• Title/Summary/Keyword: Bernoulli numbers

Search Result 102, Processing Time 0.023 seconds

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES

  • Srivastava, Hari Mohan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1163-1184
    • /
    • 2007
  • In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\'{e}ry$ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.

A NOTE OF THE MODIFIED BERNOULLI POLYNOMIALS AND IT'S THE LOCATION OF THE ROOTS

  • LEE, Hui Young
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.291-300
    • /
    • 2020
  • This type of polynomial is a generating function that substitutes eλt for et in the denominator of the generating function for the Bernoulli polynomial, but polynomials by using this generating function has interesting properties involving the location of the roots. We define these generation functions and observe the properties of the generation functions.

A NOTE ON MIXED POLYNOMIALS AND NUMBERS

  • Mohd Ghayasuddin;Nabiullah Khan
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.168-180
    • /
    • 2024
  • The main object of this article is to propose a unified extension of Bernoulli, Euler and Genocchi polynomials by means of a new family of mixed polynomials whose generating function is given in terms of generalized Bessel function. We also discuss here some fundamental properties of our introduced mixed polynomials by making use of the series arrangement technique. Furthermore, some conclusions of our present study are also pointed out in the last section.

NOTE ON STIRLING POLYNOMIALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.591-599
    • /
    • 2013
  • A large number of sequences of polynomials and numbers have arisen in mathematics. Some of them, for example, Bernoulli polynomials and numbers, have been investigated deeply and widely. Here we aim at presenting certain interesting and (potentially) useful identities involving mainly in the second-order Eulerian numbers and Stirling polynomials, which seem to have not been given so much attention.

On the Historical investigation of Sums of Power of Consecutive Integer (연속된 정수의 멱의 합의 변천사에 대한 고찰)

  • Kang Dong-Jin;Kim Dae-Yeoul;Park Dal-Won;Seo Jong-Jin;Rim Seog-Hoo;Jang Lee-Chae
    • Journal for History of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • In 1713, J. Bernoulli first discovered the method which one can produce those formulae for the sum $\sum\limits_{\iota=1}^{n}\;\iota^k$ for any natural numbers k ([5],[6]). In this paper, we investigate for the historical background and motivation of the sums of powers of consecutive integers due to J. Bernoulli. Finally, we introduce and discuss for the subjects which are studying related to these areas in the recent.

  • PDF

A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

  • Choi, Jong-Sung;Kim, Tae-Kyun;Kim, Young-Hee
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.529-534
    • /
    • 2011
  • In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on $\mathbb{Z}_p$. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

ON THE p-ADIC VALUATION OF GENERALIZED HARMONIC NUMBERS

  • Cagatay Altuntas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.933-955
    • /
    • 2023
  • For any prime number p, let J(p) be the set of positive integers n such that the numerator of the nth harmonic number in the lowest terms is divisible by this prime number p. We consider an extension of this set to the generalized harmonic numbers, which are a natural extension of the harmonic numbers. Then, we present an upper bound for the number of elements in this set. Moreover, we state an explicit condition to show the finiteness of our set, together with relations to Bernoulli and Euler numbers.