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Abstract
In many applications, we frequently encounter correlated multiple outcomes measured on the same subject.

Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent model-
ing. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured
on the pregnant dams exposed to different levels of a toxic substance, in which the association between such out-
comes should be taken into account in the model. The number of malformations may possibly have many zeros,
which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity
studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros.
In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-
specific random effects would account for the correlation across the two outcomes. We implement a Bayesian
approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply
our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose
in a risk assessment.

Keywords: Bayesian inference, benchmark dose, data augmentation method, Markov chain Monte
Carlo (MCMC), zero-inflated Poisson regression model

1. Introduction

In many bioscience studies, there is interest in simultaneously investigating two or more measure-
ments within a single subject. In particular, it is often considered that two or more associated outcomes
are affected at the same time depending on the level of certain treatments. For instance, developmental
toxicity studies examine how a variety of variables are affected by pregnant mice exposed to several
different levels of substances, such as rat weight, liver weight, gravid uterine weight, number of dead
fetuses, presence of malformation, and fetal weight. Such variables should be jointly analyzed to
take into account association between them because separate modeling can yield biased inferences
(Catalano and Ryan, 1992; Regan and Catalano, 1999; Dunson, 2000; McCulloch, 2008; Hwang and
Pennell, 2014; Hwang and Pennell, 2018). In the literature, several models have used latent variables
to jointly analyze different types of outcomes such as continuous, binary, ordinal, unordered categor-
ical or count variables. Catalano and Ryan (1992) proposed a joint model for binary and continuous
outcomes assuming that a latent continuous variable underlying the binary outcome and continuous
outcome have a bivariate normal random effects. Dunson (2000) proposed a general framework for
modeling clustered mixed outcomes using a mixture of generalized linear models to describe the joint
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distribution of a set of underlying variables, and Dunson and Herring (2005) provided a general un-
derlying Poisson variable model for mixed discrete outcomes. They followed a Bayesian approach
to inference of the parameters and latent variables via a Markov chain Monte Carlo (MCMC) sam-
pling algorithm. Nonparametric Bayesian methods also have been proposed for joint modeling of
dicrete and continuous outcomes to describe irregular changes in distributions of the response vari-
ables (Hwang and Pennell, 2014; Fronczyk and Kottas, 2017; Hwang and Pennell, 2018).

In modeling count data in any research fields, it is common to encounter a large number of zero
values. For example, developmental toxicology studies may be interested in how many birth defects
the pregnant dams exposed to a toxic substance have. Then, many dams may not have any defects if
the toxic level is not that high. Commonly used regression models for count data using Poisson or
negative binomial distributions may not fit these count outcomes well, resulting in underestimating the
zero-count probability. Such count data with excess zeros should be analyzed using discrete mixture
models such as zero-inflated Poisson (ZIP) model and zero-inflated negative binomial (ZINB) model.
Lambert (1992) proposed the zero-inflated Poisson (ZIP) regression model to describe discrete data
with many zeros. The ZIP model then has a Poisson-Bernoulli mixture structure, which assumes
two different sources for zero values: structural zeros by those subjects whose count response will
always be zero, and sampling zeros that would occur by chance generated by a Poisson distribution.
In addition to ZIP models, excess zeros in count data can also be accommodated by zero-inflated
negative binomial models (Hall, 2000) or the hurdle models (Mullahy, 1986). Many researchers have
utilized a variety of models to analyze zero-inflated count data. Hall (2000), Yau and Lee (2001),
and Min and Agresti (2005) have proposed various zero-inflated models with random effects. Liu and
Powers (2007) applied a growth curve model to longitudinal count data with excess zeros, and Lee
et al. (2011) proposed a marginalized model approach to analyze clustered zero-inflated count data.
Further, Kassahun et al. (2015) presented a joint modeling framework for hierarchical continuous and
zero-inflated overdispersed count data.

There have recently been many literatures on Bayesian alternatives to fitting zero-inflated models.
Rodrigues (2003) presented a Bayesian ZIP model based on the augmented data, and Ghosh et al.
(2006) have proposed a Bayesian approach of zero-inflated power series (ZIPS) regression models
including ZIP model for cross-sectional data using MCMC with data augmentation method. A hier-
archical Bayesian model of correlated zero-inflated count data was presented by Dagne (2004), and
several Bayesian models for longitudinal zero-inflated count data were also proposed by Neelon et
al. (2010). Neelon et al. (2010) described Bayesian approaches to fitting repeated measures zero-
inflated count data using three models: Poisson hurdle model, ZIP model, and zero-altered Poisson
(ZAP) model. More recently, Neelon (2019) proposed a Bayesian ZINB regression model based on
Pólya-Gamma mixtures to apply the approach to a spatiotemporal data analysis.

Motivated by developmental toxicity studies, we present a Bayesian joint modeling framework
for continuous and zero-inflated count data. We utilize the zero-inflated Poisson (ZIP) regression
model proposed by Lambert (1992) for count data with excess zeros. To account for dependency
structure between continuous and count outcomes, the bivariate normal distribution will be assigned
to subject-specific random effect shared across outcomes, which is expected to improve efficiency. We
use the MCMC procedure with data augmentation and adaptive rejection sampling methods proposed
by Ghosh et al. (2006) for parameter estimations. The proposed joint model will be applied to
developmental toxicity data to estimate a benchmark dose (BMD) in a risk assessment.

The rest of the paper is organized as follows. In Section 2, we present a Bayesian joint model
for continuous and zero-inflated count data, and describe the Bayesian inference procedures as well
as model comparison criterion using deviance information criterion (DIC). In Section 3, we apply
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the proposed model to data from a developmental toxicity study of diethylhexyl phthalate (DEHP)
in timed-pregnant CD-1 mice conducted by the National Toxicology Program. We conclude with a
discussion of our results and future work in Section 4.

2. Methods

2.1. Zero-inflated Poisson regression model

Let Y = (Y1, . . . ,Yn) be a vector of responses which is count data with an excess number of zeros.
Lambert (1992) proposed the zero-inflated Poisson (ZIP) regression model, in which the count data
was treated as a mixture of inflated zeros and Poisson counts. Let Z be an unobserved latent variable
underlying the zero-inflated indicator outcome: for i = 1, 2, . . . , n,

Zi =

{
1, inflated zeros with probability pi,
0, not inflated values with probability 1 − pi.

Thus, the mixture of inflated zeros and Poisson counts can be written as

Yi|Zi = 1 ≡ 0,
Yi|Zi = 0 ∼ Poisson(λi).

We can typically incorporate covariates into the model using the log link function for the expected
mean count λi and the logit link function for pi, which provide

log(λi) = xT
1iβ1,

logit(pi) = xT
2iβ2,

where x1i denotes a vector of explanatory variables and β1 the vector of regression coefficients for the
Poisson count stage, and x2i denotes a vector of explanatory variables and β2 the vector of regression
coefficients for the Bernoulli zero-inflation stage. It follows that

λi = exT
1iβ1 , and pi =

exT
2iβ2

1 + exT
2iβ2

.

The resulting distribution gives

P(Yi = yi|λi, pi) =


pi + (1 − pi) e−λi , if yi = 0,

(1 − pi)
e−λiλ

yi
i

yi!
, if yi > 0.

We note that zero counts arise from both the Poisson count stage with parameter λ and the zero-
inflation stage with parameter p. It is easy to show that

E(Yi) = (1 − pi) λi,

Var(Yi) = λi (1 − pi) (1 + piλi) ,

which implies that the ZIP regression model accommodates for overdispersion.
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2.2. Joint model for continuous and zero-inflated count data

Let xi be a predictor variable and Y = (Yi1,Yi2)T be a 2 × 1 response vector measured on subject
i (i = 1, . . . , n), where Yi1 denotes the continuous response and Yi2 denotes the count data with an
excess number of zeros. For instance, in a developmental toxicity study, xi may be the dose level of a
toxic substance assigned to ith litter, Yi1 may be the average fetal body weight of ith litter, and Yi2 may
be the number of malformed pups that ith litter has. We know that the body weight and the number
of malformations of the litters may be correlated and thus joint modeling can help to achieve better
analysis results.

We jointly model the continuous response and the count response as follows, for i = 1, 2, . . . , n,

Yi1 = β01 + β11xi + Ui1 + εi,

P(Yi2 = yi2|λi, pi) =
[
pi + (1 − pi)e−λi

]zi

(1 − pi)
e−λiλ

yi2
i

yi2!

1−zi

, (2.1)

where

λi = exp (β02 + β12xi + Ui2) , (2.2)

pi =
exp (β03 + β13xi)

1 + exp (β03 + β13xi)
.

Note that λi and pi are the parameters for Yi2, and β0 j and β1 j are the fixed intercept and slope of xi for
j = 1, 2, 3. We accounted for excess zeros in Yi2 using the logit model with the zero-inflation proba-
bility pi. Further, we assume that εi ∼ N(0, σ2

ε ), and Ui1 and Ui2 represent a subject-specific random
effect assuming bivariate normal distribution with mean and variance-covariance matrix, independent

of εi, Ui = (Ui1,Ui2)T ∼ N(0,Σ), where Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
. The subject-specific random effect

(Ui1,Ui2)T models the correlation across the two outcomes, resulting in more flexible modeling and
more efficient estimates (McCulloch, 2008). The complete data likelihood function of this model can
be written as

L
(
β, σ2

ε ,Σ|Y, X, Z,U
)

=

n∏
i=1

1
√

2πσε
exp

[
−

1
2σ2

ε

{yi1 − (β01 + β11xi + ui1)}2
]

×
[
pi + (1 − pi)e−λi

]zi

(1 − pi)
e−λiλ

yi2
i

yi2!

1−zi

×
1

2π|Σ|
exp

[
−

1
2

uT
i Σ−1ui

]
(2.3)

where λi and pi were defined in (2.1).
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2.3. Bayesian inference for joint model

2.3.1. Prior specification

We specify the conjugate priors for the regression coefficients β’s and the variances, σ2
ε and Σ as

follows,

β1 = (β01, β11)T ∼ N
(
βm

1 , τ
2
1I2

)
,

β2 = (β02, β12)T ∼ N
(
βm

2 , τ
2
2I2

)
,

β3 = (β03, β13)T ∼ N
(
βm

3 , τ
2
3I2

)
, (2.4)

σ2
ε ∼ IG(a, b),
Σ ∼ Inverse-Wishart(Ψ, ν),

where N(βm
j , τ

2
j I2) is the 2-dimensional multivariate normal distribution with mean vector βm

j and
variance matrix τ2

j I2, for j = 1, 2, 3, IG(a, b) is the inverse gamma distribution with shape parameter a
and scale parameter b, and Inverse-Wishart(Ψ, ν) is the inverse-Wishart distribution with scale matrix
Ψ and degrees of freedom ν.

2.3.2. Posterior computation

We use the Markov chain Monte Carlo (MCMC) procedure with data augmentation method (Ghosh et
al., 2006) to generate samples from the posterior distribution of parameters of interest. We incorporate
the latent random variables V and B, with the representation Y = V(1 − B), where B is a Bernoulli(p)
random variable and V independently to B is a Poisson(λ) random variable. To overcome the overdis-
persion issue in dataset and utilize more efficient sampling method, Gibbs sampler, we obtain samples
from the posterior of (λ, p,V, B) given the data Y . The data augmentation step contains the conditional
distribution of (V, B) given (Y, λ, p) as follows,

P(V = v, B = 0|Y = y) =



(1 − p)P(V = 0)
p + (1 − p)P(V = 0)

if v = y = 0;

1, if v = y > 0;

0, otherwise,

(2.5)

P(V = v, B = 1|Y = y) =


pP(V = v)

p + (1 − p)P(V = 0)
, if y = 0;

1, otherwise.
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We obtain the full posterior distribution of (β, σ2
ε ,Σ) by multiplying the complete data likelihood

function in (2.3) and the priors in (2.4) based on data augmentation technique as follows,

p
(
β, σ2

ε ,Σ|Y, X,U,V, B
)
∝

n∏
i=1

{
1

√
2πσε

exp
[
−

1
2σ2

ε

{yi1 − (β01 + β11xi + ui1)}2
]

×

[
exp (β03 + β13xi)

1 + exp (β03 + β13xi)

]Bi
[

1
1 + exp (β03 + β13xi)

]1−Bi

× exp
(
− exp(β02 + β12xi + ui2)

) (
exp(β02 + β12xi + ui2

)Vi (2.6)

×
1

2π|Σ|
exp

[
−

1
2

uT
i Σ−1ui

]}
× N

(
β1;βm

1 , τ
2
1I2

)
N

(
β2;βm

2 , τ
2
2I2

)
N

(
β3;βm

3 , τ
2
3I2

)
× IG

(
σ2
ε ; a, b

)
IW (Σ; Ψ, ν) .

The full conditional posterior densities of β, σ2
ε ,Σ can be computed from (2.6) as follows,

p(β|σ2
ε ,Σ,Y, X,U,V, B) ∝

n∏
i=1

{
1

√
2πσε

exp
[
−

1
2σ2

ε

{yi1 − (β01 + β11xi + ui1)}2
]

×

[
exp (β03 + β13xi)

1 + exp (β03 + β13xi)

]Bi
[

1
1 + exp (β03 + β13xi)

]1−Bi

(2.7)

× exp
(
− exp(β02 + β12xi + ui2)

) (
exp(β02 + β12xi + ui2

)Vi

× N
(
β1;βm

1 , τ
2
1I2

)
N

(
β2;βm

2 , τ
2
2I2

)
N

(
β3;βm

3 , τ
2
3I2

)
,

p(σ2
ε |β,Σ,Y, X,U,V, B) ∼ IG

a +
n
2
, b +

1
2

n∑
i=1

{yi1 − (β01 + β11xi + ui1)}2
 , (2.8)

p(Σ|β, σ2
ε ,Y, X,U,V, B) ∼ IW

n + ν, Ψ +

n∑
i=1

uiuT
i

 . (2.9)

We note that the full conditional posterior densities for β are not standard distributions, so the adaptive
rejection sampling (ARS) can be used to sample β from their full conditional distributions, which
are algebraically very complicated yet log-concave (Gilks and Wild, 1992). The following MCMC
algorithm can be implemented to generate samples from the conditional distributions.

Step 1 : Set the dispersed initial values of β, σ2
ε and Σ.

Step 2 : Data augmentation step: Sample (Vi, Bi) based on the sampled value of (λi, pi) and the data
Yi2 for i = 1, 2, . . . , n.

Step 3 : Sample β at time t + 1, given (V (t)
i , B

(t)
i ), σ2(t)

ε and Σ(t) at time t from (2.7) using ARS.

Step 4 : Sample σ2
ε at time t + 1, given (V (t)

i , B
(t)
i ), Σ(t) and β(t+1) at time t from (2.8) using Gibbs

sampler.

Step 5 : Sample Σ at time t + 1, given (V (t)
i , B

(t)
i ), β(t+1) and σ2(t+1)

ε at time t from (2.9) using Gibbs
sampler.
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Step 6 : Return to the Step 2 and repeat until convergence.

We implement MCMC algorithm using several dispersed initial values and then use the Bayesian
diagnostics such as trace plots and Gelman and Rubin‘s potential scale reduction factor (Gelman et
al., 2014) to determine whether the algorithm was convergent or not.

2.4. Bench mark dose lower limit (BMD/BMDL) estimation

We apply the proposed model into dose-response analysis in toxicology studies to estimate the bench-
mark dose (BMD), defined as the dose associated with a predefined small change in the response,
called the benchmark response (BMR), from the background response level (Crump, 1995). Different
definitions of the BMD exist depending on different types of response data, binary, continuous and
count response data, and different types of changes in the response (Jensen et al., 2019; Jensen et
al., 2020). Both the US Environmental Protection Agency (EPA) and the European Food Safety Au-
thority (EFSA) recommend the definition of the BMD using relative response for count or continuous
response data as follows,

BMR =
f (BMD, β) − f (0, β)

f (0, β)
,

where f (·) denotes the dose response model, and β is the vector of parameters in the model (US Envi-
ronmental Protection Agency, 2012; Hardy et al., 2017). The US EPA and the EFSA also recommend
choosing the BMR value of 5%. In practice, the BMD lower limit (BMDL), defined by the lower limit
of a one-sided confidence interval of the BMD estimate, is used as reference values or limit values in
regulatory applications.

2.5. Model comparison

We also fit two other models to compare the performance of our proposed model. An independent
ZIP model accounts for continuous outcome and zero-inflated count outcome independently assuming
ρ = 0 in the joint model in 2.1. A joint Poisson model jointly analyzes two outcomes, but does not
account for excess zeros assuming β03 = β13 = 0 in the joint model in 2.1. For model comparison, the
deviance information criterion (DIC) would be used (Spiegelhalter et al., 2002). The DIC is defined
by DIC = D(θ) + pD, where D(θ) = −2 log f (y|θ) is the deviance, D(θ) is the posterior mean of
deviance, and pD = D(θ) − D(θ̂) is the effective number of parameters in a model. Like the Akaike
information criterion (AIC), the DIC accounts for both a measure of fit (deviance) and a measure of
complexity (pD) from a Bayesian perspective, and a model with a smaller DIC fits the data better.
Celeux et al. (2006) proposed a modified DIC for models with mixtures of distributions and random
effects as follows,

DIC4 = −4Eθ,Z[log f (y,Z|θ)|y] + 2EZ[log f (y,Z|Eθ[θ|y,Z])|y],

where y is the observed data, Z are the random effects and latent variables, and f (y,Z|θ) is the complete
data likelihood function. We use the modified DIC for model comparison in our application.

3. Developmental toxicity data example

3.1. Data description

We describe the proposed approach using data from a developmental toxicity study of diethylhexyl
phthalate (DEHP) in timed-pregnant CD-1 mice conducted by the National Toxicology Program (NTP
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Table 1: Summary of the DEHP study data

Dose Litters Pups Litters with zero Fetal weight(g)
(%) malformation(%) Mean(SD)
0 28 301 22(78%) 0.94(0.11)
0.025 26 291 21(81%) 0.97(0.11)
0.050 26 281 10(38%) 0.92(0.12)
0.100 18 147 3(17%) 0.90(0.15)
0.150 10 53 1(10%) 0.79(0.15)

Table 2: Posterior means and 95% credible intervals for parameters in the DEHP data analysis
Independent ZIP Model Joint Poisson Model Joint ZIP Model

Effect Parameter Estimate 95% C.I. Estimate 95% C.I. Estimate 95% C.I.
β01 0.962 (0.919, 1.008) 0.961 (0.918, 1.004) 0.960 (0.916, 1.005)

Continuous outcome β11 –0.947 (–1.592, –0.295) –0.951 (–1.587, –0.315) –0.941 (–1.582, –0.300)
σ2
ε 0.031 (0.024, 0.040) 0.030 (0.024, 0.038) 0.027 (0.021, 0.036)

Count outcome

β02 0.081 (-0.122, 0.269) 0.373 (0.162, 0.574) 0.080 (–0.117, 0.271)
β12 4.873 (3.190, 6.562) 4.015 (2.324, 5.765) 4.872 (3.211, 6.573)
β03 0.897 (–0.246, 1.990) – – 1.415 (0.437, 2.512)
β13 –0.211 (–2.106, 1.739) – – –0.244 (–2.203, 1.718)
σ2

1 0.103 (0.079, 0.125) 0.092 (0.070, 0.115) 0.090 (0.071, 0.113)
Random effect σ2

2 0.094 (0.072, 0.118) 0.090 (0.071, 0.112) 0.091 (0.073, 0.114)
ρ – – –0.051 (–0.192, 0.089) –0.127 (–0.184, –0.072)

DIC –1608.9 –1526.2 –1621.4

study: TER84064). DEHP is a substance mainly used as an additive in plastics to make them more
flexible, and its widespread use in everyday and medical products has raised some concerns about its
safety. DEHP breaks down slowly in water, but it can remain for a long time in soil and sediment,
so it accumulates in organisms living in soil and sediment. In this study, pregnant CD-1 mice were
exposed to DEHP in their feed at five different dose levels(0%, 0.025%, 0.05%, 0.10%, and 0.15%
in feed). All live fetuses for each litter were examined for body weights and the occurrence of any
types of malformations. Table 1 summarizes the average fetal body weight and the number of litters
with no malformed pups per dose group. In the table, the average fetal body weight shows a trend
of decreasing, and the number of litters with malformation increases (the count of litters with no
malformed fetuses decreases) as the dose level increases. It is obvious that two litter-level outcomes
are related each other so that they should be jointly modeled to consider the correlation between two
outcomes within each litter. Moreover, the malformed pups shows a large incidence of zero counts,
which requires zero-inflated count model, zero-inflated Poisson model.

3.2. Bayesian joint model

We use the proposed joint model to analyze the average fetal weight and the number of malfor-
mation within a litter. Let xi be the assigned dose level of ith litter, which has five different dose
values(0%, 0.025%, 0.05%, 0.10%, and 0.15% in feed), Yi1 be the average fetal weight (g) of ith lit-
ter, and Yi2 be the number of malformed fetuses within ith litter. To implement Bayesian approach,
we set the noninformative priors for β, σ2

ε and Σ: β j ∼ N(0, I2), j = 1, 2, 3, σ2
ε ∼ IG(1, 1), and

Σ ∼ Inverse-Wishart(Ψ = I2, ν = 4). Results were obtained by Markov chain Monte Carlo algorithm
with data augmentation (Ghosh et al., 2006) described in Section 2.3.2. A total of 10,000 MCMC
samples were generated from the conditional posterior distributions of parameters, and the posterior
summary was based on 5,000 samples after a burn-in of 5,000 iterations. Convergence of MCMC
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Table 3: Estimated BMD and BMDL in the DEHP data analysis

Fetal weight Number of malformations
BMD (%) BMDL (%) BMD (%) BMDL (%)

Independent ZIP Model 0.051 0.034 0.012 0.009
Joint Poisson Model 0.052 0.034 0.014 0.011
Joint ZIP Model 0.051 0.033 0.011 0.008
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Figure 1: Estimated relative response curves with 95% credible bands for fetal weight (left) and number of
malformations (right) in the DEHP dataset. For the BMR value of 5%, BMD and BMDL were displayed for fetal

weight (and not for number of malformations).

algorithm was confirmed via traceplots and Gelman and Rubin’s potential scale reduction factor R̂
(Gelman et al., 2014). The MCMC algorithm was implemented using R 3.6.3 (R Core Team, 2020),
and particularly the adaptive rejection sampling (ARS) method for sampling of β’s was conducted via
arms function of armspp package in R.

3.3. Results

Posterior summaries for parameters in our proposed model (joint ZIP model) as well as the inde-
pendent ZIP model and the joint Poisson model are provided in Table 2. According to the model
comparison criteria DICs, we confirmed that the joint ZIP model had the smallest DIC (–1621.4) and
thus fit the DEHP data comparatively better than the other two models. Table 2 also provides param-
eter estimates of the three models (posterior means and 95% credible intervals). The joint ZIP model
shows significant effects of dose level on fetal weight and the number of malformations, respectively:
β̂11 = −0.941 indicates that fetal weight decreases as the DEHP level increases, and β̂12 = 4.872
indicates that the number of malformed pups increases as the DEHP level increases.

We can examine zero-inflation from the Bernoulli model component in the joint model in 2.1. The
significant positive coefficient of the intercept (β̂03 = 1.415) indicated strong evidence of zero-inflation
although the coefficient of the slope was not significant (β̂13 = −0.244, CI=(–2.203, 1.718)). Con-
sidering zero-inflation aspect in the model greatly reduced DIC value from the joint Poisson model,
meaning that the model fit was greatly improved. Parameter estimates for the random effects can ex-
plain the performance of jointly modeling the data. Obviously, fetal weight and number of malformed
pups showed a negative association as evidenced by significant negative correlation of the random ef-
fects (ρ̂ = −0.127). The joint ZIP model had better model fit (smaller DIC value) than the independent
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ZIP model separately modeling two outcomes, although they have very similar parameter estimates
as a whole.

Figure 1 represents the estimated relative response curves along with 95% credible bands for fetal
weight and number of malformed pups, respectlvely for the joint ZIP model as defined in Section 2.4.
As dose level increases from 0% to 0.15%, the relative response curves linearly decreases for fetal
weight and increases for number of malformations in a quadratic way. When we used the BMR value
of 5% according to the recommendations of the US EPA and the EFSA, we obtained the estimated
BMD and BMDL, 0.051% and 0.033%, respectively for fetal weight, and 0.011% and 0.008%, re-
spectively for the number of malformations in the joint ZIP model. Table 3 gives the estimated BMDs
and BMDLs for each model. The estimated BMD and BMDL of the joint ZIP model were comparable
to or slightly smaller than the other two models. We know that the joint ZIP model can be used to
determine the BMD for regulatory purposes, and suggests regulatory limits which are more protective
(smaller BMDL) in a risk assessment.

4. Concluding remarks

We have proposed a Bayesian joint zero-inflated Poisson model for continuous and count data with
excess zeros, in which the association between the two outcomes was taken into account via the
subject-specific random effect. When we applied the proposed model to DEHP dataset from devel-
opmental toxicity study, the model showed better model fit than independent zero-inflated Poisson
model and joint Poisson model based on DIC measures. We were able to confirm the negative effect
of DEHP level on fetal weight and the positive effect of DEHP level on the number of malforma-
tions, respectively. It also turned out that the DEHP data should be analyzed using models dealing
with excess zeros and jointly considering two outcomes. Further, our proposed model can be applied
to a developmental toxicity study to estimate BMD and BMDL in dose-response analysis. We have
confirmed the joint ZIP model suggests more protective regulatory limits in a risk assessment.

In terms of estimation, we presented a Bayesian approach to fitting the joint zero-inflated Poisson
model based on the MCMC procedure with data augmentation method. The Bayesian approach has
several advantages including use of prior information, easy interpretation, accounting for uncertainty
in the parameter estimates and suitability for small sample data compared to maximum likelihood
procedures. The data augmentation method used for count data with excess zeros greatly helped to
improve efficiency of estimation compared to commonly used Metropolis-Hastings algorithm (Chip
and Greenberg, 1995).

In the proposed model, ZIP model was used to deal with excess zeros in count outcome. However,
the ZIP model can often be unstable if there is zero-deflated counts at a particular level of a categorical
predictor, even if there are many zeros overall (Min and Agresti, 2005). The zero-inflated negative
binomial (ZINB) model or the hurdle model may be considered to be used to describe zero-inflated
count data instead of ZIP model to address unstableness of the model. In the proposed model (equation
(2.1)), it was assumed that the fixed effects had a linear trend with dose level. The fixed effects could
be generalized using a nonparametric method, e.g., regression splines. The random effects could also
be extended in several ways. Nonparametric Bayesian methods such as Dirichlet process priors can
be used for the random effect distribution instead of bivariate normal distribution, which will result in
more flexible modeling (Hwang and Pennell, 2014). Another extension may include allowing random
slopes in addition to random intercepts. As seen in Table 1, litter size is noticeably small at a high
level of DEHP(0.1% and 0.15%) in Section 3. To see how litter size affects modeling results, we can
take into account joint modeling framework of informative litter size and outcomes (Dunson et al.,
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2003; Hwang and Pennell, 2018).
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