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GENERALIZED PADOVAN SEQUENCES

Jhon J. Bravo and Jose L. Herrera

Abstract. The Padovan sequence is the third-order linear recurrence

(Pn)n≥0 defined by Pn = Pn−2 + Pn−3 for all n ≥ 3 with initial condi-

tions P0 = 0 and P1 = P2 = 1. In this paper, we investigate a generaliza-
tion of the Padovan sequence called the k-generalized Padovan sequence

which is generated by a linear recurrence sequence of order k ≥ 3. We
present recurrence relations, the generalized Binet formula and different

arithmetic properties for the above family of sequences.

1. Introduction

There are currently several integer sequences widely studied which are used
in almost every field of modern sciences. A classic example is the Fibonacci se-
quence F = (Fn)n≥0 which has an extensive bibliography describing its curious
properties. The Fibonacci sequence has been generalized in many ways, some
by preserving the initial conditions, and others by preserving the recurrence
relation. Cooper-Howard [14] and Dresden-Du [8] investigated a generaliza-
tion of the Fibonacci sequence given by a recurrence relation of a higher order.
They considered, for an integer k ≥ 2, the k-Fibonacci sequence which is like
the Fibonacci sequence but starting with 0, 0, . . . , 0, 1 (a total of k terms) and
each term afterwards is the sum of the k preceding terms. Many arithmetic
properties have recently been studied for generalized Fibonacci sequences. For
instance, to cite only a few examples, Fibonacci numbers, and more generally
k-Finonacci numbers, which are repdigits were studied in [3,16,17]. Particular
representations of k-Fibonacci numbers were treated in [1] and [2]. We refer to
[4] and [13] for results on the largest prime factor of k-Fibonacci numbers.

A relatively young sequence as important as the Fibonacci sequence is the
Padovan sequence, named after the mathematician R. Padovan who attributed
its discovery to Dutch architect Dom Hans van der Laan in his 1994 essay Dom
Hans van der Laan: Modern Primitive [19]. The Padovan sequence, denoted by
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P = (Pn)n≥0 is the ternary recurrence sequence given by P0 = 0, P1 = P2 = 1
and the recurrence formula Pn = Pn−2 + Pn−3 for all n ≥ 3 (see, sequence
A000931 in Sloane’s Encyclopedia [20]).

Recently several authors have studied arithmetic problems involving terms
of the Padovan sequence. For example, Steward in [21] asked for the intersec-
tion of the Fibonacci and Padovan sequences, while De weger in [22] solved this
problem by proving that the distance between Fibonacci and Padovan num-
bers growths exponentially. Diophantine equations involving Padovan numbers
have been also considered. For example, Garćıa and Hernández found all the
repdigits and the powers of 2 that can be written as sums of two Padovan num-
bers (for more details see [10,11]). Additionally, Ddamulira in [5] and [6] looked
for all repdigits that can be written as sums of three Padovan numbers and all
Padovan numbers that are concatenations of two repdigits. Other diophantine
problems involving the Padovan sequence can be consulted in [7, 12].

In this paper we study a generalization of the Padovan sequence which is
generated by a recurrence relation of higher order, i.e., we consider, for an
integer k ≥ 3, the k-generalized Padovan sequence or, for simplicity, the k-

Padovan sequence P(k) = (P(k)
n )n≥−(k−3) whose terms satisfy the recurrence

relation of order k

(1) P(k)
n = P(k)

n−2 + P(k)
n−3 + · · ·+ P(k)

n−k for all n ≥ 3,

with the initial conditions P(k)
i = 0 for i = 3 − k, . . . , 0 and P(k)

1 = P(k)
2 = 1.

We shall refer to P(k)
n as the nth k-Padovan number. We note that this ge-

neralization is in fact a family of sequences where each new choice of k produces
a distinct sequence. For example, the Padovan sequence (Pn)n≥0 is obtained
for k = 3. In Table 1 we present the values of these numbers for the first few
values of k and n ≥ 1.

Table 1. First k-Padovan numbers

k Name First terms with index ≥ 1
3 Padovan 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, . . .
4 4-Padovan 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, . . .
5 5-Padovan 1, 1, 1, 2, 3, 5, 7, 11, 17, 26, 40, 61, 94, 144, 221, . . .
6 6-Padovan 1, 1, 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 182, 286, . . .
7 7-Padovan 1, 1, 1, 2, 3, 5, 8, 13, 20, 32, 51, 81, 129, 205, 326, . . .

Here, we investigate the k-Padovan sequences and present recurrence rela-
tions, the generalized Binet formula and different arithmetic properties for
P(k). Some interesting identities involving Fibonacci and generalized Padovan
numbers are also deduced and some well–known properties of P(3) are gener-
alized to the sequence P(k). We also exhibit a good approximation to the nth
k-Padovan number and show the exponential growth of P(k).
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2. Preliminary results

First of all, we denote the characteristic polynomial of the k-Padovan se-
quence P(k) by

Φk(x) = xk − xk−2 − xk−3 − · · · − x− 1.

In 2015, Iliopoulos [15] showed some interesting properties of the polynomial
Φk(x), which we summarize in the following lemma.

Lemma 2.1. For an integer k ≥ 3, we have

(a) Φk(x) has k simple zeros.
(b) If k is odd, then Φk(x) has a unique real zero λ(k) ∈ (1, ϕ) and k − 1

complex zeros, where ϕ = (1 +
√

5)/2 is the golden section.
(c) If k is even, then the zeros of Φk(x) are λ(k) ∈ (1, ϕ), −1 and k − 2

complex zeros.
(d) For all the complex zeros µ of Φk(x), it holds that |µ| < 1.

From the above we deduce that Φk(x) has just one real zero located between
1 and ϕ. Throughout this paper λ := λ(k) denotes that single zero, and to
simplify notation, we shall omit the dependence on k of λ whenever no confusion
may arise. If k is odd, λ is a Pisot number of degree k since the other zeros of the
characteristic polynomial Φk(x) are strictly inside the unit circle. If k is even, λ
is a Salem number since the other zeros of the characteristic polynomial Φk(x)
have absolute value no greater than 1, and at least one of which has module
exactly 1. Further, Lemma 2.1 implies that the solution of the generalized

recurrence can be approximated by P(k)
n ≈ C · λn with negligible error term.

This important property of λ leads us to call it the dominant root of P(k).
On the other hand, from the results of Mignotte [18] and Dubickas et al. [9]

we know that two algebraic conjugates of a Pisot number may have the same
absolute value only if these are complex conjugate numbers, and that two non-
real algebraic conjugates of a Pisot number can not have the same argument.
For the family of k-Padovan sequences, it is known that λ is a Pisot number
when k is odd and so the polynomial Φk(x) is irreducible over Q[x] when k is
odd. Now, if k is even, then there exists an irreducible polynomial g(x) ∈ Q[x]
such that Φk(x) = (x + 1)g(x), which implies that λ is a Pisot number with
minimal polynomial g(x). From the above we deduce that the roots of Φk(x)
have the following geometric properties.

Lemma 2.2. Let k ≥ 3 be integer and assume that α and β are two distinct
roots of Φk(x). Then, α and β have different arguments. Moreover, if |α| = |β|,
then we have α = β.

We now consider for each integer k ≥ 3 the function hk(x) defined by

(2) hk(x) = (x− 1)Φk(x) = xk+1 − xk − xk−1 + 1.

Since P(k) is a linear recurrence of order k with characteristic polynomial Φk(x)
and Φk(x) divides hk(x), we deduce that P(k) is also a linear recurrence of order
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k+ 1 with characteristic polynomial hk(x). Hence, we obtain our first result of
the paper which is a “shift formula” that will be used in the sequel.

Theorem 2.3. Let k ≥ 3 be integer. Then

P(k)
n = P(k)

n−1 + P(k)
n−2 − P

(k)
n−k−1 for all n ≥ 4.

As an application of Theorem 2.3, one can prove by using induction that

(3) P(k)
n = Fn−1 for all 2 ≤ n ≤ k + 1.

3. Main results

We summarize the main results in the following theorem.

Theorem 3.1. Let k ≥ 3 be an integer. Then

(a) For all n ≥ 3− k, we have

P(k)
n =

k∑
i=1

qk(λi)λ
n−1
i and |P(k)

n − qk(λ)λn−1| < 5/2,

where λ := λ1, λ2, . . . , λk are the roots of characteristic polynomial
Φk(x) and

(4) qk(z) :=
z2 − 1

(k + 1)z2 − kz − k + 1
.

(b) For all n ≥ 1, we have

(5) λn−3 ≤ P(k)
n ≤ λn−1.

In order to prove Theorem 3.1, we establish some lemmas which give us
interesting properties of the dominant root of P(k), and we believe are of inde-
pendent interest.

3.1. Generalized Binet formula

We begin by considering the generating function for the sequence P(k) as the
formal power series whose coefficients are the k-Padovan numbers themselves

P(x) =

∞∑
n=0

P(k)
n xn.

Then, it is not difficult to see that

(6) P(x) =
x(x+ 1)

1− x2 − x3 − · · · − xk
.

On the other hand, since λ1, λ2, . . . , λk are the zeros of Φk(x), we can write

(7) Φk(x) =

k∏
i=1

(x− λi).
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Now, if we define T (x) = xkΦk(1/x) = 1 − x2 − x3 − · · · − xk, by (7) we get
that

T (x) = xk
k∏

i=1

(
1

x
− λi

)
=

k∏
i=1

(1− λix).

From the above, using the generating function (6) and partial fractions, we
deduce

P(x) =
x(x+ 1)

T (x)
=

k∑
j=1

Aj

1− λjx

for some unique complex constants A1, A2, . . . , An. Then,

x(x+ 1) =

k∑
j=1

Aj

k∏
i=1
i 6=j

(1− λix).

Evaluating the above expression at x = 1/λt for t ∈ {1, 2, . . . , k}, we get the
relation

At =
1 + 1/λt

λt
∏k

i=1
i 6=t

(1− λi/λt)
=
−(1 + 1/λt)

T ′ (1/λt)
=
λk−2t (1 + 1/λt)

Φ′k(λt)
,

where we used that T ′(1/λt) = −Φ′k(λt)/λ
k−2
t . By using (2), we also have that

Φ′k(λi) =
h′k(λt)

λt − 1
=
λk−2t ((k + 1)λ2t − kλt − k + 1)

λt − 1
.

So, the relation

At =
(λt − 1) (1 + 1/λt)

(k + 1)λ2t − kλt − k + 1
holds for all t ∈ {1, 2, . . . , k}.

Thus,

P(x) =

k∑
j=1

Aj

( ∞∑
n=0

λnj x
n

)

=

∞∑
n=0

 k∑
j=1

Ajλ
n
j

xn

=

∞∑
n=0

 k∑
j=1

λ2j − 1

(k + 1)λ2j − kλj − k + 1
λn−1j

xn.

Consequently,

P(k)
n =

k∑
j=1

λ2j − 1

(k + 1)λ2j − kλj − k + 1
λn−1j .

This proves the first part of (a) in Theorem 3.1.
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3.2. Properties of the dominant root

First of all, if we consider the function qk(x) defined in (4) as a function of a
real variable, then it is not difficult to see that qk(x) has a vertical asymptote
in

β(k) :=
k +
√

5k2 − 4

2(k + 1)
,

and is positive and continuous in (β(k),+∞). By Ilopoulos’s work [15, p. 4]
it is known that β(k) < λ(k) < ϕ for all k ≥ 3 and hence limk→∞ λ(k) = ϕ.
Further,

q′k(x) = − k(x2 + 1)− 4x

((k + 1)x2 − kx+ 1)2

is negative in (β(k),+∞), so qk(x) is decreasing in (β(k),+∞). Put

ak = β(k) +
1

2k
for all k ≥ 3.

We shall show that the sequence (ak)k≥3 is increasing and bounded. To do
this, let f be the real function defined by

f(x) =
x+
√

5x2 − 4

2(x+ 1)
+

1

2x
.

It is easy to show that

f ′(x) =
(5x+ 4)x2 − (2x+ 1)

√
5x2 − 4

2x2(x+ 1)2
√

5x2 − 4
> 0

for all x ≥ 3, since (5x+ 4)x2 > (2x+ 1)
√

5x2 − 4 holds for all x ≥ 3. This, of
course, tells us that (ak)k≥3 is an increasing sequence. In addition, note that

lim
k→∞

β(k) = lim
k→∞

k +
√

5k2 − 4

2(k + 1)
= ϕ,

and so

lim
k→∞

ak = lim
k→∞

(
β(k) +

1

2k

)
= ϕ.

Thus, β(k) ≤ ϕ− 1/2k for all k ≥ 3. Finally, taking into account the fact that
2k < ϕ(k−2)/2 for all k ≥ 17, it is easy to see that ϕ− 1/2k < ϕ(1−ϕ−k/2) for
all k ≥ 17.

We summarize what we have proved so far in the following lemma.

Lemma 3.2. Keep the above notation and let k ≥ 3 be an integer. Then

(a) The function qk(x) is positive, decreasing and continuous in the interval
(β(k),∞) and gk(x) has a vertical asymptote in β(k).

(b) If k ≥ 3, then β(k) ≤ ϕ − 1/2k. In addition, if k ≥ 17, then the
inequalities

β(k) ≤ ϕ− 1/2k < ϕ(1− ϕ−k/2)

hold.
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Recall that each choice of k produces a distinct k-Padovan sequence which
in turn has an associated dominant root λ(k). For the convenience of the
reader, let us denote by (λ(k))k≥3 the sequence of the dominant roots of the
k-Padovan family of sequences. We have the following lemma in which we
prove that this dominant root is strictly increasing as k increases. We also
prove, in the second part of the lemma, that this dominant root approaches ϕ
as k approaches infinity, and it is larger than ϕ(1 − ϕ−k/2). The rest of the
statements of the lemma are some technical results that will be used later.

Lemma 3.3. Let k, ` ≥ 3 be integers. Then

(a) If k > `, then λ(k) > λ(`).
(b) ϕ(1− ϕ−k/2) < λ(k) < ϕ.
(c) If k ≥ 5, then β(k) < ϕ− 1/2k < λ(k).

(d) qk(ϕ) = ϕ/(ϕ+ 2) = 1/
√

5 ≈ 0.4472135 . . ..

Proof. To prove (a) we proceed by contradiction by assuming that λ(k) ≤ λ(`);
hence (1/λ(`))i ≤ (1/λ(k))i holds for all i ≥ 1. Taking into account that
Φ`(λ(`)) = 0, one has that

(λ(`))` = (λ(`))`−2 + (λ(`))`−3 + · · ·+ λ(`) + 1,

and, of course, the same conclusion remains valid for λ(k). From this, we get
that

1 =
1

(λ(`))2
+

1

(λ(`))3
+ · · ·+ 1

(λ(`))`
<

1

(λ(k))2
+

1

(λ(k))3
+ · · ·+ 1

(λ(k))k
= 1

which is a contradiction. Another way to prove (a) is by applying Descartes’
rule of signs, which tells us that Φk(x) has exactly one positive real zero λ(k),
and using the fact that Φk+1(x) = xΦk(x) − 1. Indeed, it follows from the
above that Φk+1(λ(k)) = −1 < 0 and Φk+1(ϕ) = 1/(ϕ − 1) > 0 giving that
λ(k + 1) ∈ (λ(k), ϕ). Thus, λ(k) < λ(k + 1).

We next prove (b). First, we turn back to expression (2), which we rewrite
here as follows:

(8) hk(x) = (x− 1)Φk(x) = xk−1(x2 − x− 1) + 1.

By using the fact that ϕ is a root of x2 − x− 1 and evaluating expression (8)
at λ, we get the relations

ϕ2 − ϕ− 1 = 0 and λ2 − λ− 1 = −1/λk−1.

Subtracting the two expressions above and rearranging some terms, one obtains

(ϕ− λ)(ϕ+ λ− 1) = 1/λk−1.

From this, and using the facts that ϕ + λ − 1 > 1/ϕ1/2 and ϕ1/2 < λ(3) ≤ λ,
which are easily seen, we get that ϕ − λ < ϕ/ϕk/2 and so ϕ(1 − ϕ−k/2) < λ.
This finishes the proof of (b).
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The proof of (c) can be checked computationally when 5 ≤ k ≤ 16. The
case when k ≥ 17 is a direct combination of the second part of this lemma and
Lemma 3.2(b). Finally, to prove (d) we observe that

qk (ϕ) =
ϕ2 − 1

(k + 1)ϕ2 − kϕ− (k − 1)
=

ϕ

ϕ+ 2
=

1√
5
,

where we used the fact that ϕ2 = ϕ+ 1. This finishes the proof of the lemma.
�

We finish this subsection by giving two immediate consequences of the above
lemma which will be needed later.

Lemma 3.4. Keep the above notation and let k ≥ 3 be an integer. Then

0.44 < qk(λ(k)) < 0.73 and |qk(λi)| < 2/(k − 2) for 2 ≤ i ≤ k,
where, as before, λ := λ1, λ2, . . . , λk are the roots of Φk(x). Consequently,

|qk(λi)| < 1 for 1 ≤ i ≤ k.

Proof. We begin by noting that qk(x) is decreasing in the interval (β(k),∞)
and that the inequality β(k) < ϕ− 1/2k < λ(k) < ϕ holds for all k ≥ 5. After
simple transformations we get

0.44 <
1√
5

= qk(ϕ) < qk(λ(k)) < qk

(
ϕ− 1

2k

)
.

But

qk(ϕ− 1/2k) =
4ϕ(k2 − k) + 1

10k2 + (1− 4ϕ)k + 1
<

2ϕ

5
= 0.6472 . . . .

Hence, 0.44 < qk(λ(k)) < 0.65 holds for all k ≥ 5. Finally, computationally
we get that q3(λ(3)) = 0.722 . . . and q4(λ(4)) = 0.611 . . .. This proves the first
part of the lemma.

For the second part we consider the function hk(x) defined by (8) in the proof
of Lemma 3.3. Evaluating hk(x) at λi for 2 ≤ i ≤ k, and rearranging some

terms of the resulting expression, we get the relation λ2i − λi − 1 = −1/λk−1i

and so

k(λ2i − λi − 1) + λ2i + 1 = λ2i + 1− k

λk−1i

.

Hence,

|k(λ2i − λi − 1) + λ2i + 1| =

∣∣∣∣∣ k

λk−1i

− (λ2i + 1)

∣∣∣∣∣ ≥ k

|λi|k−1
− |λ2i + 1| ≥ k − 2,

where we used the fact that |λi| ≤ 1 because 2 ≤ i ≤ k. Consequently,

|qk(γi)| =
|λ2i − 1|

|k(λ2i − λi − 1) + λ2i + 1|
≤ 2

k − 2
.

Finally, |qk(γi)| ≤ 2/(k − 2) < 1 for all k ≥ 5 while the cases k = 3 and 4 can
be checked computationally, which finishes the proof of the lemma. �
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3.3. Sequence of errors

For an fixed integer k ≥ 3 and n ≥ 3− k, define E
(k)
n to be the error of the

approximation of the nth k-Padovan number with the dominant term of the
Binet–style formula of P(k) given in Theorem 3.1(a), i.e.,

(9) E(k)
n = P(k)

n − qk(λ)λn−1

for λ the dominant root of Φ(x) and qk(x) defined as in (4).
Given a polynomial f , it is well known that the set of all possible linear

recurrence sequences satisfying the characteristic equation f(x) = 0 is a vector
space over the real numbers. Since P(k) and (λn)n satisfy the characteristic

equation Φk(x) = 0, it follows from (9) that the sequence (E
(k)
n )n satisfies the

same recurrence relation as the k-Padovan sequence. We record this as follows.

Lemma 3.5. Let k ≥ 3 be an integer. Then

E(k)
n = E

(k)
n−2 + E

(k)
n−3 + · · ·+ E

(k)
n−k for all n ≥ 3.

Furthermore, if n ≥ 4, then

E(k)
n = E

(k)
n−1 + E

(k)
n−2 − E

(k)
n−k−1.

The last result of this subsection is the following.

Lemma 3.6. For a fixed integer k ≥ 3 we have

lim
n→∞

E(k)
n = 0.

Proof. We begin by observing that

(10) |E(k)
n | ≤

k∑
j=2

|qk(λj)||λj |n−1.

In order to prove the statement, we will consider two cases on the integer
k. If k is even, then there exists 2 ≤ j0 ≤ k such that λj0 = −1 and so
qk(λj0) = 0. Without loss of generality, we may assume that j0 = 2. Then,
from (10) and using the fact that limn→∞ |λj |n = 0 for all 3 ≤ j ≤ k, we get

that limn→∞ |E(k)
n | = 0. Now, when k is odd we have that limn→∞ |λj |n = 0

for all 2 ≤ j ≤ k and so limn→∞ |E(k)
n | = 0. In any case, we can conclude that

limn→∞E
(k)
n = 0. �

To conclude this subsection, we prove the second part of Theorem 3.1(a).
With the notation above, we have to prove that

|E(k)
n | < 5/2 for all k ≥ 3 and n ≥ 3− k.

Indeed, from inequality (10) and Lemma 3.4, we get that

|E(k)
n | ≤

k∑
j=2

|qk(λj)| ≤
2(k − 1)

k − 2
.
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Here, we can check computationally that |E(k)
n | < 5/2 for each 3 ≤ k ≤ 5. But,

this also holds for all k ≥ 6 since |E(k)
n | ≤ 2(k − 1)/(k − 2) ≤ 5/2.

3.4. Exponential growth

We begin by mentioning that for the Fibonacci sequence and the Padovan
sequence (namely, the case k = 3), it is well–known that

(11) ϕn−2 ≤ Fn ≤ ϕn−1 holds for all n ≥ 1,

and

(12) λn−3 ≤ Pn ≤ λn−1 holds for all n ≥ 1,

exhibiting an exponential growth of the Fibonacci and Padovan numbers. In
the above expression (12), the value of λ is λ(3) = 1.3247 . . .. We finally prove
(5) by using induction on n.

To begin with, we show that inequality (5) holds for n = 1, 2, . . . , k. It is
clear that the result is true for n = 1, 2 because λ > 1. For n = 3, . . . , k we

know, by (3), that P(k)
n = Fn−1, so we need to show that

(13) λn−3 ≤ Fn−1 ≤ λn−1 for 3 ≤ n ≤ k.

By Lemma 3.3(b) and (11), we get

λn−3 < ϕn−3 ≤ Fn−1

and therefore the left–hand side of the above inequality (13) holds. Then, it
remains to prove that

(14) Fn−1 ≤ λn−1 holds for 3 ≤ n ≤ k.

Computationally one checks that the inequality (14) holds for 3 ≤ k ≤ 11, so
we may assume that k ≥ 12. Now, by making use of the famous Binet formula
for the Fibonacci numbers, we get

Fn−1 =
ϕn−1 − (−1)n−1ϕ−(n−1)√

5
=
ϕn−1
√

5

(
1 +

ε

ϕ2n−2

)
,

where ε ∈ {±1}. Since ϕn−1(1− ϕ−k/2)n−1 < λn−1 because ϕ(1− ϕ−k/2) < λ
by Lemma 3.3(b), it suffices to prove that

ϕn−1
√

5

(
1 +

ε

ϕ2n−2

)
≤ ϕn−1(1− ϕ−k/2)n−1,

which is equivalent to

(15) 1 +
ε

ϕ2n−2 ≤
√

5 (1− ϕ−k/2)n−1.

Using the fact that the function x → (1 − ϕ−x/2)x−1 is increasing for x ≥ 12
and taking into account that 3 ≤ n ≤ k and k ≥ 12, we deduce that
√

5 (1− ϕ−k/2)n−1 ≥
√

5 (1− ϕ−k/2)k−1 ≥
√

5 (1− ϕ−6)11 = 1.1902 . . . .
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whereas

1 +
ε

ϕ2n−2 ≤ 1 +
1

ϕ4
= 1.1459 . . . .

This proves inequality (15). Thus, we have proved that inequality (5) holds for
1 ≤ n ≤ k.

Finally, suppose that (5) holds for all terms P(k)
m with m ≤ n − 1 for some

n > k. It then follows from the recurrence relation of P(k) that

λn−5 + λn−6 + · · ·+ λn−k−3 ≤ P(k)
n ≤ λn−3 + λn−4 + · · ·+ λn−k−1.

So

λn−k−3(λk−2 + λk−3 + · · ·+ 1) ≤ P(k)
n ≤ λn−k−1(λk−2 + λk−3 + · · ·+ 1),

which combined with the fact that λk = λk−2 +λk−3 + · · ·+ 1 gives the desired
result. Thus, inequality (5) holds for all positive integers n. So, the proof of
Theorem 3.1 is now complete.
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