• Title/Summary/Keyword: Bending work

Search Result 628, Processing Time 0.03 seconds

Fatigue characteristics of SCM 22 Steel by Shot Peening (쇼트피닝한 SCM22강의 피로 특성)

  • 신용승
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.126-131
    • /
    • 1998
  • The influence of shot peening on the fatigue strength of SCM22 steel is investigated in this work. The shot peening process is applied to the heat treated specimens. Then, basic material properties and residual stresses are evaluated for specimens. Rotate bending and torsional fatigue tests are accomplished to investigate the effects of shot peening on the fatigue strength. experimental results show that the fatigue life was increased tremendously by shot peening. The compressive residual stress, which is induced by shot peening process, seems to be an important factor of increasing the fatigue strength.

  • PDF

Vibration Control Characteristics of Laminated Composite ER Beams with Electric Field Dependence (전기장에 따른 복합재 ER Beam의 진동제어 특성)

  • 김재환;강영규;최승복
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.416-421
    • /
    • 2001
  • The flexural vibration of laminated composite beams with an electro-rheological(ER) fluid has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, mu1ti-layer laminated beams. The damping radio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. Finite element method is used for the analysis of dynamic characteristics of the laminated composite beams with an ER fluid. For the validation of modeling methodology using viscoelastic theory the predicted dynamic properties are compared to the measured ones by author's previous work. They are in good agreement. This paper addresses a design strategy of laminated composite under flexural vibrations with an ER fluid.

  • PDF

Study of of Flexible Multibody Dynamics with Rotary Inertia (회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구)

  • 김성수
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

Development of on-line bending stiffness tester - (2) Lab experiment (종이 휨강성 자동 측정방식의 개발과 그 이용 - (2) 실험실 측정)

  • Seo, Yung-Bum;Jung, Seok-Myun;Jung, Tae-Young
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.04a
    • /
    • pp.235-250
    • /
    • 2007
  • A simple method of on-line stiffness measurement using the wrinkling behavior of paper web between rollers was presented. The theory and calculating equation were presented, and lab experiment was executed. We called the stiffness measured by Taber tester as 'Taber stiffness', and by tension wrinkling measurement as 'wrinkle stiffness', respectively, for comparison. Lab experimental results showed Taber and wrinkle stiffness are almost equivalent. We expect this method will work porperly for the on-line measurement of paper stiffness in near future.

  • PDF

Resistant Capacity of Longitudinally Traperzoidal Web Section with Opening (사다리꼴 유공웨브 형강보의 안전내력에 관한 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.63-71
    • /
    • 1992
  • Generally, Web & Flange of I shape beam are composed of plane for optimization of measurement in investigating the behavior resistant to horizontal force and bending moment on large section Therefore, longitudinally traperzoidal web section beam has an important function as a body for carrying more load and ensuring more support area. There is only a limited usefulness for analyzing the behavior of web section with opening. It is experimentally verified that this traperzoidal web section has a good resistant caopacity. conclustions on the above research results are as follows : 1) resistant capacity on the above can be more 15% increased than normal case 2) stiffener welding work and complexity of shopdrawing can be excluded in advance 3) traperzoidal section can be applied in structural practice.

  • PDF

Real-Time Elastodynamic Deformation of Thin Shell Structures (얇은 쉘 구조의 실시간 동적 탄성 변형)

  • Choi, Min-Gyu;Ko, Hyeong-Seok;Woo, Seung-Yong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.12 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • This paper proposes a real-time simulation technique for thin shells undergoing large deformation. Thin shells are almost two-dimensional structures visually well approximated as surfaces, such as leaves, paper sheets, hats, aluminum cans. Unfortunately accurate simulation of these structures requires one of the most complex formulations in continuum mechanics, shell theory [4]. Moreover, there has not yet been any work reported to produce visually convincing animation of them while achieving real-time performance. Motivated by discrete shells [5] and modal warping [3], we formulate dynamics of thin shells using mass-spring models instead of finite element models, and then apply the modal warping technique to cope with large rotational deformation of thin shells. Experiments show that the proposed technique runs in real-time, and that it can simulate large bending and/or twisting deformations with acceptable realism.

  • PDF

Fracture Behavior of Concrete Beam Subjected to Dynamic Loading (동적하중을 받는 콘크리트보의 파괴거동)

  • Kang, Sung-Hoo;Kim, Woo;Park, Sun-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.257-262
    • /
    • 1995
  • In this study, after concrete cylinders were made on the condition of varying water-to -cement ratio, and cured 80 days compressive strength and splitting tensile strength were performed and moduls of elasticy is obtained. The fracture energy was obtained by acting three point bending on the 80cm in length. This test involved static loading test and dynamic loading test. In this work, the new interrelation of the material constants was obtained clearly and the property of the mixture was inspected, including the relation between the fracture energy and all kind of the material constants.

  • PDF

A Novel Stiff Membrane Seesaw Type RF Microelectromechanical System DC Contact Switch on Quartz Substrate

  • Khaira, Navjot K.;Singh, Tejinder;Sengar, Jitendra S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.116-120
    • /
    • 2013
  • This paper proposes a novel RF MEMS dc-contact switch with stiff membrane on a quartz substrate. The uniqueness of this work lies in the utilization of a seesaw mechanism to restore the movable part to its rest position. The switching action is done by using separate pull-down and pull-up electrodes, and hence operation of the switch does not rely on the elastic recovery force of the membrane. One of the main problems faced by electrostatically actuated MEMS switches is the high operational voltages, which results from bending of the membrane, due to internal stress gradient. This is resolved by using a stiff and thick membrane. This membrane consists of flexible meanders, for easy movement between the two states. The device operates with an actuation voltage of 6.43 V, an insertion loss of -0.047 dB and isolation of -51.82 dB at 2 GHz.

A Study on the Appearance Characteristics of Selected Fabrics for Ecology Trends (에콜로지 트렌드 소재의 외관 특성에 관한 연구)

  • Lee, Jung-Min;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.12 no.4
    • /
    • pp.131-142
    • /
    • 2008
  • One of the major fashion trends is the naturalism and ecology-conscious trend. The natural looks required in the trend require somewhat random distribution of yarn linear density, which results in irregular appearance along the yarn. This is a technically challenging work of producing yarns that look natural far from being artificial yet maintaining the intricately aesthetic randomness without causing process disturbances. This study focused on the characteristics of fabrics made of natural cellulosic fibers including hemp, ramie, flax, and polyester fabrics. Image analysis of the fabric samples included area measurement of yarn specimen, FFT and inverse FFT. Measurements of bending resistance, thickness, air permeability, and weight were also implemented to interpret the structural differences.

Exact stochastic solution of beams subjected to delta-correlated loads

  • Falsone, G.;Settineri, D.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.307-329
    • /
    • 2013
  • The bending problem of Euler-Bernoulli discontinuous beams is dealt with, in which the discontinuities are due to the loads and eventually to essential constrains applied along the beam axis. In particular, the loads are modelled as random delta-correlated processes acting along the beam axis, while the ulterior eventual discontinuities are produced by the presence of external rollers applied along the beam axis. This kind of structural model can be considered in the static study of bridge beams. In the present work the exact expression of the response quantities are given in terms of means and variances, thanks to the use of the stochastic analysis rules and to the use of the generalized functions. The knowledge of the means and the variances of the internal forces implies the possibility of applying the reliability ${\beta}$-method for verifying the beam.