• Title/Summary/Keyword: Bernoulli numbers

Search Result 102, Processing Time 0.018 seconds

ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

  • C.S. RYOO
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

HIGHER ORDER APOSTOL-TYPE POLY-GENOCCHI POLYNOMIALS WITH PARAMETERS a, b AND c

  • Corcino, Cristina B.;Corcino, Roberto B.
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.423-445
    • /
    • 2021
  • In this paper, a new form of poly-Genocchi polynomials is defined by means of polylogarithm, namely, the Apostol-type poly-Genocchi polynomials of higher order with parameters a, b and c. Several properties of these polynomials are established including some recurrence relations and explicit formulas, which are used to express these higher order Apostol-type poly-Genocchi polynomials in terms of Stirling numbers of the second kind, Apostol-type Bernoulli and Frobenius polynomials of higher order. Moreover, certain differential identity is obtained that leads this new form of poly-Genocchi polynomials to be classified as Appell polynomials and, consequently, draw more properties using some theorems on Appell polynomials. Furthermore, a symmetrized generalization of this new form of poly-Genocchi polynomials that possesses a double generating function is introduced. Finally, the type 2 Apostolpoly-Genocchi polynomials with parameters a, b and c are defined using the concept of polyexponential function and several identities are derived, two of which show the connections of these polynomials with Stirling numbers of the first kind and the type 2 Apostol-type poly-Bernoulli polynomials.

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

THE M/G/1 FEEDBACK RETRIAL QUEUE WITH BERNOULLI SCHEDULE

  • Lee, Yong-Wan;Jang, Young-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.259-266
    • /
    • 2009
  • We consider an M/G/1 feedback retrial queue with Bernoulli schedule in which after being served each customer either joins the retrial group again or departs the system permanently. Using the supplementary variable method, we obtain the joint generating function of the numbers of customers in two groups.

  • PDF

UNIFIED APOSTOL-KOROBOV TYPE POLYNOMIALS AND RELATED POLYNOMIALS

  • Kurt, Burak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.315-326
    • /
    • 2021
  • Korobov type polynomials are introduced and extensively investigated many mathematicians ([1, 8-10, 12-14]). In this work, we define unified Apostol Korobov type polynomials and give some recurrences relations for these polynomials. Further, we consider the q-poly Korobov polynomials and the q-poly-Korobov type Changhee polynomials. We give some explicit relations and identities above mentioned functions.

A NUMERICAL INVESTIGATION ON THE ZEROS OF THE TANGENT POLYNOMIALS

  • Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.315-322
    • /
    • 2014
  • In this paper, we observe the behavior of complex roots of the tangent polynomials $T_n(x)$, using numerical investigation. By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the tangent polynomials $T_n(x)$. Finally, we give a table for the solutions of the tangent polynomials $T_n(x)$.