Kangweon—I{yungki Math. Jour. 3 (1995), No. 2, pp. 143-152

MIRIMANOFF’S POLYNOMIAL, BERNOULLI
NUMBERS AND FERMAT QUOTIENTS

JAE MooN KIM

§1. Introduction

Let p be an odd prime and F, be the finite field with p elements.
Let fit) = (—1252)—;@ be a polynomial in F,[¢]. The polynomial f(t)
was first introduced by D. Mirimanoff in 1905 to show the following
criterion on Fermat’s last theorem(F.L.T.) (see [1]) : if p does not di-
vide B,_7 or B,_g, then the first case of F.L.T. holds, where B,, is the
nth Bernoulli number. He also used the same polynomial f(t) to prove
the following striking theorem: if 2?~! # 1 mod p?, then the first case
of the F.L.T. holds. The only two exceptions for p < 3 x 10? are 1093
and 3511. This theorem was first proved by A. Wieferich and thus
named as Wieferich criterion. But Mirimanoff’s proof is substantially
simpler and more instructive. Actually he derived many more proper-
ties of f(t) and proved that if 3?~! # 1 mod p?, then the first case of
the F.L.T. holds. A computation shows that for p = 1093 and 3511,
3P~1 £ 1 mod p?. This guarantees that there are no integer solutions
of 2P +y? + 2 =0 and pt zyz for all p < 3 x 10°.

For an integer a with (a,p) = 1, Fermat little theorem says that
a?~! = 1 mod p, hence a?~! — 1/p is an integer. We denote this
integer by ¢,(a) and call it the Fermat quotient of @ with base p. Thus
we can rephrase Mirimanoff’s result as follows: if either ¢,(2) or ¢,(3)
is not congruent to 0 modulo p, then the first case of the F.L.T. is
true. After Mirimanoff’s work on F.L.T. with his polynomial f(),
many other distinguished mathematicians such as Frobenius, Vandiver
and Morishima extended Mirimanoff’s result by studying vanishing of
Fermat quotients ¢,(@) mod p for various prime p’s and a’s.

In this paper, we introduce a new polynomial g(t) in F,[¢] given by
gt) = (1 —t)P 2+ (1 —t)P 2 + .- 4 'p_l—-f' We will also view g(t)
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as a polynomial in Z,[t] whenever necessary, where Z, is the ring of
p-adic integers. Here %, for 1 < k < p— 1, means the multiplica-
tive inverse of k in F, (or Z,). This polynomial g(t) is very closely
related with the Mirimanoff’s polynomial f(¢). Indeed we will show
in section 2 that f(¢) = tg(1 —t) mod p. Thus values of ¢(t) are
related with Fermat quotients. For instance, by letting t = —1, we
have —g(2) = f(-1) = 2'21—,_2 = 2¢,(2) mod p. Therefore the Fermat
quotient ¢,(2) =0 mod p iff g(2) =0 mod p.

The aim of this paper is to examine properties of the polynomial ¢(t)
and to study special values of g(t). They will turn out to be related
with Bernoulli numbers and Fermat quotients. This paper is organized
as follows. In the next section, we prove various properties of g(t).
The relations between ¢(t) and f(¢) will be also discussed in the same
section. In section 3, we study two applications of ¢(¢). One of them
1s to express certain generalized Bernoulli number in terms of a value
of ¢(t). The other is to examine the vanishing of the Fermat quotient
qp(1) in terms of values of ¢(t), where [ is a prime such that p = 1
(mod I). To be precise, we will show that ¢,(/) = Esgﬂ g(s) (mod p),

571

st=1
where R = {w € Z, | w?~! = 1} is the group of all p — 1th roots of
1 in Zp. This can be thought of as a generalization of the following
congruence discovered by Eisenstein (see[2]):

1 7 I R | 1
qp(2) 5(1—54-5—14-"'—?—_1) (mod p).

Indeed, if [ = 2, the sum ) ser ¢(s) involves only one term g¢(—1).
=1

8#1
But g(—1) = —29(2) = ¢,(2) mod p (proposition 1), which is clearly
congruent to %(1 —3+i-31+- p—il-) modulo p.

§2. Mirimanoff’s polynomial f(¢) and ¢(¢)

In this section, we will describe some properties of g(¢). We will see,
in proposition 1, that ¢(¢) comes from the Mirimanoff’s polynomial
which has been exhaustively studied since 1910°s. The Mirimanoff’s
polynomial f(¢) is defined by f(t) = W as a polynomial in
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IF,[t]. In the following lemma, some properties of f(¢) are given. For
. many other features of f(t), we refer [1].

LeEMMA 1.
(1) #5(3) =S
(2) #(1=1)= £(t),

p

(3) flt)=~ Z %fi (mod p).

i=1

(Proof) (1) and (2) can be easily checked from the definition of f(t).
We will prove (3).

(1=t —(1-t7)

ft) = .
i (=) - (1 =)
a P
Tio (D=0
- - _
But
(8 _ slo- 1) fpeistd)
P p+ il
p—1 p—2 p—1+1 1
e e

41
=(-1)'""'= (mod p),
since PI—k = —1 (mod p) when (p, k) = 1. Thus,

ft) = Z(—I)"_I%{—l)ité (mod p)

p—1 i

= —Z ?tf.

t==1

By using these properties, we obtain the following congruences for
g(2)-
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ProrosIiTION 1.

(1) tg(1—1¢t) = f(t) (mod p).
(2) tg(1—1t) =(1—1)g(t) (mod p).
(3) g(t) =t""g(3) (mod p).

(Proof) (1) By (1) and (3) of the above lemma, we have

1 1
tg(l —t) =t p—2 —tp_3 iy
g( ) = t(t +5 + +p_1)
1T 11

PR 1 (e e Bt (R . BER R
(t+2t2+ +p_1tp_1)

= ~#(3) (mod p)

(2) By lemma 1,(2) and proposition 1,(1) above, we obtain
tg(l—t)=f(t)=f(1—-t)=(1-1t)g(t) (mod p).

(3) By applying above consequences appropriately, we get

(1= Dg(t) = £(5) = 2 5(7) = (1~ Dg(3) = (1 - g(7).
Hence g(t) = t*71¢(3) (mod p).

Let R = {w € Z, | wP~! = 1} be the group of p — 1th roots of 1 in
the ring of p-adic integers Z,.

COROLLARY. Fors € R, ¢(s) = g(1) (mod p).

(Proof) Put ¢ = s in the congruence (3) of the above lemma. Since
sP™1 =1, we have g(s) = g{%) mod p.

PROPOSITION 2. Let s # &1 be any p — 1th root of 1 in Z,. Then

g(s) +g(~s) = g(s*) (mod p)
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(Proof) Since (1 — t)g(t) = f(t) (mod p), we have

g(s) +g(—=s) = _i]_"(__s); + % (mod p)

_ (-9 (1=sh) (+8)f (1457

p(1—s) p(1+s)
(A-4gpte1 (48t -1

= +
P 2

O e i ) et

P

Since (1 £ 5)?P~! =1 (mod p) by Fermat little theorem, we have
Q=8P —1)((1+s)P1-1)=0 (mod p?).
From this, we obtain
A-s)P 1414 —2=(1-s*)P1-1 (modp?).

Hence
(1—-s?)P -1

p

2
)

(1—-s¥)P—(1-s

g(s)+g(—s) = (mod p).

On the other hand, since s = s

R 2P) d
g(S ): p(l r 7 Sg) (IIlO p)
il e s¥pel 1
= - ;

Therefore, g(s) 4+ g(—s) = g(s?) (mod p).

§3. Generalized Bernoulli numbers and Fermat quotients

In this section, we study two applications of the Mirimanoff’s poly-
nomial g(¢). First, we relate certain generalized Bernoulli number with
a special value of g(t). Let p be an odd prime such that p =1 (mod 5)
and let y be the nontrivial even character of Gal(Q(¢s)/Q), where (s

is a primitive 5th root of 1, i.e., x = (g) is the quadratic character.
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PROPOSITION 3. Letw be the Teichmiiller character of Gal(Q((,)/Q) =~
(Z/pZ)*. Then,

(p—6)/5

1
B],xw—l =2

= 5k + 2

d p.

(Proof) For any Dirichlet character p, we know By, = % Za Lap(a)
where f is the conductor of the character p (see [3]). Since the con-
ductor of the character yw™! is 5p, we have

4 .
By -t = = Z ayxw (a)

0<a<5p

1
== Y (sp+yxzp+ylw(ep+y)
5p 0<r<4
0<y<p—1

Since zp+ y =« +y mod 5, and since zp + y =y mod p, we obtain

1

Biyo-r=— Y (ep+y)x(e+y)w™(y)
5 0<z<4
0<y<p—1
1 -1 1 o
=% > ax(z+y )+ > yx(e+ywTHY).
0<z<4 P 0<z<4
0<y<p—1 0<y<p—1

But Yyc,cqX(z+y) =0, and w™(y) = y~' mod p if (y,p) = L.
Thus, ~

B,

Xw!
B 11 »
=: > ax@tyte D, W) > X(z +y) (mod p)
0<z<4 Y pOSyﬁp—l 0<z<4
1<y<p 1

Ly Ly e

1(y<p 1 0<1‘<4
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Since x is the quadratic character (5)’ we have x(1) = x(4) = 1, and
x(2) = x(3) = —1. Hence
0 if y=1or3 (mod5)
Y ax(z+y)=4 5 if y=2 (mod5)
0szsd -5 if y=4 (mod 5).

Therefore,

Bl,wlzé RIS 5(—5) frevend )
1<y<p-1 1<y<p—1
y=2 mod 5 Yy=4 mod 5
1 1 1 1 1 1
”<§+?+ +ﬂ)+(‘r§ """ pﬁz)
z(}--l-"l--i- +—1-—)+(—1—-+-—1—+ -I--*) (mod p)
2 7 p—4 p—4 p-—9 2
(p—6)/5 1
=2 ; 5k + 2

This completes the proof.

Let s be a primitive 5th root in Z,. In the following theorem, we
interpret By ,,-1 by the special value g(—s).

THEOREM 1. g(—s)® = ZBLX,J,_P (mod p).

(Proof) First, we calculate sg(1 — s). Since s° = 1 in Z,, 5+ = s
for any integers k and i. Thus, we get
1,1 p2
sg(l—s) =8P 4 —sP7* 4. +p—18
-—-(1+l+--+#>+(l+l+' + : )34
6 p—>5 2 7 p—4
11 1\ 5 (1 1 1N
+( +§+"+pm1)s +(Z+"9“+ +p—2)b
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LetA,»=:—_+ﬁ+---+ﬁfori=l,2,3,4,5. Then we have
the following congruences
A3=%+%+“-+p%3
*—(;i—gﬂtp—i—gnL +%)=—A3(modp),
A4_i %-}----l-ﬁ
E-(gﬁ"*_;{—g-i_ ---I—%)——Az (mod p),
As %-l—%ﬂ- +%1

1 1
= — [ ——— i1l ==A4 d p).
(p—5+p~10+ = ) 1 (mod p)

Hence we have A3 =0, Ay = —A; and As = —A; mod p. Therefore,
sg(l—s)= A+ Ans® 4 Ags® + Ays®+ Ass
= A; + Ags? — Ays% — Ags (mod p)
=A(1—-3s)— A232(1 +5)(1 — s)
= (1 — s)(A1 — Azs® — Ags®).
Since (1 —s)g(s) =sg(1—3s) modpfors€e R={w € Z, | wP~! =1}

and since 1 —s # 1 mod p for the primitive 5th root s in Z,, we
conclude that

g(s) = A; — Azs® — A35®  (mod p)
for the primitive 5th root s € Z,,.

If s is a primitive 5th root in Z,, then s? is also a primitive 5th root
in Z,. And we know that g(—s) = g(s?)—g(s) (mod p) by proposition
2 of section 2. Thus

g9(=s) = g(s*) — g(s) (mod p)
=(A; — Ags* — Aps®) — (A — Ags? — Ags*) (mod p)
= Ay(s? + 5% — s* — s).
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Since (s? + s® — s* — 5)? = 5 and since 4, = 2B; yw-1 (mod p) by
_ proposition 3, we have

5
9(=8)" = 4% 5= 2(By 1 )? (mod p)

as desired.

Finally we prove a criterion on the vanishing of the Fermat quotient
qp(1), where [ is a prime satisfying p = 1 (mod I).

THEOREM 2. gp(1) = > ¢(s) mod p.
SER
871
s'=1
(Proof) Let s # 1 be a p— 1th root of 1 in Zy and put t = 1 — s in the
equation (1) of proposition 1. Then we get

(1—s)g(s) = f(1-s)

= f(s)
_ (-5
p
_ (1—s)p—(1ms)-
p
Hence g(s) = b—)f——-l mod p.
Therefore

(1—-s)"'=14g(s)p mod p*.

Now let s # 1 run over all lth roots of 1 in Z, to obtain

[Ta-sr"t=T[Q+g(s)p) mod p2.

sER SER
s'=1 =1
s#1 s#1

Since the left hand side is {?~!, we have

PTl=1+4 (Z 9(5))10 mod p.

SER
s'=1

s#£1
Therefore ¢,(1) = % = > g(s) mod p.
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