• 제목/요약/키워드: Binet formula

검색결과 9건 처리시간 0.017초

A NOTE ON THE MODIFIED k-FIBONACCI-LIKE SEQUENCE

  • Kwon, Youngwoo
    • 대한수학회논문집
    • /
    • 제31권1호
    • /
    • pp.1-16
    • /
    • 2016
  • The Fibonacci sequence is a sequence of numbers that has been studied for hundreds of years. In this paper, we introduce the modified k-Fibonacci-like sequence and prove Binet's formula for this sequence and then use it to introduce and prove the Catalan, Cassini, and d'Ocagne identities for the modified k-Fibonacci-like sequence. Also, the ordinary generating function of this sequence is stated.

ON SOME BEHAVIOR OF INTEGRAL POINTS ON A HYPERBOLA

  • Kim, Yeonok
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1243-1259
    • /
    • 2013
  • In this paper, we study the root system of rank 2 hyperbolic Kac-Moody algebras. We give some sufficient conditions for the existence of imaginary roots of square length $-2k(k{\in}\mathbb{Z}_{>0}$. We also give several relations between the integral points on the hyperbola $\mathfrak{h}$ to show that the value of the symmetric bilinear form of any two integral points depends only on the number of integral points between them. We also give some generalizations of Binet formula and Catalan's identity.

LINEARLIZATION OF GENERALIZED FIBONACCI SEQUENCES

  • Jang, Young Ho;Jun, Sang Pyo
    • Korean Journal of Mathematics
    • /
    • 제22권3호
    • /
    • pp.443-454
    • /
    • 2014
  • In this paper, we give linearization of generalized Fi-bonacci sequences {$g_n$} and {$q_n$}, respectively, defined by Eq.(5) and Eq.(6) below and use this result to give the matrix form of the nth power of a companion matrix of {$g_n$} and {$q_n$}, respectively. Then we re-prove the Cassini's identity for {$g_n$} and {$q_n$}, respectively.

ON CONDITIONALLY DEFINED FIBONACCI AND LUCAS SEQUENCES AND PERIODICITY

  • Irby, Skylyn;Spiroff, Sandra
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.1033-1048
    • /
    • 2020
  • We synthesize the recent work done on conditionally defined Lucas and Fibonacci numbers, tying together various definitions and results generalizing the linear recurrence relation. Allowing for any initial conditions, we determine the generating function and a Binet-like formula for the general sequence, in both the positive and negative directions, as well as relations among various sequence pairs. We also determine conditions for periodicity of these sequences and graph some recurrent figures in Python.

SOME REMARKS ON THE PERIODIC CONTINUED FRACTION

  • Lee, Yeo-Rin
    • 충청수학회지
    • /
    • 제22권2호
    • /
    • pp.155-159
    • /
    • 2009
  • Using the Binet's formula, we show that the quotient related ratio $l_{1(x)}\;\neq\;0$ for the eventually periodic continued fraction x. Using this ratio, we also show that the derivative of the Minkowski question mark function at the simple periodic continued fraction is infinite or 0. In particular, $l_1({[\bar{1}]})$ = 2 log $\gamma$ where $\gamma$ is the golden mean $(1+\sqrt{5})/2$ and the derivative of the Minkowski question mark function at the simple periodic continued fraction $[\bar{1}]$ is infinite.

  • PDF

GENERALIZED PADOVAN SEQUENCES

  • Bravo, Jhon J.;Herrera, Jose L.
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.977-988
    • /
    • 2022
  • The Padovan sequence is the third-order linear recurrence (𝓟n)n≥0 defined by 𝓟n = 𝓟n-2 + 𝓟n-3 for all n ≥ 3 with initial conditions 𝓟0 = 0 and 𝓟1 = 𝓟2 = 1. In this paper, we investigate a generalization of the Padovan sequence called the k-generalized Padovan sequence which is generated by a linear recurrence sequence of order k ≥ 3. We present recurrence relations, the generalized Binet formula and different arithmetic properties for the above family of sequences.

Generalized k-Balancing and k-Lucas Balancing Numbers and Associated Polynomials

  • Kalika Prasad;Munesh Kumari;Jagmohan Tanti
    • Kyungpook Mathematical Journal
    • /
    • 제63권4호
    • /
    • pp.539-550
    • /
    • 2023
  • In this paper, we define the generalized k-balancing numbers {B(k)n} and k-Lucas balancing numbers {C(k)n} and associated polynomials, where n is of the form sk+r, 0 ≤ r < k. We give several formulas for these new sequences in terms of classic balancing and Lucas balancing numbers and study their properties. Moreover, we give a Binet style formula, Cassini's identity, and binomial sums of these sequences.

Minimal Generators of Syzygy Modules Via Matrices

  • Haohao Wang;Peter Oman
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.197-204
    • /
    • 2024
  • Let R = 𝕂[x] be a univariate polynomial ring over an algebraically closed field 𝕂 of characteristic zero. Let A ∈ Mm,m(R) be an m×m matrix over R with non-zero determinate det(A) ∈ R. In this paper, utilizing linear-algebraic techniques, we investigate the relationship between a basis for the syzygy module of f1, . . . , fm and a basis for the syzygy module of g1, . . . , gm, where [g1, . . . , gm] = [f1, . . . , fm]A.