Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.026

Role of Helix 8 in Dopamine Receptor Signaling  

Yang, Han-Sol (School of Pharmacy, Sungkyunkwan University)
Sun, Ningning (Department of Pharmacology, College of Pharmacy, Chonnam National University)
Zhao, Xiaodi (School of Pharmacy, Sungkyunkwan University)
Kim, Hee Ryung (School of Pharmacy, Sungkyunkwan University)
Park, Hyun-Ju (School of Pharmacy, Sungkyunkwan University)
Kim, Kyeong-Man (Department of Pharmacology, College of Pharmacy, Chonnam National University)
Chung, Ka Young (School of Pharmacy, Sungkyunkwan University)
Publication Information
Biomolecules & Therapeutics / v.27, no.6, 2019 , pp. 514-521 More about this Journal
Abstract
G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished ${\beta}$-arrestin-mediated desensitization, resulting in increased Gs signaling.
Keywords
GPCR; G protein; Helix 8; Dopamine receptor; Arrestin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu, S., Zhang, M., Davis, J. E., Wu, W. H., Surrao, K., Wang, H. and Wu, G. (2015) A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling. Cell. Signal. 27, 2371-2379.   DOI
2 Ahn, K. H., Nishiyama, A., Mierke, D. F. and Kendall, D. A. (2010) Hydrophobic residues in helix 8 of cannabinoid receptor 1 are critical for structural and functional properties. Biochemistry 49, 502-511.   DOI
3 Beaulieu, J. M. and Gainetdinov, R. R. (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182-217.   DOI
4 Edward Zhou, X., Melcher, K. and Eric Xu, H. (2019) Structural biology of G protein-coupled receptor signaling complexes. Protein Sci. 28, 487-501.
5 Faussner, A., Bauer, A., Kalatskaya, I., Schussler, S., Seidl, C., Proud, D. and Jochum, M. (2005) The role of helix 8 and of the cytosolic C-termini in the internalization and signal transduction of B(1) and B(2) bradykinin receptors. FEBS J. 272, 129-140.   DOI
6 Feierler, J., Wirth, M., Welte, B., Schussler, S., Jochum, M. and Faussner, A. (2011) Helix 8 plays a crucial role in bradykinin B(2) receptor trafficking and signaling. J. Biol. Chem. 286, 43282-43293.   DOI
7 Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272.   DOI
8 Hilger, D., Masureel, M. and Kobilka, B. K. (2018) Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4-12.   DOI
9 Kawasaki, T., Saka, T., Mine, S., Mizohata, E., Inoue, T., Matsumura, H. and Sato, T. (2015) The N-terminal acidic residue of the cytosolic helix 8 of an odorant receptor is responsible for different response dynamics via G-protein. FEBS Lett. 589, 1136-1142.   DOI
10 Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., Mordalski, S., Pin, J. P., Stevens, R. C., Vriend, G. and Gloriam, D. E. (2015) Generic GPCR residue numbers - aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36, 22-31.   DOI
11 Kuramasu, A., Sukegawa, J., Sato, T., Sakurai, E., Watanabe, T., Yanagisawa, T. and Yanai, K. (2011) The hydrophobic amino acids in putative helix 8 in carboxy-terminus of histamine H(3) receptor are involved in receptor-G-protein coupling. Cell. Signal. 23, 1843-1849.   DOI
12 Kaye, R. G., Saldanha, J. W., Lu, Z. L. and Hulme, E. C. (2011) Helix 8 of the M1 muscarinic acetylcholine receptor: scanning mutagenesis delineates a G protein recognition site. Mol. Pharmacol. 79, 701-709.   DOI
13 Kirchberg, K., Kim, T. Y., Moller, M., Skegro, D., Dasara Raju, G., Granzin, J., Buldt, G., Schlesinger, R. and Alexiev, U. (2011) Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc. Natl. Acad. Sci. U.S.A. 108, 18690-18695.
14 Kleinau, G., Jaeschke, H., Worth, C. L., Mueller, S., Gonzalez, J., Paschke, R. and Krause, G. (2010) Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLoS ONE 5, e9745.   DOI
15 Markx, D., Schuhholz, J., Abadier, M., Beier, S., Lang, M. and Moepps, B. (2019) Arginine 313 of the putative 8th helix mediates Galphaq/ 14 coupling of human CC chemokine receptors CCR2a and CCR2b. Cell. Signal. 53, 170-183.   DOI
16 Lan, H., Liu, Y., Bell, M. I., Gurevich, V. V. and Neve, K. A. (2009) A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol. Pharmacol. 75, 113-123.   DOI
17 Liggett, S. B., Caron, M. G., Lefkowitz, R. J. and Hnatowich, M. (1991) Coupling of a mutated form of the human beta 2-adrenergic receptor to Gi and Gs. Requirement for multiple cytoplasmic domains in the coupling process. J. Biol. Chem. 266, 4816-4821.   DOI
18 Macey, T. A., Gurevich, V. V. and Neve, K. A. (2004) Preferential interaction between the dopamine D2 receptor and Arrestin2 in neostriatal neurons. Mol. Pharmacol. 66, 1635-1642.   DOI
19 Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. and Caron, M. G. (1998) Dopamine receptors: from structure to function. Physiol. Rev. 78, 189-225.   DOI
20 Min, C., Zheng, M., Zhang, X., Caron, M. G. and Kim, K. M. (2013) Novel roles for beta-arrestins in the regulation of pharmacological sequestration to predict agonist-induced desensitization of dopamine D3 receptors. Br. J. Pharmacol. 170, 1112-1129.   DOI
21 Moritz, A. E., Free, R. B. and Sibley, D. R. (2018) Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds. Cell. Signal. 41, 75-81.   DOI
22 Namkung, Y., Dipace, C., Javitch, J. A. and Sibley, D. R. (2009) G protein-coupled receptor kinase-mediated phosphorylation regulates post-endocytic trafficking of the D2 dopamine receptor. J. Biol. Chem. 284, 15038-15051.   DOI
23 Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K. and Kobilka, B. K. (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549-555.   DOI
24 Okuno, T., Ago, H., Terawaki, K., Miyano, M., Shimizu, T. and Yokomizo, T. (2003) Helix 8 of the leukotriene B4 receptor is required for the conformational change to the low affinity state after G-protein activation. J. Biol. Chem. 278, 41500-41509.   DOI
25 Pandy-Szekeres, G., Munk, C., Tsonkov, T. M., Mordalski, S., Harpsoe, K., Hauser, A. S., Bojarski, A. J. and Gloriam, D. E. (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 46, D440-D446.   DOI
26 Rankovic, Z., Brust, T. F. and Bohn, L. M. (2016) Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett. 26, 241-250.   DOI
27 Sounier, R., Mas, C., Steyaert, J., Laeremans, T., Manglik, A., Huang, W., Kobilka, B. K., Demene, H. and Granier, S. (2015) Propagation of conformational changes during mu-opioid receptor activation. Nature 524, 375-378.   DOI
28 Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., Karlsson, A., Al-Lazikani, B., Hersey, A., Oprea, T. I. and Overington, J. P. (2017) A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19-34.   DOI
29 Schonegge, A. M., Gallion, J., Picard, L. P., Wilkins, A. D., Le Gouill, C., Audet, M., Stallaert, W., Lohse, M. J., Kimmel, M., Lichtarge, O. and Bouvier, M. (2017) Evolutionary action and structural basis of the allosteric switch controlling beta2AR functional selectivity. Nat. Commun. 8, 2169.   DOI
30 Smith, J. S., Lefkowitz, R. J. and Rajagopal, S. (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243-260.   DOI
31 Weis, W. I. and Kobilka, B. K. (2018) The molecular basis of g proteincoupled receptor activation. Annu. Rev. Biochem. 87, 897-919.   DOI
32 Westrich, L. and Kuzhikandathil, E. V. (2007) The tolerance property of human D3 dopamine receptor is determined by specific amino acid residues in the second cytoplasmic loop. Biochim. Biophys. Acta 1773, 1747-1758.   DOI
33 Zhang, X., Wang, F., Chen, X., Chen, Y. and Ma, L. (2008) Post-endocytic fates of delta-opioid receptor are regulated by GRK2-mediated receptor phosphorylation and distinct beta-arrestin isoforms. J. Neurochem. 106, 781-792.   DOI
34 Zhou, X. E., He, Y., de Waal, P. W., Gao, X., Kang, Y., Van Eps, N., Yin, Y., Pal, K., Goswami, D., White, T. A., Barty, A., Latorraca, N. R., Chapman, H. N., Hubbell, W. L., Dror, R. O., Stevens, R. C., Cherezov, V., Gurevich, V. V., Griffin, P. R., Ernst, O. P., Melcher, K. and Xu, H. E. (2017) Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457-469.e13.   DOI