• Title/Summary/Keyword: Biocontrol effect

Search Result 130, Processing Time 0.027 seconds

Study on Medium Ingredient Composition for Enhancing Biomass Productionand Anti-potato Common Scab Activity of Streptomyces sp. A020645 as a BCA Candidate (생물제제(BCA) 후보균주인 Streptomyces sp. A020645 의 대량 균체생산 및 항더뎅이병 활성증진을 위한 고체배지 조성에 관한 연구)

  • Lee, Hyang-Burm;Roh, Hyo-Young;Park, Dong-Jin;Lee, So-Keum;Ko, Young-wan;Koh, Jeong-Sam;Kim, Chang-Jin
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.66-71
    • /
    • 2005
  • The effect of medium components such as wheat bran, rice bran, oat meal, and soybean meal as basic ingredients and KH2PO4, glucose, and molasses as additives on mass production and anti-potato common scab activ ity of a streptomycete A020645 strain as a biocontrol agent (BCA) candidate was investigated. Of basicingredients, oat meal was the best one for mass poduction and enhancement of anti-potato common scabactivity. The biomass production of the active strain was more enhanced when 0.1-0.01.% glucose or molassesas additive were added into the basic medium. These information may have important implications in applying for effective formulation of BCA.

Isolation and Characterization of Indole-3-acetic acid- and 1-aminocylopropane-1-carboxylyic Acid Deaminase-producing Bacteria Related to Environmental Stress (환경스트레스와 관련된 indole-3-acetic acid 및 1-aminocylopropane-1-carboxylyic acid deaminase 활성을 갖는 박테리아의 분리와 특성 연구)

  • Kim, Hee Sook;Kim, Ji-Youn;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.390-400
    • /
    • 2019
  • In this study, strains isolated from soil samples collected from Busan, Changwon, and Jeju Island were examined to verify their abilities of phosphate solubilization and nitrogen fixation, production of indole-3-acetic acid (IAA), siderophore, and 1-aminocylopropane-1-carboxylyic acid (ACC) deaminase in order to select strains that promote plant growth and play a role in biocontrol of pests or pathogens. According to the results of this study, most of the isolated strains were found to have ability of phosphate solubilization, nitrogen fixation, IAA production, siderophore production, and production of ACC deaminase. These isolated strains might help plant growth by directly improving absorption of nutrients essential for phosphate solubilization and nitrogen fixation. In addition, they can promote plant growth and control resistance to plant diseases through extracellular enzyme activity and antifungal activity. In addition, most of the selected strains were found to survive in various environmental conditions such as temperature, salinity, and pH. Therefore, Pseudomonas plecoglossicida ANG14, Pseudarthrobacter equi ANG28, Beijerinckia fluminensis ANG34, and Acinetobacter calcoaceticus ANG35 were finally selected through a comparative advantage analysis to suggest their potential as novel biological agents. Further studies are necessary in order to prove their efficacy as novel biological agents through formulation and optimization of effective microorganisms, their preservation period, and crop cultivation tests.

Biological Control of Blue Mold of Apples by Bacillus spp. and Serratia marcescens (Bacillus spp. 및 Serratia marcescens에 의한 사과 푸른곰팡이병의 생물적 방제)

  • Kim, Yong-Ki;Lee, Seong-Don;Ryu, Jae-Gee;Ryu, Jae-Dang
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.229-236
    • /
    • 2003
  • The 1080 epiphytic bacteria obtained from 370 samples of pome and stone fruits including apple, pear, peach, grape, apricot and Chinese quince were screened for antagonistic activity against postharvest pathogens, Penicillium expansum, Alternaria alternata and Botrytis cinerea. Among tested antagonistic bacteria, eight bacterial isolates inhibited mycelial growth of the postharvest pathogens and were identified as Bacillus amyloliquefaciens (three strains), B. megaterium, B. subtilis var. gladioli, B. licheniformis, B. pumilus and Serratia marcescens based on biochemical characteristics and utility of carbon and nitrogen compounds (Biolog system). Eight carbohydrates were evaluated for their effect on mycelial growth and germination of the postharvest pathogen, P. expansum to select nutrients for enhancing bio-control efficacy. The growth of four selected antagonists, B. amyloliquefaciens P43-2, B. amyloliquefaciens A71-2, B. licheniformis P94-1, and S. marcescens P76-9 were also tested. As a result, 1% glucose (w/v) strongly stimulated growth of the antagonists, suppressed mycelial growth of the postharvest pathogen, and had a little comparatively stimulatory effect on germination of the the postharvest pathogen. It was confirmed that the addition of 1% glucose (w/v) greatly enhanced biocontrol effect of B. amyloliquefaciens P43-2, B. licheniformis P94-1, and S. marcescens P76-9. Application of B. amyloliquefaciens P43-2, B. licheniformis P94-1, and S. marcescens P76-9 with the addition of 1% glucose (w/v) increased the control efficacy up to 48%, 46%, 14% compared with those of the antagonists without glucose, respectively. When the antagonists were applied to control postharvest disease caused by P. expansum in apple wounds, the population of B. amyloliquefaciens P43-2 and B. licheniformis P94-1 increased until 4 days after inoculation (DAI) of the antagonists and then decreased from 10 DAI. Meanwhile the population of S. marcescens P76-9 decreased at early stage (4 DAI), but increased from 7 DAI, and finally maintained constantly until 10 DAI in apple wounds.

Biological Control of Garlic Blue Mold using Pantoea agglomerans S59-4 (Pantoea agglomerans S59-4를 이용한 마늘 푸른곰팡이병의 생물학적 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Jee, Hyung-Jin;Park, Jong-Ho;Han, Eun-Jung;Park, Kyung-Seok;Lee, Sang-Yeob;Lee, Seong-Don
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.148-156
    • /
    • 2010
  • S59-4 isolate was evaluated as a potential biocontrol agent using in vivo wounded garlic bulb assay. When the spore suspension ($10^5$ spores/$m\ell$) of Penicillium hirsutum was co-inoculated with cell suspension of S59-4 isolate on wounded garlics, the isolate showed high suppressive effect to disease development. The isolate was identified as Pantoea agglomerans S59-4(Pa59-4) through Biolog system. Furthermore, soaking garlic bulbs in the suspension of Pa59-4 significantly reduced garlic decay caused by P. hirsutum. The optimal concentration of Pa59-4 for controlling garlic blue mold was $10^7\sim10^8$ cfu/$m\ell$. And suppressive effect of Pa59-4 on garlic storage decay reduced as inoculation concentration of Penicillium hirsutum increased. In addition in order to investigate population dynamics of Pa59-4 on application site of garlic cloves, two antibiotic markers, pimaricin and vancomycin were selected. Bacterial density of Pa59-4 on the wounded garlic cloves increased continuously both under room temperature condition and low temperature condition until 30days after application of Pa59-4, meanwhile that of Pa59-4 on intact garlic cloves increased until 15days after application of Pa59-4 and thereafter decreased continuously. Two culture media for mass-production of Pa59-4, LB medium and TSB medium, were selected. By-product of bio-fungicide formulated by mixing white carbon and bacterial suspension of Pa59-4 suppressed by 40 to 50% garlic blue mold. Above results suggest that Pa59-4 be a promising control agent against garlic blue mold.

Effect of Korean Fermented Food Extracts and Bacteria Isolated from the Extracts for the Control of Rice Seed-borne Fungal Diseases (국산 발효식품 추출물과 발효식품유래 미생물을 활용한 벼 종자전염성 진균병 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Lee, Min-Ho;Park, Jong-Ho;Han, Eun-Jung;Choi, Eun-Jung;Bae, Soo-Il;Jee, Hyeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.383-395
    • /
    • 2014
  • When we investigated seed infestation by fungal pathogens from 51 varieties in 9 crops, the contamination rate of rice and sesame seeds was high. Therefore, to control seed-borne diseases, we obtained extracts from commercial products of Kimchi, Gochujang, Doenjang, Ganjang, Makgeolli and Tohajut and their suppressive effects against seed-borne diseases were studied. In addition, bacterial strains were screened to control rice seed-borne diseases in vitro and in vivo. Among forty food extracts, eleven food-extracts suppressed incidence of seedling rots in vitro and five food extracts increased 8-33% of healthy seedling in the greenhouse. Among 218 isolates from 40 fermented foods, 43 isolates showed high antifungal activity against seven fungal pathogens. When we tested 43 isolates for the reduction of rice seed borne disease, 32 isolates were able to reduce the rice seed borne disease. Among 32 isolates, 17 isolates reduced significantly seedling rot and increased healthy seedlings, the other isolates except for Kc4-2 and Mkl 2-2 increased shoot emergence and the percentage of healthy plants. Thirty isolates with high antifungal activity and suppressive effect against rice seedling rots were identified by 16S rRNA sequencing. Twenty one of thirty isolates were identified as Bacillus spp. Three isolates from Makgeolli were identified as Saccharomyces cerevisiae. B. amyloliquifaciens were isolated from six Korean traditional fermented foods except for Ganjang. B. amyloliquifaciens were majority in the effective bacterial population of Gochujang and Jutgal. Relatively diverse Bacillus species including B. subtilis, B. pumilus, and B. amyloliquificiens were isolated from Kimchi. The selected effective microorganisms from Korean fermented foods founded to be effective for controlling seed-borne diseases of rice in vitro and in the greenhouse. We think that Korean fermented foods and their useful microorganisms can be used as biocontrol agents for suppressing rice seed-borne diseases based on above described results.

Biocontrol of Damping-Off(Rhizoctonia solani) in Cucumber by Trichoderma asperellum T-5 (Trichoderma asperellum T-5를 이용한 오이 모잘록병(Rhizoctonia solani)의 생물학적 제어)

  • Ryu, Ji-Yeon;Jin, Rong-De;Kim, Yong-Woong;Lee, Hyang-Burm;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.185-194
    • /
    • 2006
  • A fungal strain of Trichoderma having strong chitinolytic activity was isolated from field soil enriched with crabshell for several years. Based on 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence analysis and morphological characteristics, the fungus was identified as Trichoderma asperellum and named as Trichoderma asperellum T-5 (TaT-5). The fungus released lytic enzymes such as chitinase and ${\beta}$-1, 3-glucanse, and produced six antifungal substances in chitin broth medium. To demonstrate the protective effect of TaT-5 against damping-off in cucumber plant caused by Rhizoctonia solani, TaT-5 culture broth (TA), chitin medium (CM) and distilled water (DW) were applied to each pot at 10 days after sowing, respectively. Then, the homogenized hyphae of R. solani were infected to each pot at 1 week after TaT-5 inoculation. During experimental period, fresh weight of shoot and root in cucumber plant more increased at TA treatment compared to other treatments. PR-proteins (${\beta}$-1, 3-glucanase and chitinase) activities in cucumber leaves markedly increased at CM and DW treatments, but the activity slightly increased and then decreased at TA treatment at 3 days after infection of R. solani. The activity of PR-proteins activities in cucumber roots at all treatments decreased with time where the degree of decrement was more alleviated at TA treatment than CM and DW. These results suggest that the lytic enzymes (chitinase and ${\beta}$-1, 3-glucanse) and antifungal substances produced by TaT-5 can reduce the pathogenic attack by R. solani in cucumber plants.

Biological Control of Diamondback Moth (Plutella xylostella L.) by Lysobacter antibioticus HS124 (Lysobacter antibioticus HS124를 이용한 배추좀나방 (Plutella xylostella L.)의 생물학적 방제)

  • Kang, Seong-Jun;Lee, Yong-Sung;Lee, So-Youn;Yun, Gun-Young;Hong, Sung-Hyun;Park, Yun-Suk;Kim, Ik-Soo;Park, Ro-Dong;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.659-666
    • /
    • 2010
  • Lysobacter antibioticus HS124 was isolated from rhizosphere soil in previous experiments, which produced lytic enzymes such as chitinase, gelatinase, lipase and protease. In addition, HS124 released an antibiotic compound, 4-hydroxyphenylacetic acid (4-HPAA). When larvae of P. xylostella was treated with HS124 culture broth, its body was destroyed, and degraded with the increase of incubation time, yielding glycine which was detected from HS124 culture broth. When 4-HPAA produced from HS124 was sprayed, larvae mortality increased with increasing concentration of 4-HPAA. When HS124 culture supplemented with Tween 80 was sprayed, its insecticidal activity against larvae was approximately 1.4 times higher compared to the culture without Tween 80. Insecticide (IS), HS124 culture broth (HS124), Magic-pi (MP) and HS124 culture broth+Magic-pi (HS124+MP) were each treated against larvae of P. xylostella to investigate their insecticidal effect where sterile diluted water (SDW) was used as a control. The highest mortality of larvae was found in HS124+MP, followed by IS, MP, HS124 and SDW respectively. Mortality of larvae in HS124 was 31% higher than that in SDW, but 41% lower than that in HS124+MP, meaning that both enzymes and antibiotics produced from HS124 may synergistically act as active agents with plant extract containing neem oil and turmeric in HS124+MP treatment. These results suggested that L. antibioticus HS124 together with plant extract can be one of candidates for biocontrol agents against Plutella xylostella.

Formulation of Bacillus amyloliquefaciens A-2 and Its Efficacy to Control Tomato Leaf Mold Caused by Fulvia fulva (길항세균 Bacillus amyloliquefaciens A-2를 이용한 토마토 잎곰팡이병 방제용 미생물 제제)

  • Kong, Hyun-Gi;Chun, Ock-Joo;Choi, Ki-Hyuck;Lee, Kwang-Youll;Baek, Joung-Woo;Kim, Hyun-Ju;Murugaiyan, Senthilkumar;Moon, Byung-Ju;Lee, Seon-Woo
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • This study was performed to develop a formulation using an antagonistic bacterium Bacillus amyloliquefaciens A-2 to control tomato leaf mold caused by Fulvia fulva. B. amyloliquefaciens A-2 was grown in a medium with rice oil and mixed with various carrier and additives. One of the formulations, A2-MP, showed the best disease control value among the tested formulations. The disease control value of A2-MP at 100-fold and 500-fold diluted treatment was not significantly different from that of chemical fungicide triflumizole in a growth chamber. Although disease control effect was decreased by serial diluted treatment of the prepared A2-MP, 1,000-fold diluted treatment of A2-MP still showed high disease control value of 72.0%. For the green house experiments, the disease control values of A2-MP was indicated as 79.4% which is similar to that of chemical fungicide, triflumizole showing 79.6%. When the disease control activity of the formulation A2-MP was compared in tomato production conditions, disease control values of 100-fold diluted A2-MP and 3,000 fold diluted triflumizole exhibited 60%, 81.6%, respectively. The disease control efficiency by A-2MP was 73% of the disease control value of chemical fungicide. The formulation A-2MP maintained the stable bacterial viability and disease control activity when stored at $4^{\circ}C$. This result suggested that A-2MP develped from B. amyloliquefaciens A-2 could be used to control tomato leaf mold.

Biological Control of Anthracnose (Colletotrichum gloeosporioides) in Red Pepper by Bacillus sp. CS-52 (Bacillus sp. CS-52를 이용한 고추 탄저병 (Colletotrichum gloeosporioides) 방제 특성)

  • Kwon, Joung-Ja;Lee, Jung-Bok;Kim, Beam-Soo;Lee, Eun-Ho;Kang, Kyeong-Muk;Shim, Jang-Sub;Joo, Woo-Hong;Jeon, Chun-Pyo;Kwon, Gi-Seok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • This study was carried out in order to develop a biological control of anthracnose of red pepper caused by fungal pathogens. In particular, this study focuses on the Colletotrichum species, which includes important fungal pathogens causing a great deal of damage to red pepper. Antagonistic bacteria were isolated from the soil of pepper fields, which were then tested for biocontrol activity against the Colletotrichum gloeosporioides anthracnose pathogen of pepper. Based on the 16S rRNA sequence analysis, the isolated bacterial strain CS-52 was identical to Bacillus sp. The culture broth of Bacillus sp. CS-52 had antifungal activity toward the hyphae and spores of C. gloeosporioides. Moreover, the substances with antifungal activity were optimized when Bacillus sp. CS-52 was grown aerobically in a medium composed of 0.5% glucose, 0.7% $K_2HPO_4$, 0.2% $KH_2PO_4$, 0.3% $NH_4NO_3$, 0.01% $MnSO_4{\cdot}7H_2O$, and 0.15% yeast extract at $30^{\circ}C$. The inhibition of spore formation resulting from cellulase, siderophores, and indole-3-acetic acid (IAA), were produced at 24 h, 48 h, and 72 h, respectively. Bacillus sp. CS-52 also exhibited its potent fungicidal activity against anthracnose in an in vivo test, at a level of 70% when compared to chemical fungicides. These results identified substances with antifungal activity produced by Bacillus sp. CS-52 for the biological control of major plant pathogens in red pepper. Further studies will investigate the synergistic effect promoting better growth and antifungal activity by the formulation of substances with antifungal activity.

Biological Control of Root-knot Nematode by Streptomyces sampsonii KK1024 (Streptomyces sampsonii KK1024를 이용한 뿌리혹선충 (Root-knot nematode)의 생물학적 방제)

  • Kim, Sang-Su;Kang, Seon-I;Kim, Jin-Si;Lee, Yong-Sung;Hong, Sung-Hyun;Naing, Kyaw Wai;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1150-1157
    • /
    • 2011
  • Streptomyces sampsonii KK1024 having strong chitinolytic activity was isolated from crab-shell rich soil at Muan, Jeolanamdo. The KK1024 produced chitinase, protease, gelatinase and lipase. When 50% of KK1024 culture broth was treated to juveniles and eggs of root-knot nematode, juvenile mortality at 3 days was 81.67% and egg hatch rate at 5 days was 2.00%. When $183.7{\mu}g\;mL^{-1}$ of crude enzyme produced by KK1024 was treated, juvenile mortality at 3 days was 96.00% and egg hatch rate at 5 days was 5.33%. At 1% of butanol extract from KK1024, juvenile mortality was highest with 90.00% and egg hatch rate was lowest with 0%. The comparison of the effect of KK1024 culture broth with only medium, synthetic fertilizer, and commercial nematicide on tomato growth and nematode infection was examined in pot trials. KK1024 culture broth showed lower number of egg mass and gall in plant, and population of juveniles in soil compared with only medium and synthetic fertilizer treatment, but not in commercial nematicide. However, the highest shoot weight and length was discovered in KK1024 culture broth. These results suggest that Streptomyces sampsonii KK1024 producing lytic enzymes and nematicidal compounds can be one of candidates for biocontrol agents against root-knot nematodes.