• 제목/요약/키워드: Bayesian model

검색결과 1,312건 처리시간 0.023초

Bayesian structural damage detection of steel towers using measured modal parameters

  • Lam, Heung-Fai;Yang, Jiahua
    • Earthquakes and Structures
    • /
    • 제8권4호
    • /
    • pp.935-956
    • /
    • 2015
  • Structural Health Monitoring (SHM) of steel towers has become a hot research topic. From the literature, it is impractical and impossible to develop a "general" method that can detect all kinds of damages for all types of structures. A practical method should make use of the characteristics of the type of structures and the kind of damages. This paper reports a feasibility study on the use of measured modal parameters for the detection of damaged braces of tower structures following the Bayesian probabilistic approach. A substructure-based structural model-updating scheme, which groups different parts of the target structure systematically and is specially designed for tower structures, is developed to identify the stiffness distributions of the target structure under the undamaged and possibly damaged conditions. By comparing the identified stiffness distributions, the damage locations and the corresponding damage extents can be detected. By following the Bayesian theory, the probability model of the uncertain parameters is derived. The most probable model of the steel tower can be obtained by maximizing the probability density function (PDF) of the model parameters. Experimental case studies were employed to verify the proposed method. The contributions of this paper are not only on the proposal of the substructure-based Bayesian model updating method but also on the verification of the proposed methodology through measured data from a scale model of transmission tower under laboratory conditions.

A dynamic Bayesian approach for probability of default and stress test

  • Kim, Taeyoung;Park, Yousung
    • Communications for Statistical Applications and Methods
    • /
    • 제27권5호
    • /
    • pp.579-588
    • /
    • 2020
  • Obligor defaults are cross-sectionally correlated as obligors share common economic conditions; in addition obligors are longitudinally correlated so that an economic shock like the IMF crisis in 1998 lasts for a period of time. A longitudinal correlation should be used to construct statistical scenarios of stress test with which we replace a type of artificial scenario that the banks have used. We propose a Bayesian model to accommodate such correlation structures. Using 402 obligors to a domestic bank in Korea, our model with a dynamic correlation is compared to a Bayesian model with a stationary longitudinal correlation and the classical logistic regression model. Our model generates statistical financial statement under a stress situation on individual obligor basis so that the genearted financial statement produces a similar distribution of credit grades to when the IMF crisis occurred and complies with Basel IV (Basel Committee on Banking Supervision, 2017) requirement that the credit grades under a stress situation are not sensitive to the business cycle.

A Bayesian joint model for continuous and zero-inflated count data in developmental toxicity studies

  • Hwang, Beom Seuk
    • Communications for Statistical Applications and Methods
    • /
    • 제29권2호
    • /
    • pp.239-250
    • /
    • 2022
  • In many applications, we frequently encounter correlated multiple outcomes measured on the same subject. Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent modeling. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured on the pregnant dams exposed to different levels of a toxic substance, in which the association between such outcomes should be taken into account in the model. The number of malformations may possibly have many zeros, which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros. In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-specific random effects would account for the correlation across the two outcomes. We implement a Bayesian approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose in a risk assessment.

A Bayesian approach to maintenance strategy for non-renewing free replacement-repair warranty

  • Jung, K.M.
    • International Journal of Reliability and Applications
    • /
    • 제12권1호
    • /
    • pp.41-48
    • /
    • 2011
  • This paper considers the maintenance model suggested by Jung and Park (2010) to adopt the Bayesian approach and obtain an optimal replacement policy following the expiration of NFRRW. As the criteria to determine the optimal maintenance period, we use the expected cost during the life cycle of the system. When the failure times are assumed to follow a Weibull distribution with unknown parameters, we propose an optimal maintenance policy based on the Bayesian approach. Also, we describe the revision of uncertainty about parameters in the light of data observed. Some numerical examples are presented for illustrative purpose.

  • PDF

A Hierarchical Bayesian Model for Survey Data with Nonresponse

  • Han, Geunshik
    • Journal of the Korean Statistical Society
    • /
    • 제30권3호
    • /
    • pp.435-451
    • /
    • 2001
  • We describe a hierarchical bayesian model to analyze multinomial nonignorable nonresponse data. Using a Dirichlet and beta prior to model the cell probabilities, We develop a complete hierarchical bayesian analysis for multinomial proportions without making any algebraic approximation. Inference is sampling based and Markove chain Monte Carlo methods are used to perform the computations. We apply our method to the dta on body mass index(BMI) and show the model works reasonably well.

  • PDF

Analysis of Structural Reliability under Model and Statistical Uncertainties: a Bayesian Approach

  • Kiureghian, Armen-Der
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권2호
    • /
    • pp.81-87
    • /
    • 2001
  • A framework for reliability analysis of structural components and systems under conditions of statistical and model uncertainty is presented. The Bayesian parameter estimation method is used to derive the posterior distribution of model parameters reflecting epistemic uncertainties. Point, predictive and bound estimates of reliability accounting for parameter uncertainties are derived. The bounds estimates explicitly reflect the effect of epistemic uncertainties on the reliability measure. These developments are enhance-ments of second-moment uncertainty analysis methods developed by A. H-S. Ang and others three decades ago.

  • PDF

A Closed-Form Bayesian Inferences for Multinomial Randomized Response Model

  • Heo, Tae-Young;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.121-131
    • /
    • 2007
  • In this paper, we examine the problem of estimating the sensitive characteristics and behaviors in a multinomial randomized response model using Bayesian approach. We derived a posterior distribution for parameter of interest for multinomial randomized response model. Based on the posterior distribution, we also calculated a credible intervals and mean squared error (MSE). We finally compare the maximum likelihood estimator and the Bayes estimator in terms of MSE.

Semiparametric Bayesian Estimation under Structural Measurement Error Model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.551-560
    • /
    • 2010
  • This paper considers a Bayesian approach to modeling a flexible regression function under structural measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under structural measurement error model without a semiparametric component.

Semiparametric Bayesian estimation under functional measurement error model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.379-385
    • /
    • 2010
  • This paper considers Bayesian approach to modeling a flexible regression function under functional measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under functional measurement error model without semiparametric component.

Adaptive Algorithms for Bayesian Spectrum Sensing Based on Markov Model

  • Peng, Shengliang;Gao, Renyang;Zheng, Weibin;Lei, Kejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3095-3111
    • /
    • 2018
  • Spectrum sensing (SS) is one of the fundamental tasks for cognitive radio. In SS, decisions can be made via comparing the test statistics with a threshold. Conventional adaptive algorithms for SS usually adjust their thresholds according to the radio environment. This paper concentrates on the issue of adaptive SS whose threshold is adjusted based on the Markovian behavior of primary user (PU). Moreover, Bayesian cost is adopted as the performance metric to achieve a trade-off between false alarm and missed detection probabilities. Two novel adaptive algorithms, including Markov Bayesian energy detection (MBED) algorithm and IMBED (improved MBED) algorithm, are proposed. Both algorithms model the behavior of PU as a two-state Markov process, with which their thresholds are adaptively adjusted according to the detection results at previous slots. Compared with the existing Bayesian energy detection (BED) algorithm, MBED algorithm can achieve lower Bayesian cost, especially in high signal-to-noise ratio (SNR) regime. Furthermore, it has the advantage of low computational complexity. IMBED algorithm is proposed to alleviate the side effects of detection errors at previous slots. It can reduce Bayesian cost more significantly and in a wider SNR region. Simulation results are provided to illustrate the effectiveness and efficiencies of both algorithms.