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A NUMERICAL INVESTIGATION ON THE ZEROS OF THE

TANGENT POLYNOMIALS

C. S. RYOO

Abstract. In this paper, we observe the behavior of complex roots of the
tangent polynomials Tn(x), using numerical investigation. By means of
numerical experiments, we demonstrate a remarkably regular structure of
the complex roots of the tangent polynomials Tn(x). Finally, we give a

table for the solutions of the tangent polynomials Tn(x).
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1. Introduction

In the 21st century, the computing environment would make more and more
rapid progress. Numerical experiments of Bernoulli polynomials, Euler polyno-
mials, Genocchi polynomials, and tangent polynomials have been the subject of
extensive study in recent year and much progress have been made both math-
ematically and computationally(see [1-15]). Using computer, a realistic study
for tangent polynomials Tn(x) is very interesting. It is the aim of this paper
to observe an interesting phenomenon of ‘scattering’ of the zeros of the tangent
polynomials Tn(x) in complex plane. Throughout this paper, we always make
use of the following notations: N denotes the set of natural numbers, R denotes
the set of real numbers, and C denotes the set of complex numbers. Tangent
numbers was introduced in [6]. First, we introduce the tangent numbers and
tangent polynomials. As well known definition, the tangent numbers Tn(cf. [6])
are defined by

T0 = 1, tan(t) =
∞∑

n=0

(−1)n+1T2n+1
t2n+1

(2n+ 1)!
, T2n = 0, (n ∈ N).
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Here is the list of the first tangent’s numbers:

T0 = 1,

T1 = −1,

T3 = 2,

T5 = −16,

T7 = 272,

T9 = −7936,

T11 = 353792,

T13 = −22368256,

T15 = 1903757312,

T17 = −209865342976,

T19 = 29088885112832,

T21 = −4951498053124096,

T23 = 1015423886506852352,

T25 = −246921480190207983616,

T27 = 70251601603943959887872,

T29 = −23119184187809597841473536,

T31 = 8713962757125169296170811392.

In [6], we introduced the tangent polynomials Tn(x). The tangent polynomials
Tn(x) are defined by the generating function:

F (x, t) =
∞∑

n=0

Tn(x)
tn

n!
=

(
2

e2t + 1

)
ext, (1.1)

where we use the technique method notation by replacing T (x)
n
by Tn(x) sym-

bolically. Note that

Tn(x) =

n∑
k=0

(
n

k

)
Tkx

n−k.

In the special case x = 0, we define Tn(0) = Tn.
Because

∂F

∂x
(x, t) = tF (x, t) =

∞∑
n=0

dTn

dx
(x)

tn

n!
,

it follows the important relation

dTk

dx
(x) = kTk−1(x).
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Since ∫ b

a

Tn(x)dx =
n∑

l=0

(
n

l

)
Tl

∫ b

a

xn−ldx

=
n∑

l=0

(
n

l

)
Tl

xn−l+1

n− l + 1

∣∣∣∣b
a

=
1

n+ 1

n+1∑
l=0

(
n+ 1

l

)
Tl x

n−l+1
∣∣b
a
,

we see that ∫ b

a

Tn(x)dx =
Tn+1(b)− Tn+1(a)

n+ 1
. (1.2)

Since Tn(0) = Tn, by (1.2), we have the following theorem.

Theorem 1.1. For n ∈ N, we have

Tn(x) = Tn + n

∫ x

0

Tn−1,q(t)dt.

Then, it is easy to deduce that Tk(x) are polynomials of degree k. Here is the
list of the first tangent’s polynomials:

T0(x) = 1,

T1(x) = x− 1,

T2(x) = x2 − 2x,

T3(x) = x3 − 3x2 + 2,

T4(x) = x4 − 4x3 + 8x,

T5(x) = x5 − 5x4 + 20x2 − 16,

T6(x) = x6 − 6x5 + 40x3 − 96x,

T7(x) = x7 − 7x6 + 70x4 − 336x2 + 272,

T8(x) = x8 − 8x7 + 112x5 − 896x3 + 2176x,

T9(x) = x9 − 9x8 + 168x6 − 2016x4 + 9792x2 − 7936,

T10(x) = x10 − 10x9 + 240x7 − 4032x5 + 32640x3 − 79360x.

2. Beautiful zeros of the tangent polynomials

In this section, we display the shapes of the tangent polynomials Tn(x) and we
investigate the zeros of the tangent polynomials Tn(x). For n = 1, · · · , 10, we can
draw a plot of Tn(x) , respectively. This shows the ten plots combined into one.
We display the shape of Tn(x),−7 ≤ x ≤ 7(Figure 1). Next, we investigate the
beautiful zeros of the Tn(x) by using a computer. We plot the zeros of Tn(x) for
n = 20, 30, 40, 60, and x ∈ C(Figure 2). Stacks of zeros of Tn(x) for 1 ≤ n ≤ 50
from a 3-D structure are presented(Figure 3). In Figure 2(top-left), we choose
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Figure 1. Curve of tangent polynomials Tn(x)

n = 20. In Figure 2(top-right), we choose n = 30. In Figure 2(bottom-left), we
choose n = 40. In Figure 2(bottom-right), we choose n = 50.

Our numerical results for approximate solutions of real zeros of Tn(x) are
displayed in Table 1. The results are obtained by Mathematica software.

Table 1. Numbers of real and complex zeros of Tn(x)

degree n real zeros complex zeros

1 1 0
2 2 0
3 3 0
4 4 0
5 5 0
6 2 4
7 3 4
8 4 4
9 5 4
10 6 4
11 3 8
12 4 8
13 5 8
14 6 8

We observe a remarkably regular structure of the complex roots of tangent poly-
nomials. We hope to verify a remarkably regular structure of the complex roots
of tangent polynomials(Table 1).
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Figure 2. Zeros of Tn(x) for n = 20, 30, 40, 50

Next, we calculated an approximate solution satisfying Tn(x) and x ∈ R. The
results are given in Table 2.

Table 2. Approximate solutions of Tn(x) = 0, x ∈ R

degree n x

1 1.0000
2 0, 2.0000
3 −0.73205, 1.0000, 2.7321
4 −1.2361, 2.0000, 3.2361
5 −1.2361, −1.2361, 1.0000, 3.2361, 3.2361
6 0, 2.0000
7 −0.99546, 1.0000, 2.9955
8 −1.8647, 0, 2.0000, 3.8647
9 −2.4395, −1.0002, 1.000, 3.0002, 4.4395
10 −2.7304, −2.0300, 0, 2.0000, 4.0300, 4.7304
11 −1.0000, 1.000, 3.0000
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Figure 3. Stacks of zeros of Tn(x), 1 ≤ n ≤ 50

We plot the real zeros of the tangent polynomials Tn(x) for x ∈ C (Figure 4).
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Figure 4. Real zeros of Tn(x), 1 ≤ n ≤ 50
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3. Observations

Since
∞∑

n=0

Tn(2− x)
(−t)n

n!
= F (2− x,−t) =

2

e−2t + 1
e(2−x)(−t)

=
2

e2t + 1
ext = F (x, t) =

∞∑
n=0

Tn(x)
tn

n!
,

we have the following theorem.

Theorem 3.1. For any positive integer n, we have

Tn(x) = (−1)nTn(2− x). (3.1)

From (1.1), we have

∞∑
n=0

(Tn(x+ 2) + Tn(x))
tn

n!
= 2

∞∑
n=0

(−1)ne(2n+x+2)t + 2
∞∑

n=0

(−1)ne(2n+x)t

= 2ext

=
∞∑

n=0

2xn t
n

n!
.

(3.2)

Comparing the coefficient of
tn

n!
on both sides of (3.2), we get the following

theorem.

Theorem 3.2. For any positive integer n, we have

Tn(x+ 2) + Tn(x) = 2xn. (3.3)

By (3.3), we have the following corollary.

Corollary 3.3. For n ∈ N, we have

Tn = −Tn(2).

The question is: what happens with the reflexive symmetry (3.1), when one
considers tangent polynomials? Prove that Tn(x), x ∈ C, has Re(x) = 1 reflec-
tion symmetry in addition to the usual Im(x) = 0 reflection symmetry analytic
complex functions(Figures 2-4). Prove that Tn(x) = 0 has n distinct solutions.
Find the numbers of complex zeros CTn(x) of Tn(x), Im(x) ̸= 0. Since n is the
degree of the polynomial Tn(x), the number of real zeros RTn(x) lying on the
real plane Im(x) = 0 is then RTn(x) = n−CTn(x), where CTn(x) denotes complex
zeros. See Table 1 for tabulated values of RTn(x) and CTn(x). More studies and
results in this subject we may see references [8], [9], [13], [14].
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