Browse > Article
http://dx.doi.org/10.4134/JKMS.2007.44.5.1163

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES  

Srivastava, Hari Mohan (Department of Mathematics and Statistics University of Victoria)
Publication Information
Journal of the Korean Mathematical Society / v.44, no.5, 2007 , pp. 1163-1184 More about this Journal
Abstract
In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.
Keywords
analytic number theory; Riemann zeta function; Hurwitz(orgeneralized) zeta function; series representations; harmonic numbers; Bernoulli numbers and polynomials; generating functions; Euler numbers and polynomials; inductive argument; symbolic and numerical computations;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 R. W. Gosper, Jr., A calculus of series rearrangements, Algorithms and complexity (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1976), pp. 121-151. Academic Press, New York, 1976
2 N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58. Springer-Verlag, New York-Heidelberg, 1977
3 C. Nash and D. O'Connor, Ray-Singer torsion, topological field theories and the Riemann Zeta function at s = 3, in Low-Dimensional Topology and Quantum Field Theory (Proceedings of a NATO Advanced Research Workshop held at the Isaac Newton Institute at Cambridge, U.K.; September 6-12, 1992) (H. Osborn, Editor), pp. 279-288, Plenum Press, New York and London, 1993
4 E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge University Press, Cambridge, 1996
5 D. Cvijovic and J. Klinowski, New rapidly convergent series representations for $\zeta$ (2n + 1), Proc. Amer. Math. Soc. 125 (1997), no. 5, 1263-1271   DOI   ScienceOn
6 H. Alzer, D. Karayannakis, and H. M. Srivastava, Series representations for some mathematical constants, J. Math. Anal. Appl. 320 (2006), no. 1, 145-162   DOI   ScienceOn
7 R. Apery, Irrationaliie de $\zeta$(2) et $\zeta$(3), Asterisque 61 (1979), 11-13
8 R. Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974), 1067-1086   DOI   ScienceOn
9 A. Dabrowski, A note on values of the Riemann zeta function at positive odd integers, Nieuw Arch. Wisk. (4) 14 (1996), no. 2, 199-207
10 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vols. I, II, Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953
11 J. A. Ewell, A new series representation for $\zeta$ (3), Amer. Math. Monthly 97 (1990), no. 3, 219-220   DOI   ScienceOn
12 J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch zeta function, Appl. Math. Comput. 170 (2005), no. 1, 399-409   DOI   ScienceOn
13 J. M. Borwein, D. M. Bradley, and R. E. Crandall, Computational strategies for the Riemann zeta function, J. Comput. Appl. Math. 121 (2000), no. 1-2, 247-296   DOI   ScienceOn
14 M.-P. Chen and H. M. Srivastava, Some families of series representations for the Riemann $\zeta$(3), Results Math. 33 (1998), no. 3-4,179-197   DOI   ScienceOn
15 J. Choi, Y. J. Cho, and H. M. Srivastava, Series involving the zeta function and multiple gamma functions, Appl. Math. Comput. 159 (2004), no. 2, 509-537   DOI   ScienceOn
16 J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005), no. 1, 51-70   DOI
17 J. Choi, H. M. Srivastava, and V. S. Adamchik, Multiple gamma and related functions, Appl. Math. Comput. 134 (2003), no. 2-3, 515-533   DOI   ScienceOn
18 M. L. Glasser, Some integrals of the arctangent function, Math. Comput. 22 (1968), no. 102, 445-447   DOI
19 E. R. Hansen, A Table of Series and Products, Englewood Cliffs, NJ, Prentice-Hall, 1975
20 M. M. Hjortnaes, Overforing av rekken$\sum_{k=1}^{\infty}\;(1/k^3)$ til et bestemt integral, Proceedings of the Twelfth Scandanavian Mathematical Congress (Lund; August 10-15, 1953), pp. 211-213, Scandanavian Mathematical Society, Lund, 1954
21 S. Kanemitsu, H. Kumagai, and M. Yoshimoto, Sums involving the Hurwitz zeta function, Ramanujan J. 5 (2001), no. 1,5-19   DOI
22 J. A. Ewell, On the zeta function values $\zeta$ (2k + 1), k = 1,2, ... , Rocky Mountain J. Math. 25 (1995), no. 3, 1003-1012   DOI
23 S. Kanemitsu, H. Kumagai, H. M. Srivastava, and M. Yoshimoto, Some integral and asymptotic formulas associated with the Hurwitz zeta function, Appl, Math. Comput. 154 (2004), no. 3, 641-664   DOI   ScienceOn
24 S.-D. Lin, H. M. Srivastava, and P.-Y. Wang, Some expansion formulas for a class of generalized Huruntz-Lerch. zeta functions, Integral Transforms Spec. Funet. 17 (2006), no. 11, 817-827   DOI   ScienceOn
25 W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52 Springer-Verlag New York, Inc., New York 1966
26 M. Garg, K. Jain, and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Huruntz-Lercli zeta functions, Integral Transforms Spec. Funet. 17 (2006), no. 11, 803-815   DOI   ScienceOn
27 C. Nash and D. J. O'Connor, Ray-Singer torsion, topological field theories and the Riemann zeta function at s = 3, Low-dimensional topology and quantum field theory (Cambridge, 1992), 279-288, NATO Adv. Sci. Inst. Ser. B Phys., 315, Plenum, New York,1993
28 V. Ramaswami, Notes on Riemann's $\zeta$-function, J. London Math. Soc. 9 (1934), 165-169   DOI
29 H. M. Srivastava, A unified presentation of certain classes of series of the Riemann zeta function, Riv. Mat. Univ. Parma (4) 14 (1988), 1-23
30 H. M. Srivastava, Sums of certain series of the Riemann zeta function, J. Math. Anal. Appl. 134 (1988), no. 1, 129-140   DOI
31 H. M. Srivastava, Some simple algorithms for the evaluations and representations of the Riemann zeta function at positive integer arguments, J. Math. Anal. Appl. 246 (2000), no. 2, 331-351   DOI   ScienceOn
32 H. M. Srivastava, Certain families of rapidly convergent series representations for $\zeta$(2n+l), Math. Sci. Res. Hot-Line 1 (6) (1997), 1-6
33 H. M. Srivastava, Further series representations for $\zeta$(2n + 1), Appl. Math. Comput. 97 (1998), 1-15   DOI   ScienceOn
34 H. M. Srivastava, Some rapidly converging series for $\zeta$(2n + 1), Proc. Amer. Math. Soc. 127 (1999), no. 2, 385-396   DOI   ScienceOn
35 H. M. Srivastava and J. Choi, Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, 2001
36 H. M. Srivastava, M. L. Glasser, and V. S. Adamchik, Some definite integrals associated with the Riemann zeta function, Z. Anal. Anwendungen 19 (2000), no. 3, 831-846   DOI
37 H. M. Srivastava and H. Tsumura, New rapidly convergent series representations for $\zeta$(2n + 1), L(2n, X) and L(2n + 1, X), Math. Sci. Res. Hot-Line 4 (2000), no. 7, 17-24
38 H. M. Srivastava and H. Tsumura , Inductive construction of rapidly convergent series representations for $\zeta$(2n+ 1), Int. J. Comput. Math. 80 (2003), no. 9, 1161-1173   DOI   ScienceOn
39 E. C. Titchmarsh, The theory of the Riemann zeta-function, Second edition, The Clarendon Press, Oxford University Press, New York, 1986
40 F. G. Tricomi, Sulla somma delle inverse delle terze e quinte potenze dei numeri naiurali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 47 (1969) 16-18
41 N.-Y. Zhang and K. S. Williams, Some series representations of $\zeta$(2n+ 1), Rocky Mountain J. Math. 23 (1993), no. 4, 1581-1592   DOI
42 H. Tsumura, On evaluation of the Dirichlet series at positive integers by q-calculation, J. Number Theory 48 (1994), no. 3, 383-391   DOI   ScienceOn
43 J. R. Wilton, A proof of Burnside's formula for log $\Gamma$ (x + 1) and certain allied properties of Riemann's $\zeta$-function, Messenger of Math. 52 (1922) 90-93
44 E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), no. 1, 153-209   DOI
45 H. M. Srivastava and H. Tsumura, A certain class of rapidly convergent series representations for $\zeta$(2n + 1), J. Comput. Appl. Math. 118 (2000), no. 1-2, 323-335   DOI   ScienceOn