ON A p-ADIC ANALOGUE OF k-PLE RIEMANN ZETA FUNCTION

Daekil Park and Jin-Woo Son

Abstract

In this paper, we construct a p-adic analogue of multiple Riemann zeta values and express their values at non-positive integers. In particular, we obtain a new congruence of the higher order FrobeniusEuler numbers and the Kummer congruences for the Bernoulli numbers as a corollary

1. Introduction

Let ε be a root of unity of order relatively prime with p and $\varepsilon \neq 1$. We consider the Frobenius-Euler numbers $H_{m}(\varepsilon)$ defined by

$$
\begin{equation*}
\frac{\varepsilon-1}{\varepsilon e^{t}-1}=\sum_{m=0}^{\infty} H_{m}(\varepsilon) \frac{t^{m}}{m!}, \tag{1.1}
\end{equation*}
$$

which can be written symbolically as $e^{H(\varepsilon) t}=(\varepsilon-1) /\left(\varepsilon e^{t}-1\right)$, interpreted to mean that $(H(\varepsilon))^{m}$ must be replaced by $H_{m}(\varepsilon)$ when expand on the left (cf. $[9,13])$. This relation can also be written $\varepsilon e^{(H(\varepsilon)+1) t}-e^{H(\varepsilon) t}=\varepsilon-1$, or, if we equate powers of t,

$$
\begin{equation*}
H_{0}(\varepsilon)=1, \quad \varepsilon(H(\varepsilon)+1)^{m}-H_{m}(\varepsilon)=0 \quad \text { if } m \geq 1 \tag{1.2}
\end{equation*}
$$

where again we must first expand and then replace $(H(\varepsilon))^{i}$ by $H_{i}(\varepsilon)$. We note that

$$
\begin{equation*}
H_{m}(-1)=E_{m}, \tag{1.3}
\end{equation*}
$$

where E_{m} denotes the so-called Euler numbers (cf. [8, 9]). The Frobenius-Euler polynomials $H_{m}(x, \varepsilon)$ are defined by

$$
\begin{equation*}
H_{m}(x, \varepsilon)=\sum_{i=0}^{m}\binom{m}{i} x^{m-i} H_{i}(\varepsilon) \tag{1.4}
\end{equation*}
$$

Received September 27, 2010.
2010 Mathematics Subject Classification. 11B68, 11S80.
Key words and phrases. p-adic analogues, higher order Frobenius-Euler numbers, k-ple zeta function, Kummer-type congruences.

We easily see that

$$
\begin{equation*}
H_{m-1}(-1)=\frac{2}{m}\left(1-2^{m}\right) B_{m}, \quad m \geq 1 \tag{1.5}
\end{equation*}
$$

Here the Bernoulli numbers are defined by

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{m=0}^{\infty} B_{m} \frac{t^{m}}{m!} . \tag{1.6}
\end{equation*}
$$

The Bernoulli polynomials $B_{m}(x)$ are also defined by $B_{m}(x)=\sum_{i=0}^{m}\binom{m}{i} x^{m-i} B_{i}$.
Among many properties of Bernoulli numbers the Kummer congruences for Bernoulli numbers are widely known [2, 5, 19, 20]. Kummer congruences of Bernoulli numbers were first known to us by Kummer [12] a century ago, but their interpretation in terms of p-adic interpolation of the Riemann zeta function was only discovered in 1964 by Kubota and Leopoldt [11]. In 1910, Frobenius [4] gave a generalization of the Kummer congruence. Vandiver [19] obtained the complementary congruences, which were extended by Carlitz [2] in many directions. Congruences for higher order Bernoulli numbers have been studied by many authors, Adelberg [1], Carlitz [3], Howard [5], etc.

In [13], Osipov's congruences are the generalization of the Kummer congruences for ordinary Bernoulli numbers. He also obtained the Witt's formula of the numbers $H_{m}(\varepsilon)$, which of the similar kinds are given in $[6,8,10,11,14$, $15,16,17,18]$. Recently, Kim and Lee [9] obtained some interesting identities related to the Frobenius-Euler polynomials $H_{m}(x, \varepsilon)$ by using the ordinary fermionic p-adic invariant integral on \mathbb{Z}_{p}.

In this paper we construct a p-adic analogue of k-ple Riemann zeta function and express their values at non-positive integers. Also, we obtain a new congruence of the higher order Frobenius-Euler numbers and the Kummer congruences for the Bernoulli numbers as a corollary.

2. The values of k-ple Riemann zeta function at non-positive integers

Let ε be roots of unity of order relatively prime with p and $\varepsilon \neq 1$. Then the higher order Frobenius-Euler numbers are defined by means of the following generating function

$$
\begin{equation*}
g_{\varepsilon}(t)=\left(\frac{1-\varepsilon}{1-\varepsilon e^{t}}\right)^{k}=\sum_{m=0}^{\infty} H_{m}^{(k)}(\varepsilon) \frac{t^{m}}{m!} . \tag{2.1}
\end{equation*}
$$

The higher order Frobenius-Euler polynomials are also defined by means of the following generating function

$$
\begin{equation*}
g_{\varepsilon}(x, t)=g_{\varepsilon}(t) e^{x t}=\sum_{m=0}^{\infty} H_{m}^{(k)}(x, \varepsilon) \frac{t^{m}}{m!} . \tag{2.2}
\end{equation*}
$$

Setting $x=0$ in $(2.2), H_{m}^{(k)}(0, \varepsilon)=H_{m}^{(k)}(\varepsilon)$. If $k=1$, it is less well known that the explicit representations for the Frobenius-Euler numbers and polynomials, complementing those given in $[8,9,14]$. Setting $\varepsilon=-1$ in $(2.2), H_{m}^{(k)}(x,-1)=$ $E_{m}^{(k)}(x)$ are called the higher order Euler polynomials; setting $k=1$ and $\varepsilon=-1$ in $(2.2), H_{m}^{(1)}(x,-1)=E_{m}(x)$ are called the classical Euler polynomials.

Let x be a positive real number and let $|\varepsilon| \leq 1$. The k-ple Riemann zeta function $\zeta_{k}(s, x, \varepsilon)$ is defined by

$$
\begin{equation*}
\zeta_{k}(s, x, \varepsilon)=\sum_{n_{1}, \ldots, n_{k}=0}^{\infty} \frac{\varepsilon^{n_{1}+\cdots+n_{k}}}{\left(x+n_{1}+\cdots+n_{k}\right)^{s}} \tag{2.3}
\end{equation*}
$$

In practice, the k-ple Riemann zeta function $\zeta_{k}(s, x, \varepsilon)$ for $s=0,-1,-2, \ldots$ are of particular interest. We shall discuss these matters as follows.

The k-ple Riemann zeta function $\zeta_{k}(s, x, \varepsilon)$ is expressed as an integral,

$$
\begin{equation*}
\Gamma(s) \zeta_{k}(s, x, \varepsilon)=\int_{0}^{\infty} \frac{e^{-x t} t^{s-1}}{\left(1-\varepsilon e^{-t}\right)^{k}} d t \tag{2.4}
\end{equation*}
$$

where $\Gamma(s)$ is the gamma function, which satisfies $\Gamma(s+1)=s \Gamma(s), \Gamma(1)=1$, so that, in particular, $\Gamma(m)=(m-1)$! for positive integers m. Let C denote the contour which starts from $+\infty$, runs on the real axis, encircling the origin once counter-clockwise on the circle of small radius with the center at 0 , runs the real axis and returns to $+\infty$. Since

$$
\int_{C} \frac{e^{-x z} z^{s-1}}{\left(1-\varepsilon e^{-z}\right)^{k}} d z=\left(e^{2 \pi i s}-1\right) \int_{0}^{\infty} \frac{e^{-x t} t^{s-1}}{\left(1-\varepsilon e^{-t}\right)^{k}} d t
$$

we have

$$
\begin{equation*}
\zeta_{k}(s, x, \varepsilon)=\frac{e^{-\pi i s} \Gamma(1-s)}{2 \pi i} \int_{C} \frac{e^{-x z} z^{s-1}}{\left(1-\varepsilon e^{-z}\right)^{k}} d z \tag{2.5}
\end{equation*}
$$

This is the main virtue to obtain a contour integral representation for an analytic function. In particular, we see that $\zeta_{k}(s, x, \varepsilon)$ can be continued analytically to the whole s-plane (cf. $[16,20]$). Furthermore, by (2.2) and (2.4), sufficiently large N we have

$$
\begin{align*}
(1-\varepsilon)^{k} \zeta_{k}(s, x, \varepsilon)= & \sum_{m=0}^{N} \frac{H_{m}^{(k)}(x, \varepsilon)}{m!\Gamma(s)} \frac{(-1)^{m}}{s+m}+\frac{1}{\Gamma(s)} H_{N}(s) \tag{2.6}\\
& +\frac{1}{\Gamma(s)} \int_{1}^{\infty} t^{s-1} g_{\varepsilon}(x,-t) d t
\end{align*}
$$

where $H_{N}(s)$ is entire. For an integer $m \geq 0$, we have

$$
\begin{equation*}
(1-\varepsilon)^{k} \lim _{s \rightarrow-m}(s+m) \Gamma(s) \zeta_{k}(s, x, \varepsilon)=H_{m}^{(k)}(x, \varepsilon) \frac{(-1)^{m}}{m!} \tag{2.7}
\end{equation*}
$$

If $m \geq 0$, we have $\lim _{s \rightarrow-m}(s+m) \Gamma(s)=(-1)^{m} m$! and thus we obtain the following lemma.

Lemma 2.1. For $m \geq 0$ and $\varepsilon \neq 1$,

$$
\zeta_{k}(-m, x, \varepsilon)=\frac{H_{m}^{(k)}(x, \varepsilon)}{(1-\varepsilon)^{k}}
$$

Define

$$
\begin{equation*}
\tilde{\zeta}_{k}(s, x, \varepsilon)=\sum_{\substack{n_{1}, \ldots, n_{k}=0 \\ p \nmid\left(n_{1}+\cdots+n_{k}\right)}}^{\infty} \frac{\varepsilon^{n_{1}+\cdots+n_{k}}}{\left(x+n_{1}+\cdots+n_{k}\right)^{s}} . \tag{2.8}
\end{equation*}
$$

For the special case of $\tilde{\zeta}_{k}(s, x, \varepsilon)$, i.e., when $s=0,-1,-2, \ldots$, it is clear that from (2.3) and (2.8)

$$
\begin{aligned}
\tilde{\zeta}_{k}(-m, x, \varepsilon) & =\zeta_{k}(-m, x, \varepsilon)-\sum_{\substack{a_{1}, \ldots, a_{k}=0 \\
p \nmid|a|}}^{p-1} \sum_{n_{1}, \ldots, n_{k}=0}^{\infty} \frac{\varepsilon^{|a|+p\left(n_{1}+\cdots+n_{k}\right)}}{\left(x+|a|+p\left(n_{1}+\cdots+n_{k}\right)\right)^{-m}} \\
& =\zeta_{k}(-m, x, \varepsilon)-p^{m} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\
p \nmid|a|}}^{p-1} \varepsilon^{|a|} \zeta_{k}\left(-m, \frac{x+|a|}{p}, \varepsilon^{p}\right),
\end{aligned}
$$

where $m \geq 0$ and $|a|=a_{1}+\cdots+a_{k}$ (cf. [10]). It follows from this and Lemma 2.1 that

$$
\begin{aligned}
& H_{m}^{(k)}(x, \varepsilon)-p^{m}\left(\frac{1}{[p]_{\varepsilon}}\right)^{k} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\
p \nmid|a|}}^{p-1} \varepsilon^{|a|} H_{m}^{(k)}\left(\frac{x+|a|}{p}, \varepsilon^{p}\right) \\
= & (1-\varepsilon)^{k}\left(\zeta_{k}(-m, x, \varepsilon)-p^{m} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\
p \nmid|a|}}^{p-1} \varepsilon^{|a|} \zeta_{k}\left(-m, \frac{x+|a|}{p}, \varepsilon^{p}\right)\right) \\
= & (1-\varepsilon)^{k} \tilde{\zeta}_{k}(-m, x, \varepsilon) .
\end{aligned}
$$

Lemma 2.2. Let $m \geq 0$ and $|a|=a_{1}+\cdots+a_{k}$. Then

$$
\tilde{\zeta}_{k}(-m, x, \varepsilon)=\frac{1}{(1-\varepsilon)^{k}}\left(H_{m}^{(k)}(x, \varepsilon)-\frac{p^{m}}{[p]_{\varepsilon}^{k}} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\ p \nmid|a|}}^{p-1} \varepsilon^{|a|} H_{m}^{(k)}\left(\frac{x+|a|}{p}, \varepsilon^{p}\right)\right)
$$

3. p-adic k-ple Riemann zeta function and Kummer-type congruences

In this section, let p be an odd prime number. The symbol $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} denote the rings of p-adic integers, the field of p-adic numbers and the field of p-adic completion of the algebraic closure of \mathbb{Q}_{p}, respectively. The p-adic absolute value in \mathbb{C}_{p} is normalized in such way that $|p|_{p}=1 / p$.

We denote two particular subrings of \mathbb{C}_{p} in the following manner

$$
\mathfrak{o}_{p}=\left\{\left.s \in \mathbb{C}_{p}| | s\right|_{p} \leq 1\right\}, \quad \mathfrak{m}_{p}=\left\{\left.s \in \mathbb{C}_{p}| | s\right|_{p}<1\right\}
$$

Then \mathfrak{m}_{p} is a maximal ideal of \mathfrak{o}_{p}. If $s \in \mathbb{C}_{p}$ such that $|s|_{p} \leq|p|_{p}^{r}$, where $r \in \mathbb{Q}$, then $s \in p^{r} \mathfrak{o}_{p}$, and so we shall also write this as $s \equiv 0\left(\bmod p^{r} \mathfrak{o}_{p}\right)(c f$. $[6,10,20])$.

Note that the two fields \mathbb{C} and \mathbb{C}_{p} are algebraically isomorphic, and any one of the two can be embedded in the other.

We begin with the following result.
Lemma 3.1. Let $\varepsilon^{r}=1, \varepsilon \neq 1$ and $(r, p)=1$. Then there exists h such that $r \mid\left(p^{h}-1\right)$, and

$$
H_{0}(\varepsilon)=1, \quad \lim _{n \rightarrow \infty} \sum_{a=0}^{p^{h n}-1} a^{m} \varepsilon^{a}=H_{m}(\varepsilon), \quad m \geq 1
$$

Proof. Put $h=\varphi(r)$, where φ is the Euler function. Then $p^{\varphi(r)} \equiv 1(\bmod r)$ since $(r, p)=1$. This gives $p^{\varphi(r) n} \equiv 1(\bmod r), n \geq 0$ and so $r \mid\left(p^{\varphi(r) n}-1\right)$. That is $\varepsilon^{p^{h n}}=\varepsilon$. Thus we have

$$
\begin{aligned}
\sum_{m=0}^{\infty}\left(\lim _{n \rightarrow \infty} \sum_{a=0}^{p^{h n}-1} a^{m} \varepsilon^{a}\right) \frac{t^{m}}{m!} & =\lim _{n \rightarrow \infty} \sum_{a=0}^{p^{h n}-1} e^{a t} \varepsilon^{a}=\lim _{n \rightarrow \infty} \frac{\varepsilon^{p^{h n}} e^{t p^{h n}}-1}{\varepsilon e^{t}-1} \\
& =\frac{\varepsilon-1}{\varepsilon e^{t}-1}=\sum_{m=0}^{\infty} H_{m}(\varepsilon) \frac{t^{m}}{m!}
\end{aligned}
$$

where $|t|_{p}<p^{-1 /(p-1)}$. The result follows at once.
Let r be a positive integer prime to p, and $\varepsilon \in \mathbb{C}_{p}$ a r-th root of unity different from 1. Let $f: \mathbb{Z}_{p}^{k} \rightarrow \mathbb{C}_{p}$ be any continuous function and let $a=\left(a_{1}, \ldots, a_{k}\right)$ be a variable on \mathbb{Z}_{p}^{k}. We define the p-adic integration of f on \mathbb{Z}_{p}^{k}, if it exists, by the formula

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}^{k}} f(a) d \mu_{\varepsilon}(a)=\lim _{\substack{n_{1} \rightarrow \infty \\ n_{k} \rightarrow \infty}} \sum_{a_{1}=0}^{p^{h n_{1}}-1} \cdots \sum_{a_{k}=0}^{p^{h n_{k}-1}} f\left(a_{1}, \ldots, a_{k}\right) \varepsilon^{a_{1}} \cdots \varepsilon^{a_{k}} \tag{3.1}
\end{equation*}
$$

where h is a positive integer such that $r \mid\left(p^{h}-1\right)$ (cf. [13]).
Lemma 3.2. For integer $m \geq 0$ and $x \in \mathbb{C}_{p}$,

$$
H_{m}^{(k)}(x, \varepsilon)=\int_{\mathbb{Z}_{p}^{k}}(x+|a|)^{m} d \mu_{\varepsilon}(a)
$$

where $a=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{p}^{k}$ and $|a|=a_{1}+\cdots+a_{n}$.

Proof. Note that

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}^{k}} e^{t(x+|a|)} d \mu_{\varepsilon}(a) & =\lim _{\substack{n_{1} \rightarrow \infty \\
n_{k} \rightarrow \infty}}^{p^{h n_{1}}-1} \sum_{a_{1}=0} \cdots \sum_{a_{k}=0}^{p^{h n_{k}}-1} e^{t\left(x+a_{1}+\cdots+a_{k}\right)} \varepsilon^{a_{1}} \cdots \varepsilon^{a_{k}} \\
& =e^{t x} \prod_{i=1}^{k}\left(\lim _{n_{i} \rightarrow \infty} \frac{1-\varepsilon^{p^{h n_{i}}} e^{t p^{h n_{i}}}}{1-\varepsilon e^{t}}\right)=g_{\varepsilon}(x, t)
\end{aligned}
$$

(cf. [10]). Taking the coefficient of the terms t^{m} / m ! in the above formula, we obtain the lemma.

Put $|a|=a_{1}+\cdots+a_{n}$. Let $a=\left(a_{1}, \ldots, a_{k}\right)$ be a variable on \mathbb{Z}_{p}^{k} and let \mathbb{Z}_{p}^{\times} be the group of p-adic units. It is easy to see that
(3.2) $\int_{\substack{\mathbb{Z}_{p}^{k} \\|a| \in \mathbb{Z}_{p}^{\times}}}(x+|a|)^{m} d \mu_{\varepsilon}(a)=\int_{\mathbb{Z}_{p}^{k}}(x+|a|)^{m} d \mu_{\varepsilon}(a)-\int_{\substack{\mathbb{Z}_{p}^{k} \\|a| \in p \mathbb{Z}_{p}}}(x+|a|)^{m} d \mu_{\varepsilon}(a)$
(cf. [10]). We use the notation

$$
[n]_{\varepsilon}=\frac{1-\varepsilon^{n}}{1-\varepsilon}
$$

Now, we need to compute (3.2). The following lemma deals with the second integral in (3.2).

Lemma 3.3. For integer $m \geq 0$ and $x \in \mathbb{C}_{p}$,

$$
\int_{\substack{\mathbb{Z}_{p}^{k} \\|a| \in p \mathbb{Z}_{p}}}(x+|a|)^{m} d \mu_{\varepsilon}(a)=\frac{p^{m}}{[p]_{\varepsilon}^{k}} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\ p \nmid|a|}}^{p-1} \varepsilon^{|a|} H_{m}^{(k)}\left(\frac{x+|a|}{p}, \varepsilon^{p}\right),
$$

where $a=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{p}^{k}$ and $|a|=a_{1}+\cdots+a_{n}$.
Proof. Note that

$$
\begin{aligned}
& \int_{\substack{\mathbb{Z}_{p}^{k} \\
|a| \in p \mathbb{Z}_{p}}} e^{t(x+|a|)} d \mu_{\varepsilon}(a) \\
& =e^{t x} \lim _{n_{1} \rightarrow \infty} \cdots \lim _{n_{k} \rightarrow \infty} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\
p \nmid|a|}}^{p-1} \sum_{b_{1}=0}^{p^{h n_{1}-1}-1} \cdots \sum_{b_{k}=0}^{p^{h n_{k}-1}-1} \prod_{i=1}^{k}\left(\varepsilon e^{t}\right)^{a_{i}+p b_{i}} \\
& =e^{t x} \lim _{n_{1} \rightarrow \infty} \cdots \lim _{n_{k} \rightarrow \infty} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\
p \nmid|a|}}^{p-1} \prod_{i=1}^{k}\left(\varepsilon a^{t}\right)^{a_{i}} \sum_{b_{1}=0}^{p^{h n_{1}-1}-1} \cdots \sum_{b_{1}=0}^{p^{h n_{k}-1}-1} \prod_{i=1}^{k}\left(\varepsilon e^{t}\right)^{p b_{i}} \\
& =\sum_{\substack{a_{1}, \ldots, a_{k}=0 \\
p \nmid|a|}}^{p-1} \varepsilon^{a_{1}+\cdots+a_{k}} e^{t\left(x+a_{1}+\cdots+a_{k}\right)} \lim _{n_{1} \rightarrow \infty} \cdots \lim _{n_{k} \rightarrow \infty} \prod_{i=1}^{k}\left(\frac{1-\varepsilon e^{t p^{h n_{i}}}}{1-\varepsilon^{p} e^{t p}}\right)
\end{aligned}
$$

$$
=\frac{1}{[p]_{\varepsilon}^{k}} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\ p \nmid|a|}}^{p-1} \varepsilon^{a_{1}+\cdots+a_{k}} g_{\varepsilon^{p}}(t p) e^{t\left(x+a_{1}+\cdots+a_{k}\right)} .
$$

Taking the coefficient of the terms t^{m} / m ! in the above formula, we obtain the lemma.

Lemma 3.4. For integer $m \geq 0$ and $x \in \mathbb{C}_{p}$,

$$
\int_{\substack{|a| \in \mathbb{Z}_{p}^{\times}}}^{\mathbb{Z}_{p}^{k}}(x+|a|)^{m} d \mu_{\varepsilon}(a)=H_{m}^{(k)}(x, \varepsilon)-\frac{p^{m}}{[p]_{\varepsilon}^{k}} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\ p \nmid|a|}}^{p-1} \varepsilon^{|a|} H_{m}^{(k)}\left(\frac{x+|a|}{p}, \varepsilon^{p}\right),
$$

where $a=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{p}^{k}$ and $|a|=a_{1}+\cdots+a_{n}$.
Proof. By (3.2), Lemmas 3.2 and 3.3 we obtain the desired identity.
Lemma 3.5. Let $x \in \mathfrak{m}_{p}$. The function

$$
-m \longmapsto H_{m}^{(k)}(x, \varepsilon)-\frac{p^{m}}{[p]_{\varepsilon}^{k}} \sum_{\substack{a, \ldots, a_{k}=0 \\ p \nmid|a|}}^{p-1} \varepsilon^{|a|} H_{m}^{(k)}\left(\frac{x+|a|}{p}, \varepsilon^{p}\right)
$$

admits a continuation from the dense subset $\{0,-1, \ldots\} \subset \mathbb{Z}_{p}$ to a continuous function

$$
\zeta_{p, k}(\cdot, x, \varepsilon): \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}
$$

and

$$
\zeta_{p, k}(s, x, \varepsilon)=\int_{\substack{\mathbb{Z}_{p}^{k} \\|a| \in \mathbb{Z}_{p}^{\times}}}(x+|a|)^{-s} d \mu_{\varepsilon}(a),
$$

where $a=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}_{p}^{k}$ and $|a|=a_{1}+\cdots+a_{n}$.
Proof. Let $|a| \in \mathbb{Z}_{p}^{\times}, x \in \mathfrak{m}_{p}$ and let $m \equiv m^{\prime}\left(\bmod (p-1) p^{n}\right)$. It is easy to see that $(x+|a|)^{m} \equiv(x+|a|)^{m^{\prime}}\left(\bmod p^{n+1} \mathfrak{o}_{p}\right)$. Therefore we have

$$
\begin{equation*}
\int_{\substack{\mathbb{Z}_{p}^{k} \\|a| \in \mathbb{Z}_{p}^{\times}}}(x+|a|)^{m} d \mu_{\varepsilon}(a) \equiv \int_{\substack{\mathbb{Z}_{p}^{k} \\|a| \in \mathbb{Z}_{p}^{\times}}}(x+|a|)^{m^{\prime}} d \mu_{\varepsilon}(a) \quad\left(\bmod p^{n+1} \mathfrak{o}_{p}\right) \tag{3.3}
\end{equation*}
$$

and they would also belong to a continuous p-adic function on \mathbb{Z}_{p}. The result now follows from Lemma 3.4.

If $t \in \mathbb{C}_{p}$ such that $|t|_{p} \leq 1$, then for any $a \in \mathbb{Z}_{p}^{\times}, a+p t \equiv a\left(\bmod p \mathfrak{o}_{p}\right)$. Thus we define

$$
\omega(a+p t)=\omega(a)
$$

for these values of t and the Teichmüller character ω. We also define

$$
\langle a+p t\rangle=\omega^{-1}(a)(a+p t)
$$

for $t \in \mathbb{C}_{p}$ such that $|t|_{p} \leq 1$ (cf. $\left.[16,20]\right)$. We define a function $\zeta_{p, k}(s, t, \varepsilon)$ on \mathbb{Z}_{p} by

$$
\begin{equation*}
\zeta_{p, k}(s, t, \varepsilon)=\int_{\substack{|a| \in \mathbb{Z}_{p}^{\times}}}^{\mathbb{Z}_{p}^{k}}\langle | a|+p t\rangle^{-s} d \mu_{\varepsilon}(a), \tag{3.4}
\end{equation*}
$$

where $|a|=a_{1}+\cdots+a_{k}$ and $t \in \mathbb{C}_{p}$ such that $|t|_{p} \leq 1$.
Theorem 3.6 (p-adic k-ple Riemann zeta function). For $t \in \mathbb{C}_{p}$ such that $|t|_{p} \leq 1$, the function $\zeta_{p, k}(s, t, \varepsilon)$ is analytic on \mathbb{Z}_{p} and

$$
\zeta_{p, k}(s, t, \varepsilon)=\sum_{n=0}^{\infty}\binom{-s}{n} \int_{\substack{\mathbb{Z}_{p}^{k} \\|a| \in \mathbb{Z}_{p}^{\times}}}(\langle | a|+p t\rangle-1)^{n} d \mu_{\varepsilon}(a)
$$

holds, which interpolates $(1-\varepsilon)^{k} \tilde{\zeta}_{k}(-m, p t, \varepsilon)$ in the sense that

$$
\zeta_{p, k}(-m, t, \varepsilon)=H_{m}^{(k)}(p t, \varepsilon)-p^{m}\left(\frac{1}{[p]_{\varepsilon}}\right)^{k} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\ p \nmid|a|}}^{p-1} \varepsilon^{|a|} H_{m}^{(k)}\left(t+\frac{|a|}{p}, \varepsilon^{p}\right)
$$

for integers $m \geq 0$ with $m \equiv 0(\bmod p-1)$ and $|a|=a_{1}+\cdots+a_{k}$.
Proof. From Lemma 3.5, $\zeta_{p, k}(-s, t, \varepsilon)$ can be written uniquely as the Mahler expansion (cf. [20])

$$
\zeta_{p, k}(-s, t, \varepsilon)=\sum_{n=0}^{\infty} a_{n}\binom{s}{n}, \quad a_{n}=\int_{\substack{\mathbb{Z}_{p}^{k} \\|a| \in \mathbb{Z}_{p}^{\times}}}(\langle | a|+p t\rangle-1)^{n} d \mu_{\varepsilon}(a)
$$

and

$$
\begin{aligned}
\left|a_{n}\right|_{p} & =\left|\int_{\substack{\mathbb{Z}_{p}^{k} \\
|a| \in \mathbb{Z}_{p}^{\times}}}(\langle | a|+p t\rangle-1)^{n} d \mu_{\varepsilon}(a)\right|_{p} \\
& \left.\leq \sup _{\substack{a \in \mathbb{Z}_{p}^{k} \\
|a| \in \mathbb{Z}_{p}^{\times}}}|\langle | a|+p t\right\rangle-\left.1\right|_{p} ^{n} \\
& =p^{-n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{aligned}
$$

Note that the coefficients a_{n} are given by

$$
a_{n}=\left.\Delta^{n} \zeta_{p, k}(-s, t, \varepsilon)\right|_{s=0},
$$

where $\Delta f(x)=f(x+1)-f(x)$. Moreover we have

$$
\frac{1}{n!} a_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

so that $\zeta_{p, k}(s, t, \varepsilon)$ is analytic. Therefore the result follows from Lemma 2.2 and Lemma 3.5.

From Lemma 3.4 and (3.3), we also have:

Corollary 3.7. Let $m \equiv m^{\prime}\left(\bmod p^{n}(p-1)\right)$ and let $t \in \mathbb{C}_{p}$ such that $|t|_{p} \leq 1$. Then

$$
\begin{aligned}
& H_{m}^{(k)}(p t, \varepsilon)-\frac{p^{m}}{[p]_{\varepsilon}^{k}} \sum_{\substack{a, \ldots, a_{k}=0 \\
p \nmid|a|}}^{p-1} \varepsilon^{|a|} H_{m}^{(k)}\left(t+\frac{|a|}{p}, \varepsilon^{p}\right) \\
\equiv & H_{m^{\prime}}^{(k)}(p t, \varepsilon)-\frac{p^{m}}{[p]_{\varepsilon}^{k}} \sum_{\substack{a_{1}, \ldots, a_{k}=0 \\
p \nmid a \mid}}^{p-1} \varepsilon^{|a|} H_{m^{\prime}}^{(k)}\left(t+\frac{|a|}{p}, \varepsilon^{p}\right) \quad\left(\bmod p^{n+1} \mathfrak{o}_{p}\right) .
\end{aligned}
$$

In particular if $t=0$ and $k=1$, we an rewrite Corollary 3.7 as

$$
\begin{equation*}
H_{m}(\varepsilon)-\frac{p^{m}}{[p]_{\varepsilon}} H_{m}\left(\varepsilon^{p}\right) \equiv H_{m^{\prime}}(\varepsilon)-\frac{p^{m^{\prime}}}{[p]_{\varepsilon}} H_{m^{\prime}}\left(\varepsilon^{p}\right) \quad\left(\bmod p^{n+1} \mathfrak{o}_{p}\right) \tag{3.5}
\end{equation*}
$$

which is the same as (23) in [13]. If $\varepsilon=-1$ in (3.5), then we have the following corollary.

Corollary 3.8. If $m \equiv m^{\prime}\left(\bmod p^{n}(p-1)\right)$, then

$$
\left(1-p^{m}\right) H_{m}(-1) \equiv\left(1-p^{m^{\prime}}\right) H_{m^{\prime}}(-1) \quad\left(\bmod p^{n+1} \mathbb{Z}_{p}\right)
$$

By (1.5) and Corollary 3.8, it is easy to see that

$$
\begin{equation*}
\left(1-p^{m}\right)\left(1-2^{m+1}\right) \frac{B_{m+1}}{m+1} \equiv\left(1-p^{m^{\prime}}\right)\left(1-2^{m^{\prime}+1}\right) \frac{B_{m^{\prime}+1}}{m^{\prime}+1} \quad\left(\bmod p^{n+1} \mathbb{Z}_{p}\right) \tag{3.6}
\end{equation*}
$$

If we further assume that $m+1 \not \equiv 0(\bmod p-1)$, then we have $1 /\left(1-2^{m+1}\right) \equiv$ $1 /\left(1-2^{m^{\prime}+1}\right)\left(\bmod p^{n+1} \mathbb{Z}_{p}\right)$. Multiplying these two congruences, we obtain the Kummer congruences for the Bernoulli numbers (see [13, 20]):

Corollary 3.9 (Kummer congruences). If $m+1 \not \equiv 0(\bmod p-1)$ and if $m \equiv m^{\prime}$ $\left(\bmod p^{n}(p-1)\right)$, then

$$
\left(1-p^{m}\right) \frac{B_{m+1}}{m+1} \equiv\left(1-p^{m^{\prime}}\right) \frac{B_{m^{\prime}+1}}{m^{\prime}+1} \quad\left(\bmod p^{n+1} \mathbb{Z}_{p}\right)
$$

Acknowledgements. This work was supported by a Kyungnam University Foundation grant in 2010.

References

[1] A. Adelberg, Arithmetic properties of the Norlund polynomial $B_{n}^{(x)}$, Discrete Math. 204 (1999), no. 1-3, 5-13.
[2] L. Carlitz, Some congruences for the Bernoulli numbers, Amer. J. Math. 75 (1953), 163-172.
[3] \quad, Some properties of the Norlund polynomial $B_{n}^{(x)}$, Math. Nachr. 33 (1967), 297-311.
[4] G. Frobenius, Über die Bernoullischen Zahlen un die Eulerschen Polynome, Sitz. Preuss. Akad. Wiss. (1910), 809-847.
[5] F. T. Howard, Congruences and recurrences for Bernoulli numbers of higher order, Fibonacci Quart. 32 (1994), no. 4, 316-328.
[6] K. Iwasawa, Lectures on p-adic L-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972.
[7] M.-S. Kim and J.-W. Son, On a multidimensional Volkenborn integral and higher order Bernoulli numbers, Bull. Austral. Math. Soc. 65 (2002), no. 1, 59-71.
[8] T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q integral on \mathbb{Z}_{p} at $q=-1$, J. Math. Anal. Appl. 331 (2007), no. 2, 779-792.
[9] T. Kim and B. Lee, Some identities of the Frobenius-Euler polynomials, Abstr. Appl. Anal. 2009 (2009), Art. ID 639439, 7 pp.
[10] N. Koblitz, p-Adic Analysis: a Short Course on Recent Work, Cambridge University Press, Mathematical Society Lecture Notes Series 46, 1980.
[11] T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte. I. Einfuhrung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math. 214/215 (1964), 328-339.
[12] E. E. Kummer, Über eine allgemeine Eigenschaft der rationalen Entwickelungscoëficienten einer bestimmten Gattung analytischer Funktionen, J. Reine Angew. Math. 41 (1851), 368-372.
[13] Yu. V. Osipov, p-adic zeta functions and Bernoulli numbers, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 93 (1980), 192-203; English transl. in Journal of Mathematical Sciences 19 (1982), 1186-1194.
[14] K. Shiratani, On Euler numbers, Mem. Fac. Sci. Kyushu Univ. Ser. A 27 (1973), 1-5.
[15] Y. Simsek, on twisted generalized Euler numbers, Bull. Korean Math. Soc. 41 (2004), no. 2, 299-306.
[16] , Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), no. 2, 790-804.
[17] , q-analogue of twisted l-series and q-twisted Euler numbers, J. Number Theory 110 (2005), no. 2, 267-278.
[18] Y. Simsek, V. Kurt, and O. Yurekli, on interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), no. 2, 187-194.
[19] H. S. Vandiver, Certain congruences involving the Bernoulli numbers, Duke Math. J. 5 (1939), 548-551.
[20] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997.

Daekil Park
Department of Electronic Engineering
Kyungnam University
Changwon 631-701, Korea
E-mail address: dkpark@kyungnam.ac.kr
Jin-Woo Son
Department of Mechanical Engineering
Kyungnam University
Changwon 631-701, Korea
E-mail address: sonjin@kyungnam.ac.kr

