medical University) ;
  • Men, Yanfei (College of Clinical Medicine, Ningxia Medical University) ;
  • Zhao, Wei (School of Basic Medicine, Ningxia Medical University) ;
  • Zhao, Jiaqing (School of Basic Medicine, Ningxia Medical University)
  • Received : 2019.04.24
  • Accepted : 2019.09.15
  • Published : 2019.10.31

Abstract

Cystic echinococcosis (CE), a zoonotic disease caused by Echinococcus granulosus at the larval stage, predominantly develops in the liver and lungs of intermediate hosts and eventually results in organ malfunction or even death. The interaction between E. granulosus and human body is incompletely understood. Exosomes are nanosized particles ubiquitously present in human body fluids. Exosomes carry biomolecules that facilitate communication between cells. To the best of our knowledge, the role of exosomes in patients with CE is not reported. Here, we isolated exosomes from the sera of patients with CE (CE-exo) and healthy donors and subjected them to liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis identified 49 proteins specifically expressed in CE-exo, including 4 proteins of parasitic origin. The most valuable parasitic proteins included tubulin alpha-1C chain and histone H4. And 8 proteins were differentially regulated in CE-exo (fold change>1.5), as analyzed with bioinformatic methods such as annotation and functional enrichment analyses. These findings may improve our understanding about the interaction between E. granulosus and human body, and may contribute to the diagnosis and prevention of CE.

Keywords

References

  1. Bold B, Hattendorf J, Shagj A, Tserendovdon B, Ayushkhuu T, Luvsandorj A, Zinsstag J, Junghanss T. Patients with cystic echinococcosis in the three national referral centers of Mongolia: A model for CE management assessment. PLoS Negl Trop Dis 2018; 12: e0006686. https://doi.org/10.1371/journal.pntd.0006686
  2. Larrieu E, Uchiumi L, Salvitti JC, Sobrino M, Panomarenko O, Tissot H, Mercapide CH, Sustercic J, Arezo M, Mujica G, Herrero E, Labanchi JL, Grizmado C, Araya D, Talmon G, Galvan JM, Sepulveda L, Seleiman M, Cornejo T, Echenique H, Del Carpio M. Epidemiology, diagnosis, treatment and follow-up of cystic echinococcosis in asymptomatic carriers. Trans R Soc Trop Med Hyg 2019; 113: 74-80. https://doi.org/10.1093/trstmh/try112
  3. Liu C, Zhang H, Yin J, Hu W. In vivo and in vitro efficacies of mebendazole, mefloquine and nitazoxanide against cyst echinococcosis. Parasitol Res 2015; 114: 2213-2222. https://doi.org/10.1007/s00436-015-4412-4
  4. Smego RJ Jr, Sebanego P. Treatment options for hepatic cystic echinococcosis. Int J Infect Dis 2005; 9: 69-76. https://doi.org/10.1016/j.ijid.2004.08.001
  5. Rigano R1, Profumo E, Bruschi F, Carulli G, Azzara A, Ioppolo S, Buttari B, Ortona E, Margutti P, Teggi A, Siracusano A. Modulation of human immune response by Echinococcus granulosus antigen B and its possible role in evading host defenses. Infect Immun 2001; 69: 288-296. https://doi.org/10.1128/IAI.69.1.288-296.2001
  6. Rostami-Rad S, Jafari R, Yousofi Darani H. Th1/Th2-type cytokine profile in C57 black mice inoculated with live Echinococcus granulosus protoscolices. J Infect Public Health 2018; 11: 834-839. https://doi.org/10.1016/j.jiph.2018.06.007
  7. Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, Nabavi SM, Curti V, Daglia M. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 2018; 36: 328-334. https://doi.org/10.1016/j.biotechadv.2017.12.010
  8. Andersson R, Refsing AP, Valen E, Core LJ, Bornholdt J, Boyd M, Heick JT, Sandelin A. Nuclear stability and transcriptional directionality separate functionally distinct RNA species. Nat Commun 2014; 5: 5336. https://doi.org/10.1038/ncomms6336
  9. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008; 319: 1244-1247. https://doi.org/10.1126/science.1153124
  10. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75: 193-208. https://doi.org/10.1007/s00018-017-2595-9
  11. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183: 1161-1172. https://doi.org/10.1084/jem.183.3.1161
  12. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654-659. https://doi.org/10.1038/ncb1596
  13. Wang M, Ji S, Shao G, Zhang J, Zhao K, Wang Z, Wu A. Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clin Transl Oncol 2018; 20: 906-911. https://doi.org/10.1007/s12094-017-1805-0
  14. Li TD, Zhang R, Chen H, Huang ZP, Ye X, Wang H, Deng AM, Kong JL. An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based diagnosis and classification of pancreatic cancer. Chem Sci 2018; 9: 5372-5382. https://doi.org/10.1039/C8SC01611A
  15. Park J, Hwang M, Choi B, Jeong H, Jung JH, Kim HK, Hong S, Park JH, Choi Y. Exosome Classification by Pattern Analysis of Surface-Enhanced Raman Spectroscopy Data for Lung Cancer Diagnosis. Anal Chem 2017; 89: 6695-6701. https://doi.org/10.1021/acs.analchem.7b00911
  16. Gualdron-Lopez M, Flannery EL, Kangwanrangsan N, Chuenchob V, Fernandez-Orth D, Segui-Barber J, Royo F, Falcon-Perez JM, Fernandez-Becerra C, Lacerda MVG, Kappe SHI, Sattabongkot J, Gonzalez JR, Mikolajczak SA, Del Portillo HA. Characterization of Plasmodium vivax proteins in plasma-derived exosomes from malaria-infected liver-chimeric humanized mice. Front Microbiol 2018; 9: 1271. https://doi.org/10.3389/fmicb.2018.01271
  17. Li Y, Liu Y, Xiu F, Wang J, Cong H, He S, Shi Y, Wang X, Li X, Zhou H. Characterization of exosomes derived from Toxoplasma gondii and their functions in modulating immune responses. Int J Nanomedicine 2018; 13: 467-477. https://doi.org/10.2147/IJN.S151110
  18. Pope SM, Lasser C. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation. J Extracell Vesicles 2013; 2: 22484. https://doi.org/10.3402/jev.v2i0.22484
  19. Samoil V, Dagenais M, Ganapathy V, Aldridge J, Glebov A, Jardim A, Ribeiro P. Vesicle-based secretion in schistosomes: analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni. Sci Rep 2018; 8: 3286. https://doi.org/10.1038/s41598-018-21587-4
  20. Siles-Lucas M, Sanchez-Ovejero C, Gonzalez-Sanchez M, Gonzalez E, Falcon-Perez JM, Boufana B, Fratini F, Casulli A, Manzano-Roman R. Isolation and characterization of exosomes derived from fertile sheep hydatid cysts. Vet Parasitol 2017; 236: 22-33. https://doi.org/10.1016/j.vetpar.2017.01.022
  21. Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 2013; 32: 2747-2755. https://doi.org/10.1038/onc.2012.295
  22. Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. PLoS Pathog 2013; 9: e1003484. https://doi.org/10.1371/journal.ppat.1003484
  23. Lee CH, Im EJ, Moon PG, Baek MC. Discovery of a diagnostic biomarker for colon cancer through proteomic profiling of small extracellular vesicles. BMC Cancer 2018; 18: 1058. https://doi.org/10.1186/s12885-018-4952-y
  24. Nicolao MC, Rodriguez RC, Cumino AC. Extracellular vesicles from Echinococcus granulosus larval stage: Isolation, characterization and uptake by dendritic cells. PLoS Negl Trop Dis 2019; 13: e0007032. https://doi.org/10.1371/journal.pntd.0007032
  25. Willis GR, Mitsialis SA, Kourembanas S. "Good things come in small packages": application of exosome-based therapeutics in neonatal lung injury. Pediatr Res 2018; 83: 298-307. https://doi.org/10.1038/pr.2017.256
  26. Meckes DG Jr1, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci USA 2013; 110: E2925-E2933. https://doi.org/10.1073/pnas.1303906110
  27. Nagarajah S. Exosome secretion - more than simple waste disposal? Implications for physiology, diagnostics and therapeutics. J Circ Biomark 2016; 5: 7. https://doi.org/10.5772/62975
  28. Madhavan B, Yue S, Galli U, Rana S, Gross W, Muller M, Giese NA, Kalthoff H, Becker T, Buchler MW, Zoller M. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer 2015; 136: 2616-2627. https://doi.org/10.1002/ijc.29324
  29. Zhao Z, Yang Y, Zeng Y, He M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 2016; 16: 489-496. https://doi.org/10.1039/C5LC01117E
  30. Sotillo J, Pearson M, Potriquet J, Becker L, Pickering D, Mulvenna J, Loukas A. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates. Int J Parasitol 2016; 46: 1-5. https://doi.org/10.1016/j.ijpara.2015.09.002
  31. Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, Baum J, Cowman AF. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 2013; 153: 1120-1133. https://doi.org/10.1016/j.cell.2013.04.029
  32. Zamanian M, Fraser LM, Agbedanu PN, Harischandra H, Moorhead AR, Day TA, Bartholomay LC, Kimber MJ. Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi. PLoS Negl Trop Dis 2015; 9: e0004069. https://doi.org/10.1371/journal.pntd.0004069
  33. Meningher T, Lerman G, Regev-Rudzki N, Gold D, Ben-Dov IZ, Sidi Y, Avni D, Schwartz E. Schistosomal MicroRNAs isolated from extracellular vesicles in sera of infected patients: a new tool for diagnosis and follow-up of human schistosomiasis. J Infect Dis 2017; 215: 378-386.
  34. Freeman DW, Noren HN, Eitan E, Green J, Mode NA, Bodogai M, Zhang Y, Lehrmann E, Zonderman AB, Biragyn A, Egan J, Becker KG, Mattson MP, Ejiogu N, Evans MK. Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes 2018; 67: 2377-2388. https://doi.org/10.2337/db17-1308
  35. Davidson SM, Riquelme JA, Zheng Y, Vicencio JM, Lavandero S, Yellon DM. Endothelial cells release cardioprotective exosomes that may contribute to ischaemic preconditioning. Sci Rep 2018; 8: 15885. https://doi.org/10.1038/s41598-018-34357-z
  36. Li D, Wang FJ, Yu L, Yao WR, Cui YF, Yang GB. Expression of pIgR in the tracheal mucosa of SHIV/SIV-infected rhesus macaques. Zool Res 2017; 38: 44-48.
  37. Gorrell RJ, Wijburg OL, Pedersen JS, Walduck AK, Kwok T, Strugnell RA, Robins-Browne RM. Contribution of secretory antibodies to intestinal mucosal immunity against Helicobacter pylori. Infect Immun 2013; 81: 3880-3893. https://doi.org/10.1128/IAI.01424-12
  38. Davids BJ, Palm JE, Housley MP, Smith JR, Andersen YS, Martin MG, Hendrickson BA, Johansen FE, Svard SG, Gillin FD, Eckmann L. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. J Immunol 2006; 177: 6281-6290. https://doi.org/10.4049/jimmunol.177.9.6281
  39. Johnston PF, Gerding DN, Knight KL. Protection from Clostridium difficile infection in CD4 T Cell- and polymeric immunoglobulin receptor-deficient mice. Infect Immun 2014; 82: 522-531. https://doi.org/10.1128/IAI.01273-13
  40. Stanganelli C, Travella A, Bezares R, Slavutsky I. Immunoglobulin gene rearrangements and mutational status in argentinian patients with chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk 2013; 13: 447-457. https://doi.org/10.1016/j.clml.2013.02.019
  41. Nishibori M, Wake H, Morimatsu H. Histidine-rich glycoprotein as an excellent biomarker for sepsis and beyond. Crit Care 2018; 22: 209. https://doi.org/10.1186/s13054-018-2127-5
  42. Shannon O, Rydengard V, Schmidtchen A, Morgelin M, Alm P, Sorensen OE, Bjorck L. Histidine-rich glycoprotein promotes bacterial entrapment in clots and decreases mortality in a mouse model of sepsis. Blood 2010; 116: 2365-2372. https://doi.org/10.1182/blood.v116.21.2365.2365
  43. Antony JS, Ojurongbe O, Kremsner PG, Velavan TP. Lectin complement protein Collectin 11 (CL-K1) and susceptibility to urinary schistosomiasis. PLoS Negl Trop Dis 2015; 9: e0003647. https://doi.org/10.1371/journal.pntd.0003647
  44. Chen B, Rao X, House MG, Nephew KP, Cullen KJ, Guo Z. GPx3 promoter hypermethylation is a frequent event in human cancer and is associated with tumorigenesis and chemotherapy response. Cancer Lett 2011; 309: 37-45. https://doi.org/10.1016/j.canlet.2011.05.013

Cited by

  1. Identification of Different Extracellular Vesicles in the Hydatid Fluid of Echinococcus granulosus and Immunomodulatory Effects of 110 K EVs on Sheep PBMCs vol.12, 2021, https://doi.org/10.3389/fimmu.2021.602717
  2. Extensive mitochondrial proteome disturbance occurs during the early stages of acute myocardial ischemia vol.23, pp.1, 2019, https://doi.org/10.3892/etm.2021.11008