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Abstract

This paper proposes a real-time simulation technique for thin shells undergoing large deformation. Thin
shells are almost two-dimensional structures visually well approximated as surfaces, such as leaves, paper
sheets, hats, aluminum cans. Unfortunately accurate simulation of these structures requires one of the most
complex formulations in continuum mechanics, shell theory [4]. Moreover, there has not yet been any
work reported to produce visually convincing animation of them while achieving real-time performance.
Motivated by discrete shells [5] and modal warping [3], we formulate dynamics of thin shells using mass-
spring models instead of finite element models, and then apply the modal warping technique to cope
with large rotational deformation of thin shells. Experiments show that the proposed technique runs in
real-time, and that it can simulate large bending and/or twisting deformations with acceptable realism.

1 Introduction

Thin shells are almost two-dimensional structures that can be in-
terpreted as degenerate elastic solids and visually well approxi-
mated as surfaces, such as leaves, paper sheets, hats, aluminum
cans (See Figure 1). They are known to be remarkably difficult
to simulate because of their degeneracy in one dimension; Mod-
eling thin shells as three-dimensional elastic solids requires very
fine FEM [9] meshes to correctly capture the global bending be-
havior. On the other hand, accurate modeling and simulation of
these structures with moderately-sized meshes requires one of
the most complex formulations in continuum mechanics, shell
theory [4]. Regardless of the approach, there has not yet been
any method reported to produce visually convincing animation
of thin shells while achieving real-time performance.

In this paper, we propose a real-time simulation technique for
thin shells undergoing large rotational deformation. Motivated
by discrete shells proposed by Grinspun et al.[5], we formulate
dynamics of thin shells using mass-spring models instead of fi-
nite element models developed in shell theory. For real-time
performance of simulation, we extend the modal warping tech-
nique, which was originally proposed by Choi and Ko [3] for
large rotational deformation of elastic solids, to cope with thin
shell structures. Experiments show that the proposed technique
runs in real-time, and that it can simulate large bending and/or
twisting deformation of thin shells with acceptable realism.

2 Dynamics of Thin Shell Structures

We use an arbitrary two-manifold triangle mesh to describe the
shell geometry and model dynamics of thin shell structures using
nonlinear energy functions for membrane and flexure that mea-
sure the differences between the undeformed and the deformed
state of the triangle mesh, as proposed in [5]. The membrane
energy is to model the elastic surfaces resisting on intrinsic de-
formations such as stretching (local changes in area) and shearing
(local changes in length but not area). The flexural energy is for
extrinsic deformations such as bending (local changes in curva-
ture).
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The membrane energy consists of the stretching and shearing en-
ergies. To measure the amount of stretch, we employ the triangle-
based energy function that sums up the local changes in area over
all the triangles:

Membrane Energy
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where ||A|| and ||A||} are the areas of the triangle A in the de-
formed and the rest state, respectively.

For the membrane energy that measures the amount of shear,
we use the edge-based energy function that sums up the local
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Undeformed State

Deformed State

Figure 2: Dihedral angle of an edge for the flexural energy.

changes in length over all the edges:
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where ||e|| and ||€]| are the lengths of the edge e in the deformed
and the rest state, respectively.

Then, we can represent the membrane energy of the shell as
the sum of the energies for stretching and shearing:

By 2 kaEs+kLEp, (3)

where k4 and kp are the material constants for stretching and
shearing, respectively.

2.2 Flexural Energy

To measure the flexural energy of the shell, we adopt the discrete
flexural energy proposed by Grinspun et al. [5],
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where 6, and 8, are the dihedral angles of the edge e measured in
the deformed and the rest state, respectively, and A is the average
of the heights of the two triangles sharing the edge e in the rest
state (See Figure 2). This energy function was obtained by inte-
grating the squared difference of mean curvature at a point over
the piecewise linear mesh of the shell, and then by discretizing
the integral (See [5] for the detailed derivation).

2.3 Governing Equation

The total elastic energy of a thin shell is then defined by the sum
of the membrane and flexural energies:

EéEM-i-k‘BEB, (5)

where kg is the bending or flexural stiffness constant.

By differentiating the above energy function with respect to the
displacements of the mesh nodes, we can obtain the generalized
elastic force due to the elastic potential energy of a thin shell,

_ 9E(u)
 du

f(u) 6)
where u(t) is a 3n-dimensional vector that represents the dis-
placements of the » nodes from their original positions. Note
that the elastic force vector f must be zero when the displacement
vector u is zero. Thus, the elastic force can also be represented
by f(u) = K(u)u.

Then, the governing equation for the thin shell structure can be
written as

Mii + Cu+ K(u)u = F, ©)

where M and C are the constant mass and damping matrices,
respectively, and F(¢) is a 3n-dimensional vector that represents
the external forces acting on the n nodes. Here, the elastic force
term K(u)u is nonlinear with respect to u, and thus the gov-
erning equation of the form (7) could not yet be integrated in
real-time.

3 Simulation with Modal Warping

For real-time simulation of thin shells, we are to utilize the modal
warping technique [3], which was proposed originally to extend
modal analysis to cope with large rotational deformation of elas-
tic solids. Through the use of the modal warping technique, a
system of nonlinear equations of the form (7) can be approxi-
mated by a decoupled system of ordinary differential equations
(ODEs), only a small number of which are sufficient for visually
plausible simulation and also able to be independently integrated
in real-time.
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The key idea of the modal warping technique is applying modal
analysis to a equation of the form (7) in the local coordinate
frames attached to the mesh nodes, in order to obtain the form
shown in Equation (10). Let R be the 3 x 3 block-diagonal
matrix, of which i-th block is the rotation matrix representing
the orientation of the local coordinate frame attached to the i-th
node. Then, premultiplying R. to both sides of Equation (7) and
making assumptions on commutativity in fine meshes and warped
stiffness [3] result in

Modal Warping

M’ + Cul + Kul = R'F, ®)
where K is K(u) in the rest state, that is, g—ﬁ o> and u? is the
generalized displacement vector measured and accumulated in
the time-varying local coordinate frames.

In general, M and K are not diagonal, and thus Equation (8) is
a coupled system of ODEs. Let ¢ and A be the solution matrices
of the generalized eigenvalue problem, K& = M®A, such that
TP = I and ®TKP = A. Since the columns of & form
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a basis of the 3n-dimensional space, u’

linear combination of the columns:

can be expressed as a

u(t) = 2q(t). Q)
Here, ® is the modal displacement matrix, of which the i-th col-
umn represents the ¢-th mode shape, and q(t) is a vector con-
taining the corresponding modal amplitudes as its components.
By examining the eigenvalues we can take only the m dominant
columns of @, significantly reducing the amount of computation.
Substitution of Equation (9) into Equation (8) followed by a
premultiplication of T decouples Equation (8) as
Mgé + Cqq + Kqq = (R'F). (10)
where Mg = I, Cq = (I + (A), and Kq = A are now all
diagonal', and ®"(R"F) is the modal force in the local coordi-
nate frames. The above decoupled ODEs can be solved numeri-
cally for g” at the k-th time step using the Newmark integration
scheme [8], and the corresponding displacement vector u* can
be computed analytically:

u* = /t R()u”(t)dt = RFeq", @an
0

where the 3 x 3 block-diagonal matrix RF is involved with only
RF and ¢* [3].

3.2 Modal Rotation

For real-time simulation of thin shells, we now only need to de-
velop an efficient way of tracking the local coordinate frames
attached to the mesh nodes. Let w4 be the rotation vector of a
triangle A that rotates the local coordinate frame attached to the
triangle A in the undeformed state by the angle 6 = ||w 4| about
the unit axis W4 = w4/||wal|. This rotation vector must be a
purely geometric function of the displacements of the three tri-
angle nodes, uy = [u'(rAjl) [ufy 9ylufs )] Then, we can expand
w a{uy) near the undeformed state by

wa(ua) =wa(0) + % ug + O(u?), 12
du A0

where 0w 4/0uy is the 3 x 9 Jacobian matrix evaluated at the

undeformed state. Here wa (0) is the zero vector because there

is no rotation at the undeformed state. For the rotation vector

of a node, we use the average of the rotation vectors of all the

triangles sharing the node.

Based on the above discussion, we can now assemble W 4
of all the triangles to form the global matrix W such that Wu
gives the composite vector w, which is concatenation of all the
three-dimensional rotation vectors of the mesh nodes. When as-
sembling W, 3 x 3 submatrices of W 4 for the rotation vectors of

Here, we took the commonly adopted assumption (Rayleigh dampi g) that

Undeformed Linear

Figure 3: A flat beam (left) is deformed by linear modal analysis
(middle) and by modal warping (right). Linearization artifacts
are not observed in the modal warping case.

10 times stiff

100 times stiff At a different view

Figure 4: Three pairs of flat and v-beams with fixed stretching
and shearing stiffness constants and increasing flexural stiffness
constants (left to right).

all the triangles sharing a node are not summed up but averaged.
Finally, expanding u(t) with Equation (9) gives®

w(t) # Woq(t) £ Tq(t). 13)
Both W and @ are characterized by the thin shell at the rest state
and are thus constant over time. Therefore we can precompute
¥. The above equation shows that, as in the displacement (9),
we can represent local rotations of mesh nodes in terms of q(¢),
which can also be computed in real-time. We call U the modal
rotation matrix.

4 Experiments

Our simulation scheme was implemented as an Alias MAYA plu-
gin for a Microsoft Windows*” environment. To obtain the m
dominant eigenvalues of large sparse square matrices and the cor-
responding eigenvectors, we used the built-in C++ math function
eigs in MATLAB. All experiments were performed on a PC
with an Intel Pentium D 3.46GHz processor, 2GB memory, and
an nVIDIA GeForce FX 7900 GTX graphics card. We used the
time step size of k = 1/30 second in all experiments reported in
this section, and the simulation ran in real-time.

The first experiment is to compare the results generated by
traditional linear modal analysis [7] and modal warping for thin
shells. We simulated the deformation of a flat beam under a grav-
itational field using the two methods. It is clear from the simula-
tion results shown in Figure 3 that linearization in modal analysis

C = {M + (K, where £ and ¢ are scalar weighting factors.

2We are considering the rest state, so u(t) can be interpreted as u’ (¢).
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Position/Orientation

Figure 5: A flat beam manipulated with position (left), orienta-
tion (middle), and position/orientation constraints (right). The
position constraints are represented by yellow spheres and the
orientation are represented by RGB axes.

Figure 6: Constraint-driven animation of a character consisting
of four deformable sheets(the hat, body, and both legs).

leads to artifacts that are not observed in the case of modal warp-
ing for thin shells.

The next experiment is to demonstrate the effect of varying
flexural stiffness in a high dynamic range. Figure 4 shows, from
left 1o right, a pair of flat and v-beam with increasing flexural
stiffness constants. In all cases, simulation was numerically sta-
ble and the results were visually convincing. Although the ma-
terial properties of the v-beam are the same with those of the
flat beam, the non-flat cross section of the v-beam contributes to
making the structural rigidity more stiff, especially for low flex-
ural stiffness, as pointed out in [5].

The manipulation constraints introduced in modal warping for
elastic solids [3] can also be applied to modal warping for thin
shells. Figure 5 demonstrates the manipulation capability for thin
shells. From left to right, the resultant deformations are in the
cases of (1) only position constraints, (2) only orientation con-
straints, and (3) both position and orientation constraints.

Furthermore, the manipulation constraints can be used to ani-
mate a thin-shelled deformable character. We simulated a charac-
ter whose upper body, and both legs are deformable sheets (Fig-
ure 6a). As the character made a dance motion, the deformable
sheets made a dynamic passive deformation, excited by the gross
body motion of the character. The positions of all the mesh nodes
contained in the red cylinders and spheres at the initial setup were
statically constrained. As shown in Figure 6b, the deformable
sheets are attached to the skeleton by position/orientation con-
straints (the RGB axes).

5 Conclusion

In this paper, we proposed a real-time simulation technique
for thin shells that can be visually well approximated as two-
dimensional surfaces, such as leaves, paper sheets, hats, alu-
minium cans. We formulated dynamics of thin shells using mass-
spring spring models [5] instead of finite element models [6] so
as to make the technique easy to understand and, more impor-
tantly, easy to implement. Then, we extended the modal warping
technique, which was originally proposed for elastic solids 3],
so as to accommodate large rotational deformation of thin shells
while achieving real-time performance. Furthermore, we incor-
porated the manipulation constraints introduced originally for
elastic solids; The constraints can be used for some less obvi-
ous but very useful purposes, such as to model a thin-shelled de-
formable character as demonstrated in the experiments.

An interesting feature of our technique is that it does not as-
sume specific energy functions a priori, although the current im-
plementation employs the energy functions proposed in [5]. Asa
consequence, it can be thought of as a general framework not as
a specific scheme. One can employ other energy functions used
for traditional cloth simulation [2, 1]. We expect the proposed
technique will prove useful in many application areas, including
computer games and character animation.
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