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A Closed-Form Bayesian Inferences for Multinomial
Randomized Response Model

Tae-Young Heo') and Jong-Min Kim?

Abstract

In this paper, we examine the problem of estimating the sensitive char-
acteristics and behaviors in a multinomial randomized response model using
Bayesian approach. We derived a posterior distribution for parameter of
interest for multinomial randomized response model. Based on the poste-
rior distribution, we also calculated a credible intervals and mean squared
error (MSE). We finally compare the maximum likelihood estimator and the
Bayes estimator in terms of MSE.

Keywords: Randomized response; multinomial model; Bayesian inference; Dirichlet dis-
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1. Introduction

The frequency of socially undesirable, embarrassing, or prohibited acts or
attitudes is usually underestimated in surveys. A randomized response (RR)
technique is a procedure for collecting the information on sensitive character-
istics without exposing the identity of the respondent. The RR technique was
originally proposed by Warner (1965) as an alternative survey technique for so-
cially undesirable or incriminating behavior questions. With the many benefits
of Dirichlet prior in Bayesian framework, we propose a Bayesian multinomial ap-
proach to an extension of the binomial randomized response model suggested by
Bar-Lev et al. (2005) and Kim et al. (2006).
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One of the most important problems in RR model is an estimation of the
sensitive characteristic. To protect a respondent privacy, and increase response
rates, RR models require the interviewee to give a Yes or No answer either to the
sensitive question or to its negative depending on the outcome of a randomizing
device not reported to the interviewer. However this technique has not been ex-
tended to Bayesian multinomial RR model, which is more applicable in practice.
When the sample size is small and a number of cells contain only few observations
or even no observations, maximum likelihood method is not appropriate.

In this paper we consider parameter estimation of sensitivity prevalence which
usually has a rare trait proportion in a Bayesian framework. We start in Section
2 with a short review of Kim and Warde’s (2005) multinomial RR model and
a derivation of maximum likelihood estimator (MLE). In Section 3, we propose
and demonstrate how to apply Bayesian approach to multinomial RR model and
derive a posterior distribution and credible intervals, and compare MLE and
Bayes estimator in terms of mean squared error (MSE).

2. Multinomial Randomized Response Model

With a discrete quantitative randomized response technique model using the
Hopkins randomization device (Liu and Chow, 1976), Kim and Warde (2005)
propose a multinomial RR model and derive estimators and their properties.
We follow Kim and Warde’s (2005) multinomial model set up which explicitly
assumed a multinomial model for a single sensitive variable, denoted as A.

Suppose that there are two different colors of balls, red and green, in the
device and that each of the green balls contains a discrete number {1,2,...,k}.
All green balls represent a set of non-sensitive categories, B = {B;, Ba, ..., Bi}
and all the values of A are also included.

We assume that each of the ¢ individuals belongs to one of k¥ mutually exclu-
sive. The exhaustive categories T' = {11, T, ..., T} consisting of sensitive cat-
egories A = {Aj, Az, ..., Ax} and non-sensitive categories B = {B1, By, ..., By}
and T; = A; + B;, i = 1,2,...,k, is the sum of the number of sensitive and
nonsensitive at i-th category.

Let ¢; denote the random quantity in a category T; so that n = le t;.
The random quantities a; and b; are defined similarly, so that a = Zf=1 a; and
b = Zle b;, and t; = a; + b;. Our goal, then, is to estimate my, 7o, ..., 7,

the proportions in the population associated with the sensitive categories A =
{A1, Az, ..., A;}. Based on the number of green balls in the device, py, = ¢i/g
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is the proportion of green balls with number ¢ for ¢ = 1,2,...,k, where ¢; is
the number of green balls that contain number i, and g = Zle g; ; that is, the
quantities pp, are known in advance.

Let pt,,pty, - - -, P, denote the proportions in the population who are in cat-
egories T = {T1, T, ...,Ty}. With n different interviewees using the Hopkins’
device, b, the total number of people who are in the non-sensitive categories B =
{Bi1, Bs,...,Bg}, is a random quantity with expected value E[b] = ng/(r + g)
where r denotes the number of red balls in the device. As by, bs, ..., b are also
random quantities with expected value E[b;] = ng;/(r + g); thus, it follows that
by =b— (b1 + b2+ -+ bg—1). We assume the distributions of T', A, and B are
as follows:

k
. . n! .

T={N,Ty,...,Tk-1} ~ Multinomial(n, ps,, Pty, . - -, Dt,,_,) = - sz’
Hi:l i
! k

a!

A={A, Ay, ..., Ax—1} ~ Multinomial(a, 7, m2,...,Tg—1) = e~ Hpgz,

i=10i ;=1

B = {Bl, B, ..., Bk—l} ~ Multinomial(b, py, , Db, - - - s Dby 1

Qi I

1, i=1
Suppose that T'= A + B is fixed and that respondents give truthful answers

to both the sensitive and non-sensitive questions. Then, for random quantities a
and b, we derive 7; as follows:

_ (7‘ +9)p, — @i
1 ?

r
where p;, = t;/n.

If a random sample of size n is drawn and n; is the number of respondents
answering 7 and let p;, = n;/n denote the proportion of respondents answering i.
Let ™y, denote the estimates of m;, it follows that

iy, = TP G (2.1)
By invariance property of MLE, the MLE of sensitive characteristic, 7y, , is turned
out to be maximum likelihood estimator (MLE) of m;. The estimates of the

variance and covariance, respectively, are given by

2 ~ ~
i (1 - B,
B(Rw) = (ri-g> o Pl — P

n
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and

7‘+g)2  Du,

Cov(Fu;, m;) = — ( : -

for i # j.

In Equation (2.1), if M, < ¢i/(r + g), then Ty, can be negative. When we
find the maximum likelihood estimator (MLE) of m;, we should be careful of
putting the number of red balls, r, and green balls, g = Zle ¢;, in the random
device. In this paper, we define the restricted MLE to be

- (T‘ +g)ﬁtkz — &

Mi r ?

where

% :
rﬁg’#ﬂr—%‘g

ﬁti, F%g<%§1

3. Bayesian Inference for Multinomial Randomized Response
Model

ok —
by, =

Assuming that a researcher wants to assess a sensitive characteristic and that
he uses a question to which the answers are more than two categories. Suppose
that in each of k categories, individuals are independently classified into one
of T; (i = 1,...,k) categories. Therefore T = (T1,...,Tk) has a multinomial
distribution with parameters n and p; = (py,,...,pt,). So it follows that based
on the observed values ¢ = (t1,.-.,tx), the likelihood function of T given that

ﬁt - (ptl,---,ptk) is

n! k

fT|P¢ (ﬂﬁt) R—

i=1 bi i

t.
Pe,»
1

where py;, € Orgq = {a/(r+9),(r+a)/(r+g)}. Based on py, = (rm +¢;)/
(r+g) in Section 2, we derive the likelihood function of T' given that 7 =
(m1,...,7) as follows:

k t
- - . n! r g i
fTIH(tlna T,g,q,r) = k I | ( it : ) )

TT.
i=1tii=1 rT+g r+g

where 0 < m; <1 and 4= (q1,.-.,qk)-
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The proper conjugate prior for p = (pt,,...,pt, ) is the Dirichlet distribution
denoted by Dirichlet; (o, . .., ax) with density

k
(%a)
=1 pai-—l
t;
Hi’c:1 P(ai) i=1

where o; > 0 for i = 1,...,k, p;; € Orggq,, and ['(-) is the gamma distribution.

fPt(ﬁtld) =

)

By the Jacobian transformation of p;, = (rm; + ¢;)/(r + g), a prior density for
7t = (m1,...,m) is the Dirichlet distribution with density

k
o |
fn(v‘rlé,r,g,ci>=( " )H;(; >ﬁ( o )ai_l,

r+g K D() r+g r+g

where a; > 0 for i =1,...,k, and m; € (0,1).
Therefore, the posterior distribution of T and P; is as follows:

i=1

fe,r(tBil@) = frip,(E|5s) x fr,(B1|a)

SRS (Z)

tz
tl =1 ( 1) =1

nll (Y o i
mk)%Lz@)ﬂﬁ”“

for ps; € O, g4,. The marginal distribution of T' is given by

fr(fin, &) = / fror(E Bl

9,9

= ( : )( le(ai)) il;:[/er’g,qi Pi:"'ai—ldpti

i=1 tl 1=

k
n!l’ (; ai) kDt + o) '
k
( K ti) (Hf=1 F(Oli)) T (Z(ti + ai)>
i=1
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The conditional distribution of P; given T is

fﬁ’,T(Ea 'fdda n,n4g, [j)
fT(tléy n,ng, (‘j)

k
r (Z(t + ai)> &

tito;—1
= Dy, )
Dt + o) H

1:_

frr(Bilt, @ n) =

which means that P;|T has a Dirichlety () + a1, .., t + ax).
Similarly, the posterior distribution of T" and II is as follows:

fH’T(Z,ﬁ|n,7',g,lj, &) = fT|H({‘na TvQ:d)%) X fn(ﬁl&aragﬂi)
k

n! r g; ti
= 7r'+
H’Flt-H(?‘+g ' ?‘+9>

1=1"? =1

_( i’czlti) Hlef‘(ai))

k tita;—1
T q;
X i +
il;ll <r+g ' r+g>

for 0 < m; < 1. The marginal distribution of T is given by

fT(E|n7T’9,67 &) = / fH,T(N 7"r|n T, gaq’ )d
(0,1)k

_ i (§a> ( r )’H

. (Hf:l ti) (Hi'c:l F(ai)) r+g
k 1 r % tito;—1
xg/o (7”+g7ri+r—ljg> dm;
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n!l’ (i ai) .
i=1 ret
(Hi'c=1 ti) (Hfﬂ F(ai)) g /er’g’qi Py dp;

a(Sa)
() () (£ )

Thus, the conditional distribution of II|T is
fH,T(t, ﬁ-l&‘a n,7,g, 6)
fT(tI&, n,7rg, 6)

k
-1 T (Z(tz + ai)>
(%) m

f:l L't + o)

k r e ti+a;—1
X H ( ™+ : ) .
s \rtg r+g

Because P;|T has a Dirichlet(t; + a1,...,tk + ax), its marginal has a Beta
density function as follows:

fH|T(7‘%|E’ &7 n,7g, Q) =

k
T (Z(t@ + az))

1=1

fPtiiT(ptiIE’&7n) =
I(t; + ;)T Z(t + ;) = (t; + )

Xp2+ai—1(1 _ pti)(Zj:l(tj+aj)_(ti+a‘i)_1),

fori=1,...,k.

Considering the squared error loss function, L(py,,a) = (pt, —a)?, we calculate
the Bayesian estimate of p;, which is the mean of posterior fptilT(pti It, &,n).

A simple closed-form expression for p;g, is given by

k
Beta | t; +a; + 1, Z(tj +aj) — (6 + ;)
~ j=1
ptp, = Elp:,|T] = . ;
Beta | t; + o, Z(tj + o) — (ti + o)
i=1
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where
[(a)T'(8)
Ia+8)
Since the facts that n = E§=1 tj and B; = ( ;?:1 a;) — o, we obtain a more
simpler form for p; 5, as follows:

1
Beta(a, 8) = / 2 (1 —a)Plde =
0

. Beta(ti+ o +1,n—t+ )
Pt = Beta (¢; + a;,n — t; + 5;)

We finally obtain the estimate of 7p, as follows

(r+9)btp, — G

%Bi =F [ptilT] = r

The variance of 7g, is given by

r+g 2
Var(ﬁgi)=< ” ) x Var(p: g, )

2
- <h:g) x [E(Bi%,) — E(Bip,)*]

_(r+g 2>< Beta (¢; + a; +2,n — t; + ;)
- T Beta (t; + a;,n — t; + 5;)
3 (Beta(ti+a¢+1,n—ti+,3i))2
Beta (t; + i, n — t; + i)

By constructing the posterior distribution, we calculate a 100(1—a)% credible
intervals for p;, as follows

Upy, .
/ fPtilT(pti|t7 a, n)dpti =1l-aq,
Lpti
where 0 < L, <Up,, <1, fori=1,2,...,k.

We find a nice closed-form expression for the equal-tail credible interval. The
lower bound (LB) of p;, may find by solving following equation

N R

PLt; .
= /0 ngi |T(pti |t7 Q, n)dpti

i T(ntaitf) ¢
= ’ i+ai—1 n_ti+ﬁi—1
B ~ 1—p dps,.

/0 T(ti + a)l(n— & + Bi) & (1= pu) Pt;

We obtain a LB as Ly, = Beta(a/2;t;+0as,n—t;+0;), where Beta(y; a, b) denotes
the v quantile of the Beta distribution. Similarly, the upper bound (UB) of py,
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is Up, = 1 — Beta(l — a/2;t; + a5, n — t; + ;). Using p, = (rm; + ¢i)/(r + g), we
finally derived the following LB and UB of w; as follows:

_ (r+g) X Lpti —4qi

B T

(r+g) x Beta(%;ti +aij,n—t;+5;)~a

r

L,

1

Similarly, a upper bound of =; is

_ (r+g) x Beta(l - Fiti + i, n —ti + ;) — g;
- .

T

We also calculate the mean squared error (MSE) for fixed as follows 7'g, and
7w, are given by

MSE(7s,) = Eryn, [(#s: — m)?]
=Y (7, - m)*

t;=0

. t; . n—t;
x(n —T—7r,-+ gi 1- " ™+ g .
t;,)\r+g r+g r+g r+g

Now we are investigating two different estimators, Bayes estimators and max-
imum likelihood estimators, in order to assess the impact due to prior informa-

tion in Bayesian analysis by small simulation. We demonstrate the effect of prior
strength using various setting of values of (a3, as, a3) and sample size.

For the noninformative prior distribution, Beta 3 and Beta 4, following a; = 1
and o; = 1/2, respectively. The other cases for informative prior, Beta 1 and Beta
2, were used to see the impact of prior distribution.

To compare the performance of an estimator, we do with the MSE to evaluate
the performance of two estimators. The purpose of the numerical computation
in this paper is to confirm that the Bayesian approach multinomial RR model is
more eflicient in terms of MSE with proper prior information.

Using the informative priors, Beta 1 and Beta 2, the Bayes estimators out-
perform the maximum likelihood estimators when 73 is small for n = 100. With
noninformative prior, Beta 3 (Uniform prior) and Beta 4 (Jeffrey’s prior), when
73 is small, MLE is better than Bayes estimator, however, when 73 increases,
Bayes estimator is slightly better than MLE in terms of MSE. When n = 250,
the reduction in MSE realized by using a Bayes procedure diminishes notice-
ably; however, Bayes estimators based on informative priors still continue to
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Figure 3.1: Top panel: MSE of 7, 75, when n = 100,7 = 70,9 = 30,q3 = 4
and 73 ranges from 0 to 0.2 Bottom panel: MSE of 7'y, #, when n = 250,r =
70,9 = 30,93 = 4 and 73 ranges from 0 to 0.2; Beta 1 represents Beta(5, 95),
Beta 2 represents Beta (2, 38), Beta 3 represents Beta (1, 2),Beta 4 represents
Beta (0.5, 1)
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have smaller MSE when 3 is small. When examining Figure 3.1, one will note
the overall large reduction in MSE for the Bayes estimator when compared to
the MLE, especially when 73 < 0.13. As we expected, when 73 = 0.05, the re-
duction is greatest. In Figure 3.1, we also see that MLE and the Bayes estimator
tend to be identical with increasing sample size. The Bayesian approach allows
more flexibility in terms of how we may incorporate prior information into the
parameter estimation process. The practical selection of a prior distribution may
be delicate and subjective. However, for a large sample size, the relative weight
of the prior information becomes negligible.
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