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A Hierarchical Bayesian Model for Survey Data with
Nonresponse |

Geunshik Han!

ABSTRACT

We describe a hierarchical bayesian model to analyze multinomial non-
ignorable nonresponse data. Using a Dirichlet and beta prior to model the
cell probabilities, We develop a complete hierarchical bayesian analysis for
multinomial proportions without making any algebraic approximation. In-
ference is sampling based and Markov chain Monte Carlo methods are used
to perform the computations. We apply our method to the data on body
mass index (BMI) and show the model works reasonably well.

Keywords: Latent variable; Metropolis-Hastings sampler; Nonignorable nonre-
sponse; Selection approach

1. INTRODUCTION

The nonresponse rates in many surveys have been increasing steadily (De.
Heer 1999 and Groves and Couper 1998), making the nonresponse problem more
important. For many surveys the responses are multilevel. We describe a hierar-
chical Bayesian model to study multinomial nonignorable nonresponses.

Rubin(1987) and Little and Rubin(1987) describe two types of models ac-
cording to the ignorability of response. In the ignorable model the distribution
of the variable of interest for a respondent is the same as the distribution of that
variable for a nonrespondent with the same values of the covariates. In addition,
the parameters in the distributions of the variable and response must be distinct
(see Rubin 1976). All other models are nonignorable. Our model essentially
incorporates both types. ‘

Crawford, Johnson and Laird (1993) used nonignorable nonresponse models
to analyze data from the Harvard Medical Practice Survey. Stasny, Kadane, and
Fritsch (1998) used a Bayesian hierarchical model for the probabilities of voting
guilty or not on a particular trial given various death-penalty beliefs in which the
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views of nonrespondents may differ from those of respondents. Park and Brown
(1994) used a pseudo-Bayesian method (Baker and Laird 1988), and Park (1998)
used a method in which prior observations are assigned to both observed and
unobserved cells to estimate the missing cells of a multi-way categorical table
under nonignorable nonresponse.

Stasny (1991) used a hierarchical Bayesian model to study victimization in
the National Crime Survey (NCS), and used the selection approach developed
primarily to study sample selection problems (e.g., Heckman 1976 and Olson
1980). A related approach was given by Albert and Gupta (1985) for a single
area in which an approximation has made to obtain a Bayesian approach.

Stasny (1991) used a Bayes emperical Bayes method (Deely and Lindley 1981)
in which the hyper-parameters are estimated using maximum likelihood methods
and then assumed known. We extend this approach in two directions. First we
consider multinomial data and second we provide a full Bayesian analysis.

It is possible to incorporate prior information about nonrespondents, and
the Bayesian method is appropriate for the analysis of nonignorable nonresponse
problems (Little and Rubin 1987 and Rubin 1987). The main difficulty is how to
model the relationship between the respondents and nonrespondents.

The rest of the paper is organized as follows. In section 2 we discuss the
Bayesian model for nonignorable nonresponses. In particular, a three-stage Bayesian
hierarchical multinomial model is shown. In section 3 we describe the empirical
study to assess the performance of our model. Finally, section 4 has conclusion
remarks.

2. METHODOLOGY FOR HIERARCHICAL MULTINOMIAL
MODEL

In this section we describe the Bayesian model for both ignorable and nonig-
norable nonresponse. For each subgroup(e.g., age, race, sex), an individual &£ in
area i belongs to one of J categories, then for k** individual with category j in
area i, characteristic variable can be defined as follows,

’

Xik = (a:ilk, ...,:Eijk, veey .’L'Z"]k) y 1= 1, ey Cy ] = 1, ceey J; k= 1, eeey Tgy

where each z;;; = 0 or 1 and ijl Tijk = 1.
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The response variable, y;;x is defined for each subgroup

) 1, ifindividual £ belonging to BMI level j in county ¢ responded
Yigk = 0, if individual k¥ belonging to BMI level j in county 4 did not respond

We use a probabilistic structure to model the x;; and y;;.

2.1. Ignorable Versus Nonignorable Nonresponse

For ignorable nonresponse, response mechanism does not depend on charac-
teristic since this is well supported by the data, hence we take

xi% | pi 2 Multinomial (1, p;) | 1)
and )
Yijk | i “d Bernoulli (73). (2)

At the second stage we take

pi | B, 71 “ Dirichlet (uq71) (3)
id
i | o1, Ta1 ~ Beta (p21721, (1 — po1)721), (4)

=1 P
where p(pz | l"’laTl) = _Jﬁl_ﬁ]l—?)_—a 0< Dij < 1, E_‘yjzlplj = 1 and H1 =

HJ K111

;. O7_, T(p1;m) ‘ ‘
(p11y- .., p1g) with D(pm) = —J%(%ﬂ—, 0<pyy <1, ijl p1; = 1.

Assumptions (3) and (4) express similarity among the areas.
For nonignorable nonresponse, we use the same model (1) for characteristic
variable as that of ignorable model, but for the response variable we take

. .
Yiik | Xik = (Titky -y Tigk) , Tij ~ Bernoulli (m5), (5)

where zijp =1, 2,5, = 0,5 # § for 7, j =1,2,...,J. At the second stage we
also take
wd .
p; | 3,73 ~ Dirichlet (p373), (6)

where H3 = (/"’317#327 "'7M3J)

. ‘
mij | pag, Ta; ~ Beta (pajTaj, (1 — pag)7a5), § = 1,0y J (7)
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Like (3) and (4), the assumptions (6) and (7) express similarity among the coun-
ties. However the response parameters m;; are weakly identifiable in this case.
(7) helps in the estimation of the ;.

To ensure a full Bayesian analysis, at the third stage we take the prior for the
hyper-parameters as follows. For the ignorable model
pq~ Dirichlet (1,1,...,1), po1~ Beta (1,1), m~T (n§0)71/§0))’ and
o1~ T (ngi),yél)), where gamma density is given by t~ I' (a,b) means f(t) =
bt2Le=%/T(a), t > 0.
The corresponding part of the nonignorable model is
ps~ Dirichlet (1,1,...,1) , pgs~ Beta (1,1) ,73~ T (n:go),uéo)), and
Tas~e T (0 U0, 5 =1, J.

8 8

The hyper-parameters ngo), 1/3(,0), ng) and 1/( ) g = 1,..., J are to be specified.
Let r; be the number of respondents in county 7 and y;; the number of respondents
for j th BMI level in county ¢. Then r; and y;; are random variables, n; —r; is the
number of nonrespondents, since the number of respondents for jth BMI level
for the nonrespondents is unknown, we denote them by the latent variables z;;
(see the tree diagram in Figure 1)

The likelihood function for ignorable nonresponse is
< T4 ¢ J
sivetmamy =T1{( 7 ) wrer (7 ) o)
i=1 7"1 i=1 yll) " sz ]:

Here the likelihood functions for p;; and m; can be seperated out and using Bayes
theorem the joint posterior density of all the parameters is expressed as

f(paﬂ- N1a7—17/1'2157—21 | y,I‘)

o H yz]'H'h L {’/T:"(l _ ’/Ti)ni_”}

=1 {j=1
J
prj -1
1 _
y =1 ’/T,Lmlml 1(1_7ri)(1—u21)721—1
D(pqm1) B(p217a1, (1 — po1)7o1)

(0) 0)
X { 1"1 1ea:p(—1/§0)’rl)} {7‘;7121 h el‘p(—Vég)Tgl)}. (8)
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Similarly the likelihood function for nonignorable nonresponse model is

C
T ;o n; — 715
f(Yar|Pi77"i7z) = H ’ ‘ ’ ‘
=1 T Yils - YiJ ity Zid

H {(m3pi3)¥ (1 — mij)pig) ™7

And using Bayes’ theorem the joint posterior density of all the parameters is

f(pa7r Zy b3, T3, by, T4 ‘ y,r )

J
i —Ti
x H ( Z )ngp” )¥ 1_7T11)p11)

i1y &

J o p3ma—l g HajTaj—1 CN(1—paai)Ta5 =1
j=1Pi; 1—[{7r (1 — my5) (L) }

D(p373) B(pajtaj, (1 — pra5)745)
ng’—1 (0) 4 n(o) i (0)
X { 3 " exp(—v} 73)} 11 {74 ezp(—vy; T4j)}- (9)
7j=1

We consider inferences about p; and probability of responding, é; = Z‘jjzl 3§ Di
Our plan is to obtain Metropolis-Hastings(MH) samplers to get sample from (8)
and (9) and then to use these sample to make a posterior about p; and d;.

2.2. Computations

We use Markov Chain Monte Carlo (MCMC) algorithm to obtain the posterior
distribution of the p; and ;. For the ignorable nonresponse model it is convenient

to represent the posterior density function as
f(PaWaM1,7'1,#21,T21 i Y7r) =
(4]

[ {ri | y,r, g1, m) falmi |yt pon, 7210} Fa(paes 7o 21, 71 |95 )
=1

where fi(-) is Dirichlet density with

ind
P | Yi Ti, #1571 [ D(yl +n;— T+ lJ'lTl)a
f2(+) is beta density which is

ind
i | Ui, Tis o1, To1 ~ Beta(r; + porma1, i — i + (1 — po1)m21)
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and

fa(py, 71, po1, 71 |y,r)

+n; — 1 + pqgT
o H{ et DT T iy )

M1Tl)

(ri + H21T21, n; — 1+ (1 — M21)721)}
X 21, T21
H { B(ug1m21, (1 — po1)721) Plar,m1)

where p(p1,71) and p(ug1,721) are the joint prior distribution. f; and fo are
obtained through the Gibbs kernel, while for f; we use the MH algorithm (see
appendix 1) of Nandram (1998).

For nonignorable nonresponse model it is convenient to represent the posterior
density function as

f(p,ﬂ,Z,N3,Tg,H4,T4 I yar)

c

= H Hf](ﬂ-’t] IY7r7Z’/J’4j7T4j) fJ+1(pi I yaraz7l""3iT3)
i=1 j=1

X f]+2([£3,T3,[.L4,T4,Z Iyar)

where fi(-), ..., f7(-) are beta densities with

ind
Tij | Yigs Tigy Zigjs Hag, Tdg (Y Beta(yij + 45 Tag, 245 + (1~ N4j)7'4j)7
and fyy1(-) is Dirichlet density with

ind
Pi | ¥i, %, 43, T3 " D(yi + z; + p373),
and fr42() is

fJ+2(/J’377—37“47T4,z ' yar)

) H {< o ) e )

Zily

J
B(yij + pajtag, 25 + (1 — prag) 745
% H (’L] J 14)0 <1y ( J) ])p(”4,7_4)
Jj=1

B(pagrag, (1 — paj)745)
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where p(gs3,73) and p(py, T4) are the joint prior distribution. Thus, fi, ..., fr41
are obtained through the Gibbs kernel, while f;,5 is obtained using the MH
algorithm (see appendix 1) of Nandram (1998).

We monitor the convergence of the MCMC using the Gelman and Rubin
(1992) method that uses the analysis of variance technique to determine whether
further iterations are needed. We found 500 iterations to be enough for the priors
being considered. All the numerical results are obtained with 2,000 iterations
after buen-in iterations and we took every second samples.

It is enough to wash out autocorrelation among the iterates and to have good

jumping probabilities (0.25-0.50). For computation, first we set 77§0),‘1/§0), ngi),

I/ég), 77:(,,0), Véo), ng), 1/&2), s=1,...,J, equal to 0. Then we ran our MH algorithm
to obtain posterior samples of 71, 791, 73 and 744, s=1,...,J. To ensure propriety.
of the posterior we estimate ngo), 1/%0), nég), yé?), néo), uéo), 774(12)) I/ig) j=1,...,d,
by fitting the gamma prior on the posterior samples for 71, 721, 73 and taus,,
s =1,...,J. These values are shown in Table 1. Finally, with these proper priors

we ran our algorithm to obtain posterior samples.

3. AN EMPIRICAL ANALYSIS

In this section we describe an empirical analysis using the National Health and
Nutrition Examination Survey (NHANES) data to illustrate our methodology.
The data for our illustration come from this survey, and was collected October
1988 and September 1994,

The NHANES consists of two parts, first part is the interview of the sampled
person for their personal information and second part is the examination of those
sampled. The persons from the sample of households were grouped into a number
of subgroups depending on the age, race and sex. Some subgroups were sampled
at different rates. Sampled persons were asked to come to station for physical
examination. Those who did not come were visited by the examiner for the same
purpose. Details of the NHANES sample design are available (Vital and Health
Statistics, Series 2, Number 113 1992).

One of the variables of interest in the NHANES is body mass index (BMI), a
convenient index of weight adjusted for height (Kg/m?) that can be used to
broadly categorize bodyweight within age-race-sex groups (Kuczmarski et al.
1997) as low body fat (level 1: BMI < 20), healthy body fat (level 2: 20 <
BMI < 25), hefty or unhealthy (level 3: BMI > 25). We use this classification
for the each of 8 age-race-sex groups.
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The main reasons for the NHANES nonresponse are “not interested”, “no
time/work conflict”, “concerns/suspicious”, “don’t bother me” and “health rea-
sons”. The nonresponse rate of the young age group is high, especially the par-
ents, older mothers of a only child, were extremely protective of their babies, and
would not allow them to leave home for physical examination. Such nonresponse
might be nonrandom and hence require some special modeling.

Table 2 shows the number of respondents for each BMI level by age-race-sex
group for 34 counties (population at least 500,000). The pattern of respondents
differs greatly by age groups (young: age < 45 years ; old: age > 45 years). The
nonresponse rate for old age group is negligible but that for young age group is
high. Therefore We use a two part hierarchical model for the BMI data. The first
part of the model is for the old individuals, where we apply a ignorable model.
The second part of the model is for the young individuals, and is a nonignorable
model.

We develop a methodology to analyze the three category BMI data by age,
race and sex, although our methodology applies generally to any number of cells
in several areas (counties in our application). Since p;; are similar for each county,
we take the weighted posterior mean of p;;,

Cc [4
g =Y nipij/Yy mij=1,2,3
‘ i=1 i=1
by age, race and sex for both young and old age group.

3.1. Empirical Analysis

First we perform a sensitivity analysis to access the specifications of 77(0)

and v(%), We compared four choices of hyper-priors Q = (7(?,(?) to check its
sensitivity to inference. For choice 1, we use 4 x (%) and 4 x v(®). For choice 2,
we use (9 and v, For choice 3, we use 71/4 and ©/4 and fourth choice was 0
for both hyper-priors.
Table 3 shows the simulation results of sensitivity to inference of ¢; for young
age group. the point estimates and standard deviations of the proportion are
very similar over the four choices of hyper-priors. Similarly, Table 4 shows the
simulation results of g; for old age group. The point estimates of male group are
very similar over the four choices of hyper-priors, but there are some changes in
the female group. The changes in point estimate for the female group are from
4Q) to §2, but there are no substantial changes from Q to 0.
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Standard deviations are increase when multiplier of © decrease for the fe-
male group, but there are no substantial changes for the male group. Generally
nonignorable performs better than ignorable model, in other word nonignorable
model is not sensitive to choices of hyper priors while ignorable model is possibly
sensitive to choices of hyper priors.

95% credible intervals for the weighted posterior mean are shown in Table 5.
For young age group, the weighted posterior mean is highest for g; (BMI level
1), and go (BMI level 2) is lowest. the lower bounds for q; and g3 are similar for
young age group except white-male, and those for ¢, are similar except others-
male group. For old age group, the weighted posterior mean is highest for g3
(BMI level 3), and g1 (BMI level 2) is lowest. Specifically ¢1, g2 are high and g3
is low for white-female group.

Table 6 shows point estimates of the probability of responding d; = Ejzl TijDij
and their 95% credible intervals with choices of Q. The probabilities of respond-
ing for male are lower than that for female, and this trend remaining the same
for three choices of . If a similar survey is conducted in the future we should
increase sample size by 1.25 = (1/.8)time for male and 1.35 = (1/.74) time for
female( e.g., if complete data are required from 1,000 households, the interviewer
needs to contact 1,250 households for males).

4. CONCLUSION

We have discussed the problem of nonignorable nonresponse for the estima-
tion of the proportions. We have extended the method of Stasny (1991) in two
directions. First we consider multinomial data other than binomial data and
second we study a full Bayesian analysis. We applied our methodology to the
NHANES data. The MCMC method allowed us to assess the complex structure
of the multinomial nonresponse estimation. Our empirical analysis indicate good
performance for our model for this data.

For the NHANES there are substantial differences in the proportion of indi-
viduals in the 3 BMI levels for males versus females and young versus old. While
we have shown that inference about BMI is not sensitive to prior specification,
we might want use other prior densities for the Dirichlet or beta parameters(i.e.,
a uniform shrinkage prior). ‘

It is feasible to use a nonignorable model that incorporates the extent of
nonignorability.
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APPENDIX 1

Metropolis-Hastings Samplers
For ignorable mode (uy,71) and (91, 721) are independent aposteriori with

S [ D(yi+n; —ri+ pyT
P(lh,'rl | yar) OCP(P'l,Tl) ]:[{ ( D(IJ:l’/']) ! 1)} (Al)
=1

and

(¢
B(ri + pa17a1, 7 — yi + (L — pa1) 1) }

, T ,I) & , T A2
plpar, o1 | ¥, 1) o p(pa1, T21) E { B, (= i) ran) (A.2)
where p(p,71) and p(p91, 721) are the prior distributions. Samples can be obtained
from each of (A.1) and (A.2) by using the algorithm of Nandram (1998).

For nonignorable model it is convenient to condition on z to obtain

= [ D(y; + zi + par
p(p3, 73| 2,y 1) ox p(ps, 73) H{ b D(“gm)’% 3)} (A.3)
i=1

C

B(yij + pasTas, Zij + (1 — l4s) T4

(s, Tas | 2,y,T) ocp(#4s,74s)H{ ( JB(Z4ST4S (?_;4 )Tf)s) S)}a (A.4)
S Sy S S

i=1

where p(p3,73), p(p4s, 745),(s = 1,..., J) are the prior distributions and for given
z (A.3) and (A.4) are independent.

P(zil = tl, 2 = ty I Y,T, l1s, T1, 435, T35, S = 17 7'])
N, —7T; n;—7r;

=w’it1tz...t_]/ Z Z Witi1ta.. .ty (A5)

t1=0 ty=0

for t=0,1,...,n; — ;.

J
T — T
Wit by ity = ( tll tf; ) D(y;+ti+ p373) HB(yij + pajTag, tij + (1 — paj)7a5).
ooy i

We run the Metropolis-Hastings sampler by drawing a random deviate from each
of (A.3), (A.4), and (A.5). It is easy to draw a random deviate from (A.5). Sam-
ples can be obtained from each of (A.3), (A.4) and (A.5) by using the algorithm
of Nandram (1998).
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Table 1: Estimates of  and v for 73,741,742,743 for young age group and n and v
for 71 and 791 for old age group

Age Race Sex T n v mean std

Young White Male 3 3.69795 .03554 104.050  54.108
T4 2.34070 .07118  32.883  21.493

T42 3.08505 .20091  15.355 8.742

T43 2.68450 .16349  16.420  10.022

Female 73 4.19975 .03045 137.909  67.295

41 3.29355 .05880  56.014  30.865

740 248146 .07194  34.495  21.898

143 1.81866 .01664 109.308  81.054

Others Male T3 4.94848 .06828  72.473  32.579
41 2.92190 .09637  30.321  17.738

740 3.15611 .16859  18.721  10.538

T3 240424 14709  16.345  10.542

Female 73 3.74506 .05515  67.908  35.091

741 3.08397 .03566  86.492  49.252

740 1.89257 .04859  38.951  28.313

143 2.34964 11644  20.179  13.164

Old White Male 71 4.40801 .00869 507.216 241.586
91 3.94073 .05246  75.123  37.840

Female 7 4.78810 .00834 574.409 262.506

o1 4.38366 .01912 229.319 109.527

Others Male 11 597146 .10666  55.986  22.911

91 4.37649 .03572 122.511  58.562

Female 7  3.29226 .00867 379.862 209.353

91 4.48822 .03641 123.285  58.194
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Table 2: Number of individuals in each BMI level and number of nonrespondents
by age, race and sex over all 34 counties

BMI

Age ‘Race Sex 1 2 3 Nonresponse
Young White Male 1098 651 597 558
Female 845 434 380 233
Others Male 1198 713 665 574
Female 745 463 524 214
Old White Male 46 439 1014 3
Female 51 223 365 4
Others Male 79 470 942 8
Female 48 169 552 6

Note : BMI-level 1: < 20; level 2: 20 — 25; level 3: > 25; Young < 45 : Old > 45



A Hierarchical Bayesian Model for Survey Data with Nonresponse 447

(0)

(0)

(0)

(0)

Table 3: Sensitivity of g; for choice of 3 ,v5,ng/, and v ”, s = 1, ..,4 for young
age group

Race Sex g1 std(q1) g2 std(qz) qgs std(gs)

(a) 40

White Male 428 022 216 .019  .356 .022
Female 476 025 232 .020  .292 .024

Others Male 419 020 .212 .016  .369 .020
Female 434 026 .18  .023  .381 027

(b)

White Male 427 022 211 .020  .362 .025
Female 476 .026 .223  .024  .301 031

Others Male 419 020 208 .017  .373 022
Female 435 025 178  .026  .387 .029

(c) Q/4

White Male 427 0 .022 210 .021 @ .364 027
Female 475 .026 220 .026  .304 034

Others Male 419 020 .206 .018  .375 024
Female 435 025 177 .028  .388 .029

(d) 022

White Male 426 022 209 .022  .365 027
Female 474 026 218 .027  .308 034

Others Male 419 .020 205 .018 376 024
Female 435 .025 177 .029  .388 .029

0) (0 0
Notel : @ = (o, 14", ), it nlf) w2 3 A7 ).

Note2 : Nonignorable model applied for young age group
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Table 4: Sensitivity of g; for choice of ngo),ug)), ngg),ugl)) for old age group

Race Sex @1 std(g1) g std(ge) g3 std(gs)

(a) 4Q

White Male .030 .005 .306 .018 .664 .018
Female .081 .002 436 .004 483 .004

Others Male 053 011 317 017 630  .018

Female 075 .005 201 .004 724 006

(b) Q

White Male .031 005 292 016  .677  .016
Female 063 .002 443 006 494  .005

Others Male 063 .011 316 019 631 .020
female .066 .012 237 018 697 .019

(c) /4

White Male 031 005 .293 .018 676 019
Female 073 015 .39 011 .568 .019

Others Male .063 .010 317  .018 630  .019
Female .065 .013 221 .022 714 .025

(d) 022

White Male .031 005 293 020 .677  .019
Female .080 014 .359 .031 .561 .033

Others Male 063 .010 .316 019 631 .019

Female 066 .015 .218 026 .717  .029

Notel : Ignorable model applied for old age group
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Table 5: 95% credible intervals for the weighted posterior means, g; = Y7 ; nipij

/>y n; by age, race and sex for each age group

95% credible interval

Age Race Sex a1 a2 qs
Young White  Male (.382 .470) (.174 .252) (.314
Female (.425 .525) (171 .269) (.243 .
Others  Male (.381 .455) (.176 .241) (.333
Female (.385 .482) (.130 .230) (.329 .

Old White Male

( 6
Female (.059 .068

(

(

.32
431 451
Others Male

Female .206 .265

( )
( ) -
(282 .352) (.592 .
( )

Notel : Nonignorable model applied for young respondents.

Note2 : Ignorable model applied for old respondents.

Table 6: 95 % credible intervals for probability of response for three choices of {2

40 Q Q/4
Race Sex 4; std(d;) interval d; std(d:) interval 8; std(8;) interval
W M .775(.016) (.744 .805) .769(.017) (.735 .801) .767(.018) (.732 .799)
F  .855(.017) (.821.886) .855(.020) (.810.887) .853(.022) (.806 .887)
0 M .786(.016) (752 .817) .780(.018) (.740 .813) .778(.018) (.739 .811)
F  .880(.013) (.854.902) .878(.015) (.845.903) .876(.015) (.838 .903)

Note : Race: W, White; O, Others; Sex: M, male; F, Female
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